Операторные уравнения
Определение линейного оператора. Норма линейного оператора. Обратные операторы. Абстрактные функции. Аналитические абстрактные функции и ряды Тейлора. Метод малого параметра в простейшем случае. Метод малого параметра в общем случае.
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 08.08.2007 |
Размер файла | 206,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
- 3 -
Федеральное агентство по образованию
Государственное муниципальное образовательное учреждение
высшего профессионального образования
Вятский Государственный Гуманитарный университет
(ВятГГУ)
Математический факультет
Кафедра математического анализа и методики преподавания математики
Выпускная квалификационная работа
«Операторные уравнения»
Выполнила:
студентка V курса
математического факультета
Кощеева Анна Сергеевна
Научный руководитель:
старший преподаватель кафедры математического анализа и МПМ
Гукасов Артур Константинович
_______________________
Рецензент:
Кандидат физико-математических наук, доцент кафедры математического анализа и МПМ
Подгорная Ирина Иссаковна
________________________
Допущен к защите в ГАК
Зав.кафедрой______________________ Крутихина М.В.
« »____________
Декан факультета__________________ Варанкина В.И.
« »____________
Киров 2005
Содержание
Введение_______________________________________________________ |
3 |
||
Глава 1.Операторные уравнения.___________________________________ |
4 |
||
§1. Определение линейного оператора________________________ |
4 |
||
§2. Норма линейного оператора______________________________ |
5 |
||
§3. Обратные операторы____________________________________ |
5 |
||
§4. Абстрактные функции___________________________________ |
9 |
||
§5. Аналитические абстрактные функции и ряды Тейлора________ |
11 |
||
§6. Метод малого параметра в простейшем случае______________ |
12 |
||
§7. Метод малого параметра в общем случае___________________ |
13 |
||
§8. Метод продолжения по параметру________________________ |
15 |
||
8.1. Формулировка основной теоремы___________________ |
15 |
||
8.2. Простейший случай продолжения по параметру_______ |
16 |
||
Глава 2. Приложение_____________________________________________ |
19 |
||
Литература_____________________________________________________ |
27 |
Введение
Функциональный анализ - мощное средство для решения математический задач, возникающих в реальных ситуациях, он имеет множество приложений в различных областях математики, его методы проникают в смежные технические дисциплины.
Многие задачи математической физики, теории упругости, гидродинамики сводятся к отысканию решения дифференциального линейного уравнения, что, в свою очередь, приводит к задаче отыскания решения уравнения Аx = y с линейным оператором А. В данной работе рассмотрены два метода решения операторных уравнений.
Цель данной работы: рассмотреть основы теории линейных операторов и методы решения операторных уравнений - метод малого параметра и метод продолжения по параметру, показать применение этих методов к решению задач.
Изучив имеющийся материал по данной теме, я поставила перед собой следующие задачи:
1. раскрыть некоторые основы теории линейных операторов, необходимые для освоения методов решения операторных уравнений;
2. проиллюстрировать на конкретных примерах способы решения операторных уравнений и дать пояснения по ходу решения конкретных задач.
Так как выделение из функционального анализа его прикладной части, содержащей конструктивные методы получения решений задач, преследует методическую цель - сделать эти методы доступнее тем, кто занимается приложениями математики. Поэтому данная работа разделена на две главы, в первой содержатся необходимые теоретические обоснования способов решения операторных уравнений и суть обоих методов, а во второй - решения конкретных задач.
Глава 1. Операторные уравнения
§1.Определение линейного оператора
Пусть X и Y - линейные пространства, оба вещественные или оба комплексные.
Оператор А: X > Y с областью определения D(А) называется линейным, если
А(л1x1 + л2x2) = л1А(x1) + л2А(x2)
для любых x1,x2 D и любых скаляров л1 и л2.
Пусть X и Y - нормированные пространства и А: X > Y, где А - линейный оператор, всюду заданный в X (т.е. D(А) = X).
Оператор А называется непрерывным в точке x0 X, если Аx > Аx0 при x > x0. Но судить о непрерывности линейного оператора в различных точках x0 X можно по непрерывности его в нуле пространства X.
Теорема 1. Пусть линейный оператор А всюду задан в банаховом пространстве X и со значениями в банаховом пространстве Y непрерывен в точке 0 X; тогда А непрерывен в любой точке x0 X.
Доказательство. Рассмотрим равенство Аx - Аx0 = А (x - x0). Если x > x0, то z = x - x0 > 0. По непрерывности в нуле Аz > 0, но тогда Аx - Аx0 > 0, что и требовалось доказать.
Линейный оператор А называется непрерывным, если он непрерывен в точке x = 0.
Пусть S1(0) - замкнутый шар ||x|| ? 1 в банаховом пространстве X.
Будем называть линейный оператор А: X > Y ограниченным, если он ограничен на единичным шаре S1(0), т.е. если ограничено множество
{ ||Аx||, ||x|| ? 1}.
Согласно определению, если А ограничен, то существует постоянная с > 0 такая, что для любых x с ||x|| ? 1 справедливо неравенство
||Аx|| ? с (1)
Теорема 2. А ограничен тогда и только тогда, когда справедлива оценка
||Аx|| ? с ||x|| (2)
для любых x X, где с - постоянная.
Теорема 3. Пусть А: X > Y, А - линейный оператор, X, Y - банаховы пространства. Для того чтобы А был непрерывным, необходимо и достаточно, чтобы он был ограниченным.
§2. Норма линейного оператора
В линейном пространстве непрерывных линейных операторов зададим норму следующим образом:
. (1)
Поясним, почему существует конечное число ||А||, определяемое для любого ограниченного оператора равенством (1). Так как А - ограничен, то множество
ограничено сверху. По теореме о верхней грани существует .
Из свойства sup M следует, что ||Аx|| ? ||А|| для всех x S1(0). Отсюда
||Аx|| ? ||А|| ||x||, (2)
справедливое для всех x X, включая x = 0. таким образом, ||А|| является наименьшей из констант в неравенстве ||Аx|| ? ||А||, и, значит, оценка (2) является наилучшей.
Пространство нормированных непрерывных линейных операторов, действующих из X в Y, будем обозначать L(X, Y).
§3.Обратные операторы
Системы линейных алгебраических уравнений, интегральные уравнения, а также различные задачи для обыкновенных дифференциальных уравнений и уравнений с производными часто могут быть записаны в виде линейного уравнения
Если существует обратный оператор , то решение задачи записывается в явном виде:
Важное значение приобретает теперь выявление условий, при выполнении которых обратный оператор существует и обладает теми или иными свойствами.
Пусть задан линейный оператор: А: X > Y, где X,Y - линейные пространства, причем его область определения D(A)X, а область значений R(A)Y.
Введем множество - множество нулей оператора А. заметим, что N(A) не пусто, так как 0 N(A)
Теорема 4. Оператор А переводит D (А) в R (А) взаимно однозначно тогда и только тогда, когда N(A)=, (т.е. множество А нулей состоит только из элемента 0)
Теорема 5. Оператор А-1 существует и ограничен на R(A) тогда и только тогда, когда для некоторой постоянной m>0 и любого x D(A) выполняется неравенство
. (1)
Введем теперь следующее важное понятие.
Будем говорить, что линейный оператор А: X > Y непрерывно обратим, если R(A)=Y , оператор обратим и A-1 L(Y, X), (т.е. ограничен).
Обращаясь к теореме 5, мы сможем сформулировать следующее утверждение.
Теорема 6. Оператор А непрерывно обратим тогда и только тогда, когда R(A)=Y и для некоторой постоянной m>0 и для всех выполняется неравенство (1).
В случае определенного и ограниченного на всем множестве оператора A L(X,Y) имеется теорема Банаха об обратном операторе.
Теорема 7. Если А - ограниченный линейный оператор, отображающий взаимно однозначно банахово пространство X на банахово пространство Y, то обратный оператор А-1 ограничен.
Иными словами, если А L(X,Y), где X и Y банаховы, R(A)=Y и А обратим, то А непрерывно обратим.
Взглянем на понятие непрерывно обратимого оператора с точки зрения разрешимости линейного уравнения
Ax = y (2)
Если А непрерывно обратим, то уравнение это имеет единственное решение x = A-1y для любой правой части у. Если при этом (решение того же уравнения с правой частью ), то . Это означает, что малое изменение правой части y влечет малое изменение решения, или, как принято говорить, задача (2) корректно разрешима.
Пусть А L(X,Y). Оператор U L(X,Y) будем называть правым обратным к А, если AU = Iy. Оператор V L(X,Y) будем называть левым обратным к А, если VA = Ix.
Здесь через Iy (Ix) обозначен тождественный оператор в пространстве Y (X). Ниже для правого обратного к А используем обозначение Аr-1, а для левого - АL-1.
Лемма 1. Если существует правый обратный Аr-1 к А, то уравнение (2) имеет решение
x = Аr-1 y
Если существует левый обратный оператор к А, то уравнение (2) может иметь не более одного решения.
Доказательство.
А(Аr-1 y) = (А Аr-1)y = y,
т.е. x = Аr-1 y обращает (2) в тождество и, значит, является решением.
Далее, пусть существует АL-1. рассмотрим N(A). Пусть x N(A), тогда Аx = 0. применим к этому равенству оператор АL-1, тогда АL-1Аx = 0, откуда x = 0. итак, всякое x N(A) оказывается равным 0. Значит, N(A) = {0} и, по теореме 4, А взаимно однозначен, т.е. для уравнения (2) справедлива теорема единственности. Что и требовалось доказать.
Пусть X - банахово пространство. Рассмотрим банахово пространство L(X) - пространство линейных, ограниченных и заданных на всем множестве операторов. Пусть I - тождественный оператор в L(X). Очевидно, что I непрерывно обратим. Ниже доказывается, что вместе с I непрерывно обратимы все операторы - единичного шара в L(X), т.е. все такие А, для которых справедливо неравенство .
Для краткости положим C = I - A. Ниже мы будем ссылаться на признак Вейерштрасса: пусть X - банахово пространство, тогда всякий абсолютно сходящийся в X ряд сходится.
Теорема 8. Пусть и ; тогда оператор I - C непрерывно обратим. При этом справедливы оценки
(1)
(2)
Доказательство. Рассмотрим в L(X) ряд
I+C+C2+C3+… (3)
Так как , то ряд (3) оценивается сходящимся числовым рядом - геометрической прогрессией
По признаку Вейерштрасса ряд (3) сходится равномерно, т.е.
.
Где S - сумма ряда (3). Далее простой проверкой убеждаемся, что
,
.
Но при этом (ибо и ), а . Поэтому, в пределе имеем равенства (I - C)S = I и S(I - C) = I. По лемме 1 отсюда заключаем, что I - C непрерывно обратим и S=(I - C)-1. Далее,
,
.
Переходя в этих неравенствах к пределу при , получаем оценки (1) и (2). Теорема доказана.
Теперь рассмотрим более общий случай пространства L(X,Y). Пусть А L(X,Y) непрерывно обратим.
Теорема 9. Пусть A, B L(X,Y), А непрерывно обратим и выполнено неравенство . Тогда B непрерывно обратим и справедливы оценки
, .
§4. Абстрактные функции
Пусть S - некоторое множество на числовой оси или в комплексной плоскости, а X - нормированное пространство.
Рассмотрим функцию x() с областью определения S и с областью значений в X. Такие функции принято называть абстрактными функциями числовой переменной или векторными функциями числовой переменной, поскольку элементы линейного (иначе - векторного) пространства мы называем также векторами. На абстрактные функции числовой переменной переносятся многие понятия и факты математического анализа. Далее рассмотрим сведения о пределах и непрерывности таких функций, о разложении в степенные ряды, а также понятие аналитической абстрактной функции.
Пусть x() определена в окрестности точки 0, за исключением, быть может, самой точки 0. Элемент а X будем называть пределом функции x() при >0 и записывать
при >0,
если при >0.
Степенные ряды - это специальный случай рядов в нормированном пространстве, когда члены ряда зависят от параметра.
Рассмотрим в нормированном пространстве X ряд вида , где xк X, а - вещественное или комплексное переменное. Поскольку можно ввести новую переменную -0 = , то в дальнейшем мы полагаем 0 = 0 и рассматриваем степенные ряды вида
(1)
Конечная сумма называется частичной суммой степенного ряда (1).
Пусть - множество всех точек , для которых ряд (1) сходится. называется областью сходимости ряда (1).
Сумму ряда (1) при обозначим через S() (это абстрактная функция, определенная на со значениями в X), при этом будем писать
, при .
Последнее равенство означает, что Sn() > S() при n>? для всех .
Очевидно, область сходимости любого степенного ряда (1) не пуста, так как 0 . Как и в случае скалярных функций, справедлива следующая теорема.
Теорема 10 (Абель). Пусть0 ? 0 и 0 , тогда круг содержится в . Во всяком круге Sr(0), где r < , ряд (1) сходиться абсолютно и равномерно относительно .
Теорема 11. Пусть два степенных ряда равны в круге SR(0), R>0:
;
тогда равны все их коэффициенты: (k=0, 1, 2, …)
Дифференцирование абстрактных функций
Пусть функция числового переменного л со значениями в банаховом пространстве X определена в окрестности точки л0.
По определению производной x'(л0) функции x(л) в точке л0 называется предел
,
если этот предел существует (и конечен). Если имеет производную в точке л0, то она называется дифференцируемой в этой точке.
§5. Аналитические абстрактные функции и ряды Тейлора
Абстрактную функцию x() будем называть аналитической при =0, если она представима в некоторой окрестности точки =0 сходящимся степенным рядом:
(1)
с ненулевым радиусом сходимости.
Теорема 12. Если x() - аналитическая абстрактная функция при =0, то x() непрерывна в круге SR(0), где R - радиус сходимости степенного разложения (1).
Теорема 13. Если x() - аналитическая абстрактная функция при =0, то x() дифференцируема в круге SR(0) сходимости своего степенного разложения.
Пусть x() бесконечно дифференцируема в точке 0. Ряд вида
называется рядом Тейлора функции x().
Если x() аналитична при =0, то ее ряд Тейлора, в силу теоремы 10, является ее степенным разложением и, значит, сходится к ней в SR(0).
Понятие абстрактной аналитической функции используется в широко применяемом на практике методе малого параметра.
§6. Метод малого параметра в простейшем случае
Рассмотрим следующее уравнение:
Аx -Сx=y. (1)
Здесь А, С L(X,Y) и y Y заданы, - скалярный параметр, , а неизвестное x разыскивается в X. Если , т.е.
, (2)
то, согласно теореме 9, оператор А-С непрерывно обратим, и тогда решение уравнения (1) существует, единственно и задается явной формулой
. (3)
Отсюда видно, что в круге (2) решение является аналитической функцией параметра и, следовательно, может быть найдено в виде
(4)
На этой идее основывается метод малого параметра для уравнения (1). Подставим ряд (4) в уравнение (1) и, согласно теореме единственности разложения в степенной ряд, приравниваем коэффициенты при одинаковых степенях в правой и левой частях получившегося тождества:
.
Таким образом, мы приходим к следующей рекуррентной системе уравнений для определения x0, x1, …:
Аx0=y, Аx1=Сx0, …, Аxк=Сxк-1, …
Так как А непрерывно обратим, то отсюда последовательно находим
x0=А-1y, x1= А-1(СА-1)y, …, xк= А-1(СА-1)кy, …
Следовательно,
. (5)
Мы получили решение (3), разложенное в степенной ряд. Если мы хотим оборвать степенной ряд и ограничиться приближенным решением
то можно оценить ошибку. Вычитая из ряда (5) его частичную сумму (6) и оценивая разность по норме, получим
.
§7. Метод малого параметра в общем случае
Пусть дано уравнение
А()х = у(). (1)
Здесь А() L(X,Y) задана при каждом , , или, как говорят, А() - оператор-функция. Пусть А() аналитична при =0, а оператор А(0) непрерывно обратим, у() - заданная аналитическая функция при =0 со значениями в Y. Неизвестное x разыскивается в X.
Аналитичность А() и у() в точке 0 означает, что они разлагаются в следующие степенные ряды с ненулевыми радиусами сходимости, которые равны и соответственно:
, . (2)
Из аналитичности А() следует непрерывность А() при =0. следовательно, найдется число r > 0 такое, что в круге
.
Отсюда вытекает, что в круге оператор-функция А() непрерывно обратима и, следовательно, уравнение (1) имеет единственное решение
,
при этом x() аналитична в точке =0 и радиус сходимости соответствующего степенного ряда равен min(, r). Для фактического построения x() удобно воспользоваться методом малого параметра. Будем разыскивать x() в виде
. (3)
Подставляя ряд (3) в уравнение (1) и учитывая разложения (2), приходим к следующей системе для неопределенных коэффициентов x0, x1, x2, …:
А0x0 = y0, А0x1+А1x0 = y1,
А0x2 + А1x1 + А2x0 = y2, (4)
. . . . . . . . . . .
, …
Здесь А0 = А(0) непрерывно обратим. Решая последовательно уравнения получившейся системы, находим
, , … (5)
Возникающие здесь формулы довольно громоздки, однако этим путем можно найти решение уравнения с любой степенью точности. Метод малого параметра особенно удобен в тех случаях, когда обращение оператора А(0) - задача более простая, чем задача обращения оператора А().
§8. Метод продолжения по параметру
8.1. Формулировка основной теоремы
В качестве еще одного приложения теорем об обратных операторах рассмотрим один из вариантов метода продолжения по параметру. Пусть и А непрерывно обратим. Если , то, согласно теореме 9 §3, В также непрерывно обратим. Оказывается, при определенных условиях можно доказать, что В будет непрерывно обратим и в том случае, когда он очень далек от А. Идея заключается в следующем. Рассмотрим непрерывную на отрезке [0, 1] оператор - функцию такую, что А(0)=А, А(1)=В. Иначе говоря, в L(X, Y) рассматривается непрерывная кривая, соединяющая точки А и В. Будем предполагать, что для оператор - функции выполняется следующее условие:
1. Существует постоянная такая, что при всех и при любых справедливо неравенство
. (1)
Ниже будет доказана следующая теорема.
Теорема 14. Пусть А(л) - непрерывная на [0, 1] оператор-функция (при каждом ), причем оператор А(0) непрерывно обратим. Если для А(л)выполняется условие I, то А(I)непрерывно обратим, причем .
Замечание к теореме 14. Если выполнено условие I при и оператор непрерывно обратим, то
. (2)
Действительно, пусть , а , т.е.. тогда условие I дает или , что означает справедливость неравенства (2).
8.2. Простейший случай продолжения по параметру
Приведем здесь доказательство теоремы 14 для случая, когда . Согласно условию этой теоремы . По замечанию 14 . Имеем следующую оценку:
.
Пусть , где . На [0, д] имеем , и, следовательно, по теореме 9 А(л) при всяком непрерывно обратим. Если окажется, то , то теорема доказана.
Пусть д < 1. Возьмем А(д). Согласно замечанию п.14.1 . Повторяем наши рассуждения при л>д. Имеем оценку
,
если , откуда А(л) непрерывно обратим при каждом . Если , то теорема доказана. Если же 2д < 1, то и рассуждение можно повторить. После конечного числа шагов мы достигаем точки л=1, и, следовательно, А(1) непрерывно обратим.
Доказательство теоремы в общем случае
Рассмотренный выше частный случай отрезка в L(X,Y) не всегда удобен в приложениях. Общий случай основывается на следующем элементарном предложении.
Лемма. Пусть М - некоторое непустое множество на [0,1], одновременно открытое и замкнутое на [0.1]. тогда М=[0, 1].
Замечание 1. условие открытости М на [0,1] понимается так: для любого существует д > 0 такое, что .
Доказательство леммы. Пусть N = [0, 1] \ M (дополнение к М на [0, 1]). Нужно доказать, что N = - пустое множество. Допустим противное, что N . Поскольку М и ограничено сверху, то существует b = supM, причем b M вследствие замкнутости. Покажем, что b = 1. Если b <1, то вследствие открытости M на [0, 1] найдется x > b, x M. Это противоречит определению supM. Следовательно, b >1 невозможно. Итак, 1 М.
Теперь рассмотрим множество N. Как дополнение к М, оно также открыто и замкнуто на [0, 1], и, значит, к нему применимо рассуждение с supM . мы получаем, что 1 N. Это невозможно, ибо N - дополнение к М. полученное противоречие доказывает, что допущение N неверно. Итак, N= , т.е. М = [0, 1]. Лемма доказана.
Вернемся к доказательству теоремы. Пусть М - множество тех точек л[0, 1], для которых оператор А(л) непрерывно обратим. Согласно замечанию 1 для всех л М. М не пусто, поскольку 0 [0, 1].
воспользуемся непрерывностью оператор-функции А(л) в метрике L(X,Y). Для любого > 0 найдется д = д()>0 такое, что при всех л [0, 1] таких, что < д выполняется неравенство <.
Возьмем = г, тогда при < д(г), л [0, 1]
<1.
По теореме 9 §3 А(л) непрерывно обратим для всех таких л. Итак, вместе с л0 М содержит , т.е. М открыто на [0, 1].
Докажем, что М замкнуто на [0, 1]. Пусть и при . Надо доказать, что л0 М. воспользуемся неравенством и получим
.
Вследствие непрерывности А(л) по л для любого > 0 находим номер N = N() такой, что при n > N будет <. Возьмем = г, тогда для n = N(г)+1 <1.
По теореме 9 А(л0) непрерывно обратим, т.е. л0 М, и, значит, М замкнуто на [0, 1]. По лемме М = [0, 1] . в частности, 1 М и . Теорема полностью доказана.
Замечание. Рассмотрим уравнение с параметром:
А(л)х = у, л [0, 1]. (1*)
Пусть для всех возможных решений этого уравнения при всяком л [0, 1] справедлива оценка
, (2*)
где с - некоторая постоянная, не зависящая от х, у и л. Оценка такого рода называется априорной оценкой для решения уравнения (1*). Очевидно, априорная оценка (2*) представляет собой лишь иначе записанное условие (1): .
Доказанная выше теорема свидетельствует о важности априорных оценок для доказательства теорем существования и единственности решений.
Глава 2. Приложение
Пример 1. Рассмотрим интегральное уравнение с малым вещественным параметром л:
(1)
Это уравнение вида А()х = у() - операторное уравнение в С[-р; р], где
Покажем, что А() аналитична в т. 0, т.е. разлагается в ряд вида . Разложим функцию А() в ряд Тейлора: .
Найдем к - ую производную:
Разложим функцию в ряд Тейлора в т. 0:
Таким образом, функция аналитична, следовательно, непрерывна при = 0, а значит, уравнение имеет единственное решение.
Операторные коэффициенты имеют вид:
; (2)
I. Начнем с уравнения А0x0 = y системы (4) §7, где у нас теперь y0=y, yк=0, к ? 1.
Заменим, , поэтому
, (4)
где
,
Для того, чтобы найти коэффициент А в уравнении (4), умножим его на cos t и, интегрируем по t от -р до р:
,
подсчитаем интегралы:
, ,
Тогда, подставив в уравнение, получаем: . Отсюда:
. (5)
Найдем коэффициент В уравнения (4), умножив это уравнение на sin t и интегрируя по t от -р до р:
.
Подсчитав соответствующие интегралы:
, , , подставив и выразив В, получаем:
. (6)
Подставим найденные коэффициенты (5) и (6) в уравнение (4):
и свернем по формуле:
II. Найдем теперь x1(t), для этого необходимо решить следующее уравнение системы (4) §7: А0x1+А1x0 = y1. Так как y1=0 в нашем случае, то мы будем решать уравнение А0x1= - А1x0.
Обозначим , т.к. мы знаем теперь x0(s), следовательно ц(t) можно вычислить. Имеем:
Как в предыдущем случае заменим, , поэтому
. (7)
где , .
Умножим уравнение (7) на cos t и проинтегрируем по t от -р до р - получим коэффициент А:
Подсчитав: , , ,
имеем .
Аналогично умножив уравнение (7) на sin t и проинтегрируем по t от -р до р - получим коэффициент В: .
Составляем функцию x1(t), подставив коэффициенты А и В в уравнение и свернув равенство по формуле косинуса разности:
.
Таким способом мы можем найти все остальные решения уравнения с любой степенью точности.
Пример 2. Применим метод продолжения по параметру для оценки разрешимости краевой задачи для дифференциального уравнения, а потом решим ее методом малого параметра.
-x'' + b(t)x' +c(t)x = y(t), 0< t <1, (1)
x(0) = x(1) = 0 (2)
Здесь c(t) непрерывна на [0, 1], b(t) непрерывно дифференцируема на [0, 1]. Предположим еще, что на [0, 1] c(t) - b(t)'/2 ? б > -8/р (*).
Покажем методом продолжения по параметру, что в этих условиях при всякой правой части y Y = С [0, 1] существует единственное решение задачи x X = С2 [0, 1] - пространству, состоящему из дважды непрерывно дифференцируемых на [0, 1] функций x(t), удовлетворяющих граничным условиям (2), и с нормой , где .
Запишем задачу (1) - (2) в операторном виде: Вx = y
Здесь определен всюду на X со значениями в Y. В качестве оператора А примем L(X, Y).
Соединим операторы А и В отрезком
, л [0, 1].
Теперь необходимо установить априорную оценку для решений краевой задачи
-x'' + лb(t)x' + лc(t)x = y(t), 0< t <1, (3)
x(0) = x(1) = 0 (4)
Как только такая оценка будет получена, из теоремы п.8.1. будет следовать однозначная разрешимость краевой задачи (3) - (4).
Умножим уравнение (3) на x(t) и проинтегрируем полученное равенство по t от 0 до 1:
.
Заметим, с учетом граничных условий:
Подставим полученные интегралы и сгруппируем относительно л:
(5)
Произведем оценку всех трех слагаемых в этом равенстве.
Докажем, что . (6)
Заметим, что , и значит по неравенству Коши - Буняковского:
.
Точно так же:
.
Перемножим эти неравенства:
. (6*)
Отсюда, замечая, что , получим
.
Далее (7)
- это следует из предположения (*).
Последний интеграл равенства (5) можно оценить, используя скалярный квадрат:
, где .
Для любого е > 0
. (8)
Используя полученные неравенства (6), (7), (8) и подставляя их в равенство (5), получаем:
,
считая е > 0 достаточно малым, имеем
.
Выберем и получим
, где .
Возвращаясь снова к равенству (5), получим следующую оценку:
, где , а .
Теперь с помощью оценки (6*) имеем и, значит, учитывая, что , получим
(9)
Из уравнения (3) можем получить оценки для и :
. (10)
Здесь оценивается через и . Действительно, x(0) = x(1) = 0. по теореме Роля на (0, 1) найдется точка о, в которой x'(о) = 0. Тогда, запишем уравнение (3) в виде
,
(в этом можно убедиться, взяв производную:
и сократив)
интегрируем его от о до и и получим
.
Отсюда имеем оценку
, (11)
где .
Теперь подставим полученные результаты в (10):
. (12)
Теперь (9), (11) и (12) дают искомую априорную оценку:
(постоянную с4 нетрудно подсчитать, сложив неравенства(9), (11), (12)и выполнив преобразования).
Таким образом, доказательство разрешимости задачи получено, теперь приступим к ее решению методом малого параметра.
Итак, рассмотрим операторное уравнение:
А(л)x = y(л),
где .
I. Начнем с уравнения А0x0 = y (где А0 - коэффициент при нулевой степени л) системы (4) §7, причем y0 = y, yк = 0, к ? 1.
, причем с1 подбирается так, чтобы выполнялось краевое условие: x0(1) = 0.
II. Найдем x1(t), для этого необходимо решить следующее уравнение: А0x1+А1x0 = y1. Так как y1=0, то мы будем решать уравнение А0x1= - А1x0.
Из того, что следует следующее уравнение:
.
По аналогии c2 и c3 подбираем так, чтобы выполнялось краевое условие: x0(1) = 0.
Таким образом, решения нашей краевой задачи выглядит так:
,
подставляя найденные решения, имеем:
или
Литература
1. Данфорд Н., Шварц Дж. Линейные операторы. М., 1962
2. Талдыкин А.Т. Элементы прикладного функционального анализа: Учеб. пособие. - М.: Высшая школа, 1982.
3. Треногин В.А. Функциональный анализ. М., 1993.
4. Функциональный анализ./Под. ред. С. Г. Крейна. М., 1972
5. Хатсон В., Пим Дж. С. Приложения функционального анализа и теория операторов. Пер. с англ. - М.: Мир, 1983.
Подобные документы
Определение линейного оператора. Непрерывные линейные операторы в нормированном пространстве. Ограниченность и норма линейного оператора. Обратный оператор. Спектр оператора и резольвента. Операторы: умножения на непрерывную функцию; интегрирования; сдвиг
дипломная работа [267,4 K], добавлен 27.05.2008Многочлены над числовыми полями. Теорема о делении с остатком. Основные алгебраические структуры. Понятие линейного пространства, его базис и изоморфизм. Матрица линейного оператора в конечномерном линейном пространстве. Ранг и дефект линейного оператора.
учебное пособие [342,8 K], добавлен 02.03.2009- Спектр оператора. Применение нестандартного анализа для исследования резольвенты и спектра оператора
История нестандартного анализа. Линейные операторы. Обратный оператор. Обратимость. Резольвента линейного оператора. Резольвентное множество. Спектр. Введение в нестандартный анализ. Пример неархимедовой числовой системы.
дипломная работа [256,2 K], добавлен 08.08.2007 Сущность понятия "симплекс-метод". Математические модели пары двойственных задач линейного программирования. Решение задачи симплексным методом: определение минимального значения целевой функции, построение первого опорного плана, матрица коэффициентов.
курсовая работа [219,4 K], добавлен 17.04.2013Класс функций, представимых в виде собственного либо несобственного интеграла, зависящего не только от формальной переменной, а и от параметра. Эти функции называются интегралами зависящими от параметра. К ним относятся гамма и бета функции Эйлера.
курсовая работа [851,0 K], добавлен 03.07.2008Сущность линейного программирования. Изучение математических методов решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейной целевой функцией. Нахождение точек наибольшего или наименьшего значения функции.
реферат [162,8 K], добавлен 20.05.2019Основные понятия и факты теории линейных операторов. Определение и примеры линейных операторов. Ограниченность и норма линейного оператора. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов.
дипломная работа [240,7 K], добавлен 13.06.2007Несобственные интегралы первого рода. Понятие абсолютно и условно сходящегося интеграла. Несобственные интегралы второго рода. Определение непрерывности функции и равномерной сходимости. Свойства несобственных интегралов, зависящих от параметра.
курсовая работа [240,1 K], добавлен 23.03.2011Понятие собственных векторов и собственных значений, их свойства и характеристики, порядок нахождения собственных векторов оператора. Критерии определения независимости и ортогональности собственных векторов. Факторы и теоремы положительных матриц.
реферат [350,1 K], добавлен 22.04.2010Построение таблицы и графика решения линейного дифференциального уравнения. Зависимость погрешности решения от выбора шага интегрирования. Метод Адамса-Башфорта и его применение. Основные функции и переменные, использованные в реализованной программе.
контрольная работа [2,0 M], добавлен 13.06.2012