Метод конечных разностей или метод сеток

Решение линейной краевой задачи методом конечных разностей (методом сеток). Замена области непрерывного изменения аргументов дискретным множеством узлов (сеток). Сведение линейной краевой задачи к системе линейных алгебраических уравнений (сеточных).

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 28.06.2009
Размер файла 463,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Метод конечных разностей, или метод сеток

Рассмотрим линейную краевую задачу

(2.24)

(2.25)

,

где , , и непрерывны на [a, b].

Разобьем отрезок [a, b] на n равных частей длины, или шага

.

Точки разбиения 

называются узлами, а их совокупность - сеткой на отрезке [a, b]. Значения в узлах искомой функции  и ее производных   обозначим соответственно через

.

Введем обозначения

Заменим производные так называемыми односторонними конечно-разностными отношениями:

(2.26)

Формулы (2.26) приближенно выражают значения производных во внутренних точках интервала [a, b].

Для граничных точек положим

.  (2.27)

Используя формулы (2.26), дифференциальное уравнение (2.24) при , (i=1, 2,..., n-1) приближенно можно заменить линейной системой уравнений

(2.28)

Кроме того, в силу формул (2.27) краевые условия (2.25) дополнительно дают еще два уравнения:

. (2.29)

Таким образом, получена линейная система n+1 уравнений с n+1 неизвестными , представляющими собой значения искомой функции  в узлах сетки. Система уравнений (2.28), (2.29), заменяющая приближенно дифференциальную краевую задачу (2.24), (2.25) обычно называется разностной схемой. Решить эту систему можно каким-либо общим численным методом. Однако схема (2.28), (2.29) имеет специфический вид и ее можно эффективно решить специальным методом, называемым методом прогонки. Специфичность системы заключается в том, что уравнения ее содержат три соседних неизвестных и матрица этой системы является трехдиагональной.

Преобразуем уравнения (2.28):

. (2.30)

Введя обозначения

получим

, (i=0, 1,..., n-2). (2.31)

Краевые условия по-прежнему запишем в виде

. (2.32)

Метод прогонки состоит в следующем.

Разрешим уравнение (2.31) относительно :

. (2.33)

Предположим, что с помощью полной системы (2.31) из уравнения исключен член, содержащий. Тогда уравнение (2.33) может быть записано в виде

, (2.34)

где  и  должны быть определены. Найдем формулы для этих коэффициентов. При i=0 из формулы (2.33) и краевых условий (2.32) следует, что

Исключая из этих двух уравнений , найдем

.

Выразим теперь отсюда :

(2.35)

Но, согласно формуле (2.34),

(2.36)

Сравнивая теперь (2.35) и (2.36), найдем, что

(2.37)

Пусть теперь i >0, то есть i=1, 2,..., n-2. Выражая  по формуле (2.34), получим:

.

Подставляя это в формулу (2.33), будем иметь

.

Разрешая полученное уравнение относительно, находим

, или

. (2.38)

Отсюда, сравнивая формулы (2.34) и (2.38), получаем для коэффициентов и рекуррентные формулы:

 

(2.39)

Так как  и  уже определены по формулам (2.37), то, используя формулы (2.39), можно последовательно определить коэффициенты  и  до  и  включительно. Эти вычисления называются прямым ходом метода прогонки.

Из формулы (2.33) при i=n-2 и второго краевого условия (2.32) получаем

Разрешая эту систему относительно, будем иметь

. (2.40)

Теперь, используя (2.34) и первое краевое условие (2.32), мы можем последовательно найти . Это ? обратный ход метода прогонки.

Итак, получаем следующую цепочку:

(2.41)

Для простейших краевых условий  

формулы для и  упрощаются. Полагая в этом случае из формул (2.37), (2.40), (2.41) будем иметь

Рассмотренный нами подход сводит линейную краевую задачу к системе линейных алгебраических уравнений. При этом возникает три вопроса.

1) Существует ли решение алгебраической системы типа (2.31)?

2) Как фактически находить это решение?

3) Сходится ли разностное решение к точному при стремлении шага сетки к 0?

Можно доказать, что если краевая задача имеет вид

причем р(x)>0, то решение системы (2.31), (2.32) существует и единственно. Фактическое отыскание решения можно провести, например, методом прогонки. На третий вопрос дает ответ следующая

Теорема

Если  и  дважды непрерывно дифференцируемы, то разностное решение, соответствующее схеме с заменой

равномерно сходится к точному с погрешностью  при

Таким образом, схема (2.28), (2.29) дает приближенное решение краевой задачи, но точность ее весьма мала. Это связано с тем, что аппроксимация производной

имеет низкий порядок точности ? погрешность этой аппроксимации

Более точную разностную схему можно получить, если при переходе от линейной краевой задачи к конечно-разностным уравнениям воспользоваться центральными формулами для производных:

, (2.42)

, (2.43)

i=1, 2,..., n.

Погрешность формулы (2.42) выражается так:

то есть формула (2.42) имеет второй порядок точности относительно шага сетки h. Подставляя выражения (2.42), (2.43) в задачу (2.24), (2.25) и выполняя некоторые преобразования, получим следующую систему:

(2.44)

Где .

Система (2.44) снова трехдиагональная и ее решение также можно получить методом прогонки. Его алгоритм здесь будет выглядеть так. Сначала находят коэффициенты

(2.45)

Затем определяют коэффициенты  по следующим рекуррентным формулам:

(2.46)

Обратный ход начинается с нахождения :

(2.47)

После этого находим по формулам:

, (2.48)

. (2.49)

Относительно схемы (2.44) можно также доказать, что она имеет единственное решение при

и ,

и это решение может быть найдено описанным методом прогонки. Кроме того, для схемы (2.44) имеет место

Теорема

Пусть решение граничной задачи (2.24), (2.25) единственно и непрерывно дифференцируемо на [ab] до четвертого порядка точности включительно. Если выполняются условия

, , 

то схема (2.44) будет равномерно сходиться к решению задачи (2.24), (2.25) с погрешностью .

Заметим, что условия, приводимые в теоремах, являются достаточными, а отнюдь не необходимыми. Поэтому в практике численных расчетов нарушение этих условий обычно не вызывает заметного ухудшения расчетных схем.


Подобные документы

  • Решение линейной краевой задачи методом конечных разностей. Сопоставление различных вариантов развития процесса с применением анализа графиков, построенных на базе полученных данных. Графическое обобщение нескольких вариантов развития процесса.

    лабораторная работа [23,3 K], добавлен 15.11.2010

  • Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

    контрольная работа [366,5 K], добавлен 28.07.2013

  • Описание метода сведения краевой задачи к задаче Коши. Решение системы из двух уравнений с четырьмя неизвестными. Метод Рунге-Кутта. Расчет максимальной погрешности и выполнение проверки точности. Метод конечных разностей. Описание полученных результатов.

    курсовая работа [245,2 K], добавлен 10.07.2012

  • Общая характеристика параболических дифференциальных уравнений на примере уравнения теплопроводности. Основные определения и конечно-разностные схемы. Решение дифференциальных уравнений параболического типа методом сеток или методом конечных разностей.

    контрольная работа [835,6 K], добавлен 27.04.2011

  • Порядок и принципы составления дифференциального уравнения, методика нахождения неизвестных значений. Замена исходного дифференциального уравнения на систему n-линейных уравнений относительно n-неизвестных. Формирование и решение системы уравнений.

    задача [118,8 K], добавлен 20.09.2013

  • Метод сеток (конечных разностей) - вид численного анализа. Расчет стержней и пластин на прочность, устойчивость и колебания. Формулы для приближенного вычисления производных от функций переменных, расчет упругих систем и разномерных краевых задач.

    учебное пособие [4,2 M], добавлен 30.12.2011

  • Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.

    методичка [335,0 K], добавлен 02.03.2010

  • Особенности решения обыкновенного линейного неоднородного дифференциального уравнения второго порядка с заданными граничными условиями методом конечной разности. Составление трехдиагональной матрицы. Реализация решения в программе Microsoft Office Excel.

    курсовая работа [1,4 M], добавлен 23.12.2013

  • Основные виды линейных интегральных уравнений. Метод последовательных приближений, моментов, наименьших квадратов и коллокации. Решение интегральное уравнение методом конечных сумм и методом моментов. Ненулевые решения однородной линейной системы.

    контрольная работа [288,4 K], добавлен 23.10.2013

  • Использование метода конечных разностей для решения краевой задачи уравнений с частными производными эллиптического типа. Графическое определение распространения тепла методом конечно-разностных аппроксимаций производных с применением пакета Mathlab.

    курсовая работа [1,0 M], добавлен 06.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.