Операции на графах

Операции на графах позволяют образовывать новые графы из нескольких более простых. Операции на графах без параллельных ребер. Объединение графов. Свойства операции объединения т, которые следуют из определения операции и свойств операций на множествах.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 27.11.2008
Размер файла 106,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2. G1(G2G3) = (G1G2)G3.

Рассмотрим выполнение операции произведения графов в матричной форме.

Пусть G1(X,E1) и G2(Y,E2) - два графа, имеющие nx и ny вершин соответственно. Результирующий граф G1G2 имеет nxny вершин, а его матрица смежности вершин - квадратная матрица размером (nxny) (nx ny). Обозначим через a = a(ij)(kl) элемент матрицы смежности вершин, указывающий на наличие дуги (ребра), соединяющей вершину z=(xiyj) c z=(xkyl). Этот элемент может быть вычислен при помощи матриц смежности вершин исходных графов следующим образом:

a =a(ij)(kl) = a1,ik a2,jl, (3)

де a1,ik, a1,ik - элементы матрицы смежности вершин графов G1 и G2 соответственно.

Пример 5. Выполнить операцию произведения на графах, приведенных на рис. 5.

Составим матрицы смежности вершин исходных графов.

x1

x2

y1

y2

y3

x1

0

1

y1

1

1

0

A1

=

x2

1

0

A2

=

y2

0

0

1

y3

0

1

0

Построим матрицу A смежности вершин результирующего графа, каждый элемент которой вычисляется согласно соотношению (4.3).

x1y1

x1y2

x1y3

x2y1

x2y2

x2y3

x1y1

a1,11 a2,11

a1,11a2,12

a1,11 a2,13

a1,12a2,11

a1,12 a2,12

a1,12 a2,13

x1y2

a1,11 a2,21

a1,11 a2,22

a1,11 a2,23

a1,12 a2,21

a1,12 a2,22

a1,12 a2,23

A

=

x1y3

a1,11 a2,21

a1,11 a2,22

a1,11 a2,23

a1,12 a2,31

a1,12 a2,32

a1,12 a2,33

x2y1

a1,21 a2,11

a1,21 a2,12

a1,21 a2,13

a1,22 a2,11

a1,22 a2,12

a1,22 a2,13

x2y2

a1,21 a2,21

a1,21 a2,22

a1,21 a2,23

a1,12 a2,21

a1,12 a2,22

A1,12 a2,23

x2y3

a1,21 a2,31

a1,21 a2,32

a1,21 a2,33

a1,22 a2,31

a1,12 a2,32

A1,12 a2,33

Для удобства рассмотрения разделим матрицу A на четыре квадратные подматрицы. Заметим, что каждая подматрица может быть получена путем логического элементов матрицы умножения A2 на один из элементов a1,ij матрицы A1. С учетом этого матрицу A можно представить так:

x1y1

x1y2

x1y3

x2y1

x2y2

x2y3

x1y1

a1,11A2

a1,12A2

x1y2

A

=

x1y3

x2y1

a1,21A2

a1,22A2

x2y2

x2y3

Таким образом, матрица смежности вершин графа G1G2 имеет вид:

x1y1

x1y2

x1y3

x2y1

x2y2

x2y3

x1y1

0

0

0

1

1

0

x1y2

0

0

0

0

0

1

A

=

x1y3

0

0

0

0

1

0

x2y1

1

1

0

0

0

0

x2y2

0

0

1

0

0

0

x2y3

0

1

0

0

0

0

Нетрудно убедиться, что полученной матрице смежности вершин соответствует граф G1G2, представленный на рис. 5.

ЛИТЕРАТУРА

1. Белоусов А.И., Ткачев С.Б. Дискретная математика: Учебник для ВУЗов / Под ред. В.С. Зарубина, А.П. Крищенко.- М.: изд-во МГТУ им. Н.Э. Баумана, 2001.- 744 с. (Сер. Математика в техническом университете; Вып XIX).

2. Горбатов В.А. Фундаментальные основы дискретной математики. Информационная математика.- М.: Наука, Физматлит, 2000.- 544 с.- ISBN 5-02-015238-2.

3. Зарубин В.С. Математическое моделирование в технике: Учеб. для ВУЗов / Под ред. В.С. Зарубина, А.П. Крищенко.- М.: Изд-во МГТУ им. Н.Э. Баумана, 2001.- 496 с. (Сер. Математика в техническом университете; вып. XXI, заключительный).


Подобные документы

  • Основные понятия теории графов. Расстояния в графах, диаметр, радиус и центр. Применение графов в практической деятельности человека. Определение кратчайших маршрутов. Эйлеровы и гамильтоновы графы. Элементы теории графов на факультативных занятиях.

    дипломная работа [145,5 K], добавлен 19.07.2011

  • Множеством именуется некоторая совокупность элементов, объединенных по какому-либо признаку. Над множествами определяют операции, во многом сходные с арифметическими. Операции над множествами интерпретируют геометрически с помощью диаграмм Эйлера-Венна.

    реферат [15,8 K], добавлен 03.02.2009

  • Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.

    курсовая работа [358,3 K], добавлен 07.12.2012

  • Особенности системы индексных обозначений. Специфика суммирования в тензорной алгебре. Главные операции в алгебре, которые называются сложением, умножением и свертыванием. Применение операции внутреннего умножения. Симметричные и антисимметричные объекты.

    реферат [345,7 K], добавлен 07.12.2009

  • Теория графов как математический аппарат для решения задач. Характеристика теории графов. Критерий существования обхода всех ребер графа без повторений, полученный Л. Эйлером при решении задачи о Кенигсбергских мостах. Алгоритм на графах Дейкстры.

    контрольная работа [466,3 K], добавлен 11.03.2011

  • Общее понятие, основные свойства и закономерности графов. Задача о Кенигсбергских мостах. Свойства отношения достижимости в графах. Связность и компонента связности графов. Соотношение между количеством вершин связного плоского графа, формула Эйлера.

    презентация [150,3 K], добавлен 16.01.2015

  • Сущность теории графов и ее применение на современном этапе в различных отраслях науки и техники, особенно в экономике и социологии. Понятие дерева, его разновидности, характерные свойства. Операции, совершаемые над графами и возможности их реализации.

    контрольная работа [1,6 M], добавлен 08.12.2009

  • Основные понятия и свойства эйлеровых и гамильтоновых цепей и циклов в теории графов. Изучение алгоритма Дейкстры и Флойда для нахождения кратчайших путей в графе. Оценки для числа ребер с компонентами связанности. Головоломка "Кенигзберзьких мостов".

    курсовая работа [2,4 M], добавлен 08.10.2014

  • Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна.

    реферат [70,9 K], добавлен 11.03.2009

  • Сущность теории множеств и особенности ее практического применения. Операции над множествами и их главные закономерности. Порядок нахождения области определения функции, участков ее возрастания и убывания. Определение вероятности исследуемого действия.

    контрольная работа [46,5 K], добавлен 02.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.