Позиционные звенья
Характеристика особенностей позиционных звеньев - таких звеньев, в которых выходная и входная величины в установившемся режиме связаны линейной зависимостью. Идеальное усилительное (безинерционное) звено. Устойчивое апериодическое звено 1-го порядка.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 07.10.2010 |
Размер файла | 104,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ПОЗИЦИОННЫЕ ЗВЕНЬЯ
ВВЕДЕНИЕ
Позиционные звенья - это такие звенья , в которых выходная и входная величины в установившемся режиме связаны линейной зависимостью y(t)=kg(t).Соответственно, переходная функция будет иметь вид
W(s)=k,
где N(s), L(s) - многочлены.
1. ИДЕАЛЬНОЕ УСИЛИТЕЛЬНОЕ (БЕЗЫНЕРЦИОННОЕ) ЗВЕНО
1. Данное звено описывается следующим уравнением:
aoy(t)=bog(t) (1)
Коэффициенты имеют следующие значения:
ao=2
bo=4
Запишем уравнение в стандартной форме. Для этого разделим (1) на ao:
y(t)=g(t)
y(t)=kg(t) (2),
где k=-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
y(t)=kg(t) (3)
2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Y(s)=kG(s)
W(s)=k (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1. Тогда
h(t)=k1(t) (5)
Функцию веса можно получить дифференцированием переходной функции:
w(t)==k(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:
k=2
h(t)=21(t)
w(t)=2(t)
Переходная функция представляет собой ступенчатую функцию с шагом k=2, а функция веса - импульсную функцию, площадь которой равна k=2.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=k
W(j)=k (7)
W(j)=U()+jV()
U()=k
V()=0
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()=k (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=0 (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lgk
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
A()=2
()=0
L()=20lg2
U()=2
V()=0
Вывод: Примером рассмотренного звена может являться механический редуктор, делитель напряжения, индукционные датчики и т.д. Но беэынерционное звено является некоторой идеализацией реальных звеньев. В действительности ни одно звено не может равномерно пропускать все частоты от нуля до бесконечности. Обычно к такому виду сводится одно из реальных звеньев , рассмотренных ниже , если можно пренебречь влиянием динамических процессов.
2. УСИЛИТЕЛЬНОЕ ЗВЕНО С ЗАПАЗДЫВАНИЕМ
1. Данное звено описывается следующим уравнением:
aoy(t)=bog(t-) (1)
Коэффициенты имеют следующие значения:
ao=2
bo=4
=0,1с
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
y(t)= g(t-)
y(t)=kg(t-) (2),
где k=-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
y(t)=kg(t-) (3)
2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
g(t-)=G(s)e-s
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Y(s)=kG(s) e-s
W(s)= ke-s (4)
3. Найдем выражения для переходной функции и функции веса. ПО определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1.Тогда
h(t)=y(t)=k g(t-)=k1(t) (5)
Функцию веса можно получить дифференцированием переходной функции:
w(t)==k(t-) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:
k=2
h(t)=21(t-)
w(t)=2(t-)
Переходная функция представляет собой ступенчатую функцию с шагом k=2 и запаздыванием на =0,1с, а функция веса - импульсную функцию с таким же запаздыванием, площадь которой равна k=2.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=k e-s
W(j)=k e-j =k(cos-jsin) (7)
W(j)=U()+jV()
U()=k cos
V()=-ksin
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()=k (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()= (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lgk
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
A()=2
()=0,1
L()=20lg2
U()=2cos0,1
V()=-2sin0,1
3. УСТОЙЧИВОЕ АПЕРИОДИЧЕСКОЕ ЗВЕНО 1-го ПОРЯДКА
1. Данное звено описывается следующим уравнением:
a1 + aoy(t) =bog(t) (1)
Коэффициенты имеют следующие значения:
a1=1,24
ao=2
bo=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
+y(t)=g(t)
T1 +y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1=-постоянная времени.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(T1 p+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
T1 sY(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)==
Переходя к оригиналу, получим
h(t)=k1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1
W(s)==
Переходя к оригиналу, получим
w(t)= e 1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
k=2
T1 =0.62
h(t)=2 1(t)
w(t)=3.2e1(t)
Переходная функция представляет собой экспоненту. Множитель 1(t) указывает ,что экспонента рассматривается только для положительного времени t>0. Функция веса - также экспонента, но со скачком в точке t=0 на величину.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
W(j)=U()+jV()==-j
U()=
V()=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции,т.е.
A()=W(j)
A()== (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=arctgk - arctg
()=-arctgT1 (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
T1 =0.62
A()=
()=arctg0.62
L()=20lg
U()=
V()=
4. НЕУСТОЙЧИВОЕ АПЕРИОДИЧЕСКОЕ ЗВЕНО 1-ГО ПОРЯДКА
1. Данное звено описывается следующим уравнением:
a1 - aoy(t) =bog(t) (1)
Коэффициенты имеют следующие значения:
a1=1,24
ao=2
bo=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
-y(t)=g(t)
T -y(t)=kg(t) (2),
где k=-коэффициент передачи,
T=-постоянная времени.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(T p-1)y(t)=kg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
T sY(s)-Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)==
Переходя к оригиналу, получим
h(t)=k1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1
W(s)==
Переходя к оригиналу, получим
w(t)= e 1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
k=2
T =0.62
h(t)=2 1(t)
w(t)=3.2e1(t)
Переходная функция представляет собой экспоненту. Множитель 1(t) указывает ,что экспонента рассматривается только для положительного времени t>0. Функция веса - также экспонента, но со скачком в точке t=0 на величину.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
W(j)==j=U()+jV()
U()=
V()=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()== (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=arctgk - arctg
()=-arctg(-T) (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
T =0.62
A()=
()=-arctg(-0.62)
L()=20lg
U()=
V()=
5. АПЕРИОДИЧЕСКОЕ ЗВЕНО 2-ГО ПОРЯДКА
1. Данное звено описывается следующим уравнением:
a2+a1 + aoy(t) =bog(t) (1)
Коэффициенты имеют следующие значения:
a2=0,588
a1=50,4
ao=120
bo=312
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
++y(t)=g(t)
+T1 +y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1=,T22=-постоянные времени.
Если корни характеристического уравнения для дифференциального уравнения 2-го порядка вещественны (это выполняется при T1>2T2), то оно является апериодическим 2-го порядка. Проверим это для нашего уравнения:
T1=0,42
2T2=0,14
0,42>014, следовательно, данное уравнение - апериодическое.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(p2+T1 p+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s)
=s2Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
s2Y(s)+T1 sY(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)== ,
Где T3,4=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)=
=
Переходя к оригиналу, получим
h(t)=k1(t) =
k 1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1==
Разложив на элементарные дроби правую часть этого выражения, получим
w(s)=
=
Переходя к оригиналу, получим
w(t)= =
= (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
Выделим вещественную и мнимую части :
W(j) ==
U()=
V()=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()==..(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
6. КОЛЕБАТЕЛЬНОЕ (УСТОЙЧИВОЕ) ЗВЕНО
1. Данное звено описывается следующим уравнением:
a2+a1 + aoy(t) =bog(t) (1)
Коэффициенты имеют следующие значения:
a2=0,588
a1=0,504
ao=12
bo=31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
++y(t)=g(t)
+T1 +y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1=,T22=-постоянные времени.
Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1<2T2), то оно является колебательным. Проверим это для нашего уравнения:
T1=0,042
2T2=0,14
0,042<014, следовательно, данное уравнение - колебательное.
Представим данное уравнение в следующем виде:
пусть T2=T, .
Тогда уравнение (2):
Здесь T - постоянная времени, - декремент затухания (0<<1).
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(p2+2Tp+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s)
=s2Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
s2Y(s)+2T sY(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)==
=
Заменим в этом выражении ,.Тогда
H(s)==
=
Переходя к оригиналу, получим
h(t)=k =
=k 1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)1===
=
Переходя к оригиналу, получим
w(t)= (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:
W(s)=
W(j)= (7)
Выделим вещественную и мнимую части :
W(j)=
U()=
V()
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A()=W(j)
A()== (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
()=argW(j)
()=argk - arg(2Tj - T22+1)= - arctg
()= - arctg (9)
Для построения логарифмических частотных характеристик вычислим
L()=20lg A()
L()=20lg
Подобные документы
Понятие экспоненциального фильтра, который в аналоговом варианте представляет собой апериодическое звено и описывается соответствующим дифференциальным уравнением. Ознакомление с аналоговым и дискретным вариантами реализации фильтра с данными параметрами.
лабораторная работа [42,1 K], добавлен 15.11.2010Теория автоматического управления и виды алгоритмических звеньев. Стационарные и нестационарные САР. Типовые динамические звенья: определение и классификация. Запас устойчивости по модулю и фазе. Показатель колебательности и кривая переходного процесса.
контрольная работа [477,5 K], добавлен 15.07.2014Сущность линейного программирования. Изучение математических методов решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейной целевой функцией. Нахождение точек наибольшего или наименьшего значения функции.
реферат [162,8 K], добавлен 20.05.2019Статическая характеристика элемента. Выполнение аналитической линеаризации заданной функции в определенной точке. Обратное превращение Лапласа заданной передаточной функции ОАУ. Преобразование дифференциального уравнения к нормальной форме Коши.
контрольная работа [564,9 K], добавлен 30.03.2015Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.
контрольная работа [380,9 K], добавлен 05.04.2015Плотность распределения непрерывной случайной величины. Характеристика особенностей равномерного и нормального распределения. Вероятность попадания случайной величины в интервал. Свойства функции распределения. Общее понятие о регрессионном анализе.
контрольная работа [318,9 K], добавлен 26.04.2013Структурное преобразование схемы объекта и получение в дифференциальной форме по каналам внешних воздействий. Формы представления вход-выходных математических моделей динамических, звеньев и систем, методов их построения, преобразования и использования.
курсовая работа [1,3 M], добавлен 09.11.2013Случайные величины. Функция и плотность распределения вероятностей дискретной случайной величины. Сингулярные случайные величины. Математическое ожидание случайной величины. Неравенство Чебышева. Моменты, кумулянты и характеристическая функция.
реферат [244,6 K], добавлен 03.12.2007Понятие, виды, функции средней величины и значение метода средних величин статистике. Особенности уравнения тренда на основе линейной зависимости. Парные и частные коэффициенты корреляции. Сущность предела нахождения среднего процента содержания влаги.
контрольная работа [42,8 K], добавлен 07.12.2008Теоретические основы аналитической геометрии, линейной алгебры и задач оптимизации. Общая характеристика плоскости и основных поверхностей второго порядка. Особенности решения систем линейных уравнений с использованием меню "Мастер функций" MS Excel.
методичка [1,3 M], добавлен 05.07.2010