Теория вероятностей и математическая статистика

Вероятностная модель и аксиоматика А.Н. Колмогорова. Случайные величины и векторы, классическая предельная проблема теории вероятностей. Первичная обработка статистических данных. Точечные оценки числовых характеристик. Статистическая проверка гипотез.

Рубрика Математика
Вид методичка
Язык русский
Дата добавления 02.03.2010
Размер файла 433,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

а) величины разброса значений одной из случайных величин около математического ожидания другой случайной величины;

б) силы статистической связи между значениями случайных величин;

в) меры зависимости условного распределения одной из компонент случайного вектора от частного распределения другой компоненты.

15. Функция регрессии это:

а) функция, описывающая изменение значений одной из случайных величин в зависимости от изменения закона распределения вероятностей другой;

б) функция, описывающая изменение значений условного математического ожидания одной из случайных величин в зависимости от изменения значений другой случайной величины;

в) функция, описывающая зависимость условных математических ожиданий компонент двумерной случайной величины.

16. Закон больших чисел - это:

а) совокупность теорем, в которых на последовательность случайных величин накладываются условия, при которых их центрированная и нормированная сумма с вероятностью близкой к единице принимает значения, мало отличающиеся от нуля;

б) закон, определяющий распределение вероятностей больших отклонений от нуля;

в) закон, оценивающий большие отклонения значений случайных величин от их математического ожидания.

17. Остаточная дисперсия:

а) оценивает разброс значений одной из компонент двумерной случайной величины около её математического ожидания, вызванный её внутренними свойствами;

б) оценивает разброс значений одной из компонент двумерной случайной величины около математического ожидания другой компоненты;

в) оценивает разброс значений центрированной компоненты двумерной случайной величины около условного математического ожидания другой компоненты.

18. Для определения точечных оценок числовых характеристик случайной величины необходимо:

а) иметь выборку из генеральной совокупности;

б) построить гистограмму распределения относительных частот;

в) применить метод наименьших квадратов.

19. «Рассматривается последовательность независимых, как угодно распределённых случайных величин, дисперсии которых ограничены одной общей константой,…». Эти требования к случайным величинам формулируются:

а) в теореме Леви;

б) в теореме Ляпунова;

в) в теореме Чебышева.

20. «Состоятельность» это:

а) одно из требований, предъявляемое к точечным оценкам числовых характеристик случайных величин;

б) требование к статистикам, необходимым при определении границ доверительного интервала;

в) требование, выполнение которого позволяет минимизировать вероятность ошибки первого рода при статистической проверке гипотез.

21. Статической оценкой математического ожидания случайной величины является:

а) нормированная сумма наблюдаемых значений случайной величины;

б) среднее арифметическое элементов выборки наблюдаемых значений случайной величины;

в) среднее арифметическое максимального и минимального значений элементов выборки.

22. Доверительный интервал это:

а) интервал наиболее вероятных значений случайной величины;

б) интервал значений вероятностей практически достоверных событий;

в) интервал, в котором с доверительной вероятностью находится числовая характеристика случайной величины.

23. Центральная предельная теорема это:

а) терема о предельном распределении последовательности центрированных случайных величин;

б) совокупность теорем, в которых на последовательность случайных величин накладываются условия, при которых их центрированная и нормированная сумма подчиняются распределению мало отличающемуся от нормального.

в) общая теорема о существовании центрированного распределения вероятностей для предельных значений случайных величин.

24. Критерий статистической проверки гипотез является:

а) случайной величиной, значения которой зависят от элементов генеральной совокупности, попавших в выборку;

б) числовой характеристикой эмпирической случайной величины;

в) областью возможных значений проверяемой гипотезы.

25. Критерий статистической проверки гипотез это:

а) случайная величина, значения которой позволяют подтвердить или опровергнуть основную гипотезу;

б) случайная величина, распределение которой зависит от формулировки проверяемых гипотез;

в) случайная величина, по распределению вероятностей которой проверяется гипотеза о независимости основной и альтернативной гипотез.

26. Теорема Чебышёва является предельной теоремой:

а) для последовательности дискретных случайных величин;

б) для последовательности непрерывных случайных величин;

в) для последовательности случайных величин, независимо от типа законов распределения их вероятностей.

27. По результатам проверки по элементам одной и той же выборки значений двух гипотез

,

,

где и - разные функции распределения, приято решение о том, что нет оснований отклонять и первую, и вторую гипотезу.

а) При применении критерия Пирсона такого решения не может быть.

б) При применении критерия Пирсона такое решение может быть.

в) Такое решение может быть только в том случае, если случайная величина принимает только положительные значения.

ОТВЕТЫ К ТЕСТАМ


Подобные документы

  • Сходимость последовательностей случайных величин и вероятностных распределений. Метод характеристических функций. Проверка статистических гипотез и выполнение центральной предельной теоремы для заданных последовательностей независимых случайных величин.

    курсовая работа [364,8 K], добавлен 13.11.2012

  • Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.

    задача [82,0 K], добавлен 12.02.2011

  • Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    реферат [146,5 K], добавлен 19.08.2015

  • Сущность закона распределения и его практическое применение для решения статистических задач. Определение дисперсии случайной величины, математического ожидания и среднеквадратического отклонения. Особенности однофакторного дисперсионного анализа.

    контрольная работа [328,2 K], добавлен 07.12.2013

  • Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.

    шпаргалка [328,7 K], добавлен 04.05.2015

  • Вероятность и ее общее определение. Теоремы сложения и умножения вероятностей. Дискретные случайные величины и их числовые характеристики. Закон больших чисел. Статистическое распределение выборки. Элементы корреляционного и регрессионного анализа.

    курс лекций [759,3 K], добавлен 13.06.2015

  • Первичный анализ и основные характеристики статистических данных. Точечные оценки параметров распределения. Доверительные интервалы для неизвестного математического ожидания и для среднего квадратического отклонения. Проверка статистических гипотез.

    дипломная работа [850,9 K], добавлен 18.01.2016

  • Пространство элементарных событий. Понятие совместных и несовместных событий и их вероятностей. Плотность распределения вероятностей системы двух случайных величин. Числовые характеристики системы. Закон генеральной совокупности и его параметры.

    контрольная работа [98,1 K], добавлен 15.06.2012

  • Предельные теоремы теории вероятностей. Сходимость последовательностей случайных величин и вероятностных распределений. Метод характеристических функций. Закон больших чисел. Особенности проверки статистических гипотез (критерия согласия w2 Мизеса).

    курсовая работа [1,0 M], добавлен 27.01.2012

  • Возникновение теории вероятностей как науки. Ранние годы Андрея Николаевича Колмогорова. Первые публикации Колмогорова. Круг жизненных интересов Андрея Николаевича. Присуждение академику Андрею Николаевичу Колмогорову, в марте 1963 года, премии Бальцана.

    реферат [17,3 K], добавлен 15.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.