Математические методы и модели

Математическое моделирование задач коммерческой деятельности на примере моделирования процесса выбора товара. Методы и модели линейного программирования (определение ежедневного плана производства продукции, обеспечивающей максимальный доход от продажи).

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 16.02.2011
Размер файла 55,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

10

Контрольная работа

По дисциплине «Математические методы и модели»

1. Математическое моделирование задач коммерческой деятельности

Провести моделирование процесса выбора товара на основе следующих данных. Рассмотрим задачу выбора автомобиля. Составим таблицу множества показателей, по которым можно провести сравнение автомашин.

Таблица 1

Модель

автомобиля

Снаряженная масса, кг

Длина,

мм

Мощность двигателя, л.с.

Максимальная скорость, км/ч

Рабочий объем двигателя,см3

Расход топлива по смешанному циклу,л/100 км

Емкость топливного бака, л.

Цена, $.

HYUNDAI

Accent

1 080

4 260

102

181

1 495

7,5

45

12 920

HYUNDAI

Getz

1 108

3 825

106

180

1 599

6,0

45

15 990

HYUNDAI

Elantra

1 340

4 520

105

182

1 599

7,4

55

18 690

HYUNDAI

Sonata

1 590

4 747

133

200

1 997

9,0

65

26 650

HYUNDAI

Matrix

1 223

4 025

103

170

1 599

8,0

55

19 190

HYUNDAI

Trajet

1 731

4 695

140

179

1 975

9,1

65

25 690

Теперь необходимо сформулировать множество показателей, по которым можно провести сравнение автомобилей. Выпишем из руководства по эксплуатации автомобилей наиболее существенные показатели ( табл. 2)

Таблица 2

Показатели

Обозначение

Ед.измерения

Снаряженная масса

М

кг

Длина

Дл

мм

Мощность двигателя

МД

л.с

Максимальная скорость

Vmax

км/ч

Раб.объем двигателя

Ро

см3

Расход топлива по смеш. циклу на 100 км

РТ

л

Емкость топливного бака

Еб

л

Цена

Ц

$

Сопоставим эти показатели с помощью метода парных сравнений, а результаты запишем в табл. 3, элемент которой определяется таким образом:

После заполнения матрицы элементами сравнения найдем по строкам суммы балов по каждому показателю:

где n - количество показателей, n=8

Правильность заполнения матрицы определяется равенством

Затем определяем коэффициенты весомости по формуле

Следует заметить, что

Таблица 3

Показатель

М

Дл

МД

Vmax

РТ

Еб

Ц

Сумма

Мi

Ri

М

1

1

0

1

1

0

2

0

6

0,094

6

Дл

1

1

0

0

0

0

0

0

2

0,031

8

МД

2

2

1

1

2

0

1

0

9

0,141

3

Vmax

1

2

0

1

0

0

2

0

6

0,094

5

Ро

1

2

0

2

1

0

2

0

8

0,125

4

РТ

2

2

2

2

2

1

2

0

13

0,203

2

Еб

0

2

2

0

0

0

1

0

5

0,078

7

Ц

2

2

2

2

2

2

2

1

15

0,234

1

64

1

Распределим коэффициент показателей по рангу Ri. На этом основании перечень потребительских характеристик будет иметь вид:

1) Ц - цена, $;

2) Рт - расход топлива на 100 км

3) МД - мощность двигателя, л.с.;

4) Ро - рабочий объем двигателя, л.;

5) V мах - максимальная скорость, км/ч.;

6) М - снаряженная масса, кг

7) Еб - емкость топливного бака, л.;

8) Дл - длина, мм

На основании полученных результатов составим таблицу бальных оценок первых четырех показателей.

Таблица 4

Показатель

1

2

3

4

5

Mi

Ц

26 650

25 690

19 190

18 690

15 990

0,234

Рт

9,1

9,0

8,0

7,4

6,0

0,203

МД

103

105

106

133

140

0,141

Ро

1 599

1 599

1 599

1 975

1 997

0,125

На основании данных табл. 4 определим значения интегральных оценок для выбранных двух более нам подходящих автомобилей:

HYUNDAI Sonata и HYUNDAI Trajet

F (HYUNDAI Sonata) = 0,234·1+0,203·2+0,141·4+0,125·5=1,83

F (HYUNDAI Trajet) =0,234·2+0,203·1+0,141·5+0,125·4=1,88

Поскольку F (HYUNDAI Trajet)> F (HYUNDAI Sonata), следует покупать автомобиль HYUNDAI Trajet.

Вывод: Сравнив множество показателей по которым мы сравнивали автомашины, получили, что F (HYUNDAI Trajet)> F (HYUNDAI Sonata), следует покупать автомобиль HYUNDAI Trajet.

2. Методы и модели линейного программирования.

Фирма производит два безалкогольных широко популярных напитка " Колокольчик" и "Буратино". Для производства 1 л. " Колокольчика требуется 0, 002 ч работы оборудования, а для " Буратино" - 0,04 ч, а расход специального ингредиента на них составляет 0,01 кг и 0, 04 кг на 1 л соответственно. Ежедневно в распоряжении фирмы 16 кг специального ингредиента и 24 ч работы оборудования. Доход от продажи 1 л

" Колокольчика" составляет 0,25 руб., а " Буратино" - 0,35 руб.

Определите ежедневный план производства напитков каждого вида, обеспечивающий максимальный доход от их продажи.

Решение:

1) Составим математическую модель данной задачи:

Пусть X1 - количество " Колокольчиков";

Х2 - количество " Буратино", тогда как необходимо определить ежедневный план производства напитков каждого вида, обеспечивающий максимальный доход от их продажи, то целевая функция:

F(Х12) = 0,25Х1+ 0,35Х2 мах

Система ограничений:

xj

2) Графическое решение задачи:

Представим каждое неравенство в виде равенства, т.е имеем уравнения прямых. Построим их, тогда система ограничений запишется в виде:

1) 0,02х1+0,04х2=24

2) 0,01х1+0,04х2=16

3) х1=0

4) х2=0

Преобразуем систему неравенств ( выразим Х2 через Х1)

Построим на плоскости ( х12) область допустимых значений согласно системе неравенств

x2=24-0,5x1

х1

0

20

х2

24

14

х2=16-4х1

х1

0

4

х2

16

0

Многоугольником допустимых решений является треугольник АВС. Построим вектор N =

Перемещаем линию уровня перпендикулярно вектору N в направлении вектора N до опорного положения.

Вершина в которой целевая функция принимает максимальное значение это вершина

С (20;13). Следовательно, ежедневный план производства напитков каждого вида, обеспечивающий максимальный доход от продажи составляет:

f(х12)= 0,25*20+0,35*13=9,55

3) Классификация математической модели:

· По общему целевому назначению: прикладная модель;

· По степени агрегирования объектов: микроэкономическая модель;

· По конкретному предназначению: оптимизированная модель;

· По типу информации: идентифицированная модель;

· По учету фактора времени: статистическая модель;

· По учету фактора неопределенности: детерминированная модель;

· По типам математического аппарата: линейная модель;

· По типу подхода к изучаемым социально- экономическим системам: нормативная модель.

Вывод: Ежедневный план производства напитков каждого вида, обеспечивающий максимальный доход от продажи составляет 9,55 л.

3. Методы и модели теории игр

Определите максимальные стратегии игроков и седловую точку игры

Игрок

В1

В2

В3

В4

В5

А1

5

8

7

6

3

А2

10

12

4

7

2

А3

15

10

8

7

4

А4

10

7

8

12

6

А5

7

10

11

3

5

А6

7

2

3

12

4

Решение: Строки матрицы соответствуют стратегиям Аi (i=1,2,…,m), то есть стратегиям, которые выбирает игрок А. Столбцы - стратегии Вi,то есть стратегии, которые выбирает игрок В.

· Игрок А выбирает такую стратегию, чтобы максимизировать свой минимальный выигрыш :

,

где а - нижняя цена игры (гарантированный выигрыш игрока А)

· Игрок В выбирает такую стратегию, при которой его максимальный проигрыш

- минимизируется:

,

где - верхняя цена игры.

Составим расчетную таблицу.

коммерческий математический моделирование линейный программирование

1 2

В1

В2

В3

В4

В5

А1

5

8

7

6

3

3

А2

10

12

4

7

2

2

А3

15

10

8

7

4

4

А4

10

7

8

12

6

6

А5

7

10

11

3

5

3

А6

7

2

3

12

4

2

12

11

12

6

6

6

Этот выигрыш гарантирован игроку 1, как бы ни играл второй игрок.

Нижняя цена игры составляет 6

Минимальный проигрыш второго игрока

Получили, что первый игрок (А) должен выбрать пятую (А4) стратегию, а второй игрок (В) должен выбрать четвертую (В5) стратегию.

Итак, нижняя цена игры, или максимальный выигрыш: , верхняя цена игры, или минимальный выигрыш:

Нижняя и верхняя цена игры равны и достигаются на одной и той же паре стратегий

45). Следовательно, игра имеет седловую точку (А45).

Вывод: Игрок А должен выбрать четвертую стратегию, а игрок В пятую стратегию при этом выигрыш первого игрока будет максимальным из максимальных как бы ни играл второй игрок, а второй игрок минимально проиграет. Игра имеет седловую точку (А45).

Размещено на http://www.allbest.ru/


Подобные документы

  • Знакомство с особенностями построения математических моделей задач линейного программирования. Характеристика проблем составления математической модели двойственной задачи, обзор дополнительных переменных. Рассмотрение основанных функций новых переменных.

    задача [656,1 K], добавлен 01.06.2016

  • Процесс выбора или построения модели для исследования определенных свойств оригинала в определенных условиях. Стадии процесса моделирования. Математические модели и их виды. Адекватность математических моделей. Рассогласование между оригиналом и моделью.

    контрольная работа [69,9 K], добавлен 09.10.2016

  • Основные понятия математического моделирования, характеристика этапов создания моделей задач планирования производства и транспортных задач; аналитический и программный подходы к их решению. Симплекс-метод решения задач линейного программирования.

    курсовая работа [2,2 M], добавлен 11.12.2011

  • Анализ межотраслевых связей, коэффициентов прямых и полных затрат труда. Определение оптимального плана выпуска продукции и решения с использованием двойственных оценок. Элементы теории игр, моделирование производственных процессов. Функция Кобба-Дугласа.

    контрольная работа [113,9 K], добавлен 19.01.2015

  • Математические модели технических объектов и методы для их реализации. Анализ электрических процессов в цепи второго порядка с использованием систем компьютерной математики MathCAD и Scilab. Математические модели и моделирование технического объекта.

    курсовая работа [565,7 K], добавлен 08.03.2016

  • Сущность понятия "симплекс-метод". Математические модели пары двойственных задач линейного программирования. Решение задачи симплексным методом: определение минимального значения целевой функции, построение первого опорного плана, матрица коэффициентов.

    курсовая работа [219,4 K], добавлен 17.04.2013

  • Рассмотрение основных методов решения школьных задач на движение двух тел в разных и одинаковых направлениях: анализ и синтез, сведение к ранее решенным, математическое моделирование (знаковые, графические модели), индукция, исчерпывающая проба.

    презентация [11,8 K], добавлен 08.05.2010

  • Предназначена библиотеки "simplex" для оптимизации линейных систем с использованием симплексного алгоритма. Построение экономико-математической модели формирования плана производства. Основные виды транспортных задач, пример и способы ее решения.

    курсовая работа [477,9 K], добавлен 12.01.2011

  • Проектирование методов математического моделирования и оптимизации проектных решений. Использование кусочной интерполяции при решении задач строительства автомобильных дорог. Методы линейного программирования. Решение специальных транспортных задач.

    методичка [690,6 K], добавлен 26.01.2015

  • Математическое программирование - область математики, в которой изучаются методы решения задач условной оптимизации. Основные понятия и определения в задачах оптимизации. Динамическое программирование – математический метод поиска оптимального управления.

    презентация [112,6 K], добавлен 23.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.