Свойства чисел. Периодическая система чисел

Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.

Рубрика Математика
Вид научная работа
Язык русский
Дата добавления 29.12.2006
Размер файла 20,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

6

© Автор Бутарева Людмила

29 декабря 2006 г.

СВОЙСТВА ЧИСЕЛ

ПЕРИОДИЧЕСКАЯ СИСТЕМА ЧИСЕЛ.

Свойства чисел натурального ряда, а также производных от них находятся в различной периодической зависимости от порядковых номеров чисел.

Например, рассмотрим шестеричную периодизацию чисел.

1. Запишем натуральный ряд чисел по 6

---------------------------------------------------------------------------------------------

Группы ! A B C D E F

-------------------!--------------------------------------------------------------------------

Периоды !

0 ! 1

1 ! 2 3 4 5 6 7

2 ! 8 9 10 11 12 13

3 ! 14 15 16 17 18 19

n ! 6n - 4 6n - 3 6n - 2 6n - 1 6n 6n + 1

-----------------!-------------------------------------------------------------------------

Условные обозначения: A B C D E F - группы чисел

0, 1, 2... n - ## периодов

2. Продолжим таблицу в область отрицательных чисел: --------------------------------------------------------------------------------------------

Группы ! A B C D E F

------------------- !------------------------------------------------------------------------

Периоды !

-4 ! -28 -27 -26 -25 -24 -23

-3 ! -22 -21 -20 -19 -18 -17

-2 ! -16 -15 -14 -13 - 12 -11

-1 ! -10 -9 -8 -7 -6 -5

0 ! -4 -3 -2 -1 0 1

1 ! 2 3 4 5 6 7

2 ! 8 9 10 11 12 13

3 ! 14 15 16 17 18 19

4 ! 20 21 22 23 24 25

n ! 6n - 4 6n - 3 6n - 2 6n - 1 6n 6n + 1

-----------------!-------------------------------------------------------------------------

Группы В и Е - самостоятельные группы. Отрицательные числа каждой из этих групп по абсолютной величине равны собственным положительным.

Группа А в отрицательной части переходит в группу С (и наоборот).

Группа D в отрицательной части переходит в группу F (и наоборот).

По абсолютной величине ряды чисел A = C, D = F на всем протяжении от оо до - оо.

Группы A и C, D и F называются близнецами.

В Таблице № 1 приведены некоторые общие свойства чисел по группам при шестеричной периодизации.

Таблица № 1

___________________________________________________________________

Группа ! Общие свойства чисел

---------------- !---------------------------------------------------------------------------------- А ( 6n - 4) ! Четные (из них 1 простое) ! имеет близнеца С

B ( 6n - 3) ! Кратные 3-м ( из них 1 простое) !

С ( 6n - 2) ! Четные ! имеет близнеца А D ( 6n - 1) ! Простые + произведения D x F ! имеет близнеца F

E ( 6n) ! Четные, кратные 3-м !

F ( 6n + 1) ! Простые + произведения D x D, F x F! имеет близнеца D

------------------------------------------------ -------------------------------------------------

.

I. ПРОСТЫЕ ЧИСЛА

Таблица № 2 Расположение простых чисел в соответствии с шестеричной периодизацией.

--------------------------------------------------------------

Группы ! A B C D E F

----------------------!---------------------------------------

№№ периодов !

0 ! х х х х х х

1 ! 2 3 х 5 х 7

2 ! х х х 11 х 13

3 ! х х х 17 х 19

4 ! х х х 23 х х

n ! х х х 6n - 1 х 6n + 1

----------------------!-----------------------------------------

1. Числа 2 и 3 - первичные простые числа. Это единственные простые числа, стоящие рядом, без интервалов

Все остальные, типичные простые числа находятся в D и F группах

Обозначим №№ периодов чисел группы D буквой d, а чисел группы F буквой f.

D = 6d -1 F = 6f +1.

2. Типичные простые числа, принадлежащие разным группам, но одному и тому же периоду, называются близнецами

Например

Числа 5 и7 - близнецы. Они имеют один и тот же период d = f = 1

( 6d - 1 ) = 6 х 1 - 1 = 5

( 6f + 1 ) = 6 х 1 + 1 = 7.

Числа 29 и 31 - близнецы. Они имеют период d = f = 5

( 6d - 1 ) = 6 х 5 - 1 = 29

( 6f + 1 ) = 6 х 5 + 1 = 31

3. Состав ряда чисел группы D ( Таблица №1)

а) простые числа

b) произведения D х F:

( 6a - 1 ) х ( 6b + 1 ) = 36ab + 6a - 6b - 1 = 6 (6ab + a - b) - 1 = 6d - 1

Отсюда следует, что все D =/ 6 (6ab + a - b) - 1

( где a и b любое натуральное число) - это простые числа.

Все d =/ 6ab + a - b (где a и b любое натуральное число) - это периоды простых чисел.

4. Состав ряда чисел группы F ( Таблица №1)

а) простые числа

b) произведения D х D

( 6a - 1 ) х ( 6b - 1 ) = 36ab - 6a - 6b + 1 = 6 (6ab - a - b) + 1

с) произведения F х F:

( 6a + 1 ) х ( 6b + 1 ) = 36ab + 6a + 6b + 1 = 6 (6ab + a + b) + 1

Значит, простые числа это:

F =/ 6 (6ab - a - b) + 1

F =/ 6 (6ab + a + b) + 1( где a и b любое натуральное число)

Периоды простых чисел

f =/ 6ab - a - b

f =/ 6ab + a + b (где a и b любое натуральное число)

.

II ТЕСТЫ ПРОСТОТЫ

1. РЕШЕТО

Запишем любой из числовых рядов групп D или F до нужного нам числа. Знак ( - ) опустим без ущерба для нашей задачи.

53 47 41 35 29 23 17 11 5 1 7 13 19 25 31 37 43 49 55

Центр этого ряда - число 1. Оно не является простым. Обозначим его [х]. Первое после 1

число 5 - простое. От 5 влево и вправо отсчитываем каждое 5-ое число и вычеркиваем.

53 47 41 х 29 23 17 11 5 х 7 13 19 х 31 37 43 49 х

Следующее по величине невычеркнутое число 7 - простое. От 7 влево и вправо отсчитываем каждое 7-е число и вычеркиваем.

53 47 41 х 29 23 17 11 5 х 7 13 19 х 31 37 43 х х

Мы получили ряд типичных простых чисел в интервале от 5 до 55. Достаточным является вычеркиваемое число [корень квадратный из наибольшего квадрата в ряду].

2. ПЕСОЧНЫЕ ЧАСЫ

Таблица № 1 Определение простоты чисел «Песочные часы»

____________________________________________________________________

! ! ! ! ! ! ! _________!x!

! ! ! ! ! ! _________!_!_!_!_!_!x!_!

! ! ! ! !_________ !_!_!_!_!_!_!_!_!_!_!x!_!_!

! ! ! ! _________!_!_!_!_!_!_!x!_!x!_!_!_!_!_!_!x!_!_!_!

! ! !_________ !_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!

! !_________ !_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!x!_!_!_!_!_!

! ____!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!

!_!_!_!_!_!_!x!_!_!_!_!x!x!_!_!_!_!_!_!_!_!_!_!_!_!_!x!x!_!_!_!_!x!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!x!_!_!x!_!_!_!_!_!_!_!_!_!_!_!x!_!_!x!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!x!_!x!_!_!_!_!_!_!_!_!_!x!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!x!_!_!_!_!_!_!_!x!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!0!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!x!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!x!_!_!_!x!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!x!_!_!_!_!_!x!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!x!_!_!x!_!x!_!_!x!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!

!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!x!_!_!_!_!_!_!_!

!_!_!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!x!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_! ! !

!_!_!_!_!x!_!_!_!_!_!_!_!_!x!_!_!_!_!_!x!_!_!_!_!_!x!_! ! ! !

!_!_!_!x!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_!_! ! ! ! !

!_!_!x!_!_!_!_!_!_!_!_!_!x!_!_! ! ! ! ! !

!_!x!_!_!_!_!_!_!_! ! ! ! ! ! !

!x!_!_!_________ !_________ !_________ !_________ !_________ !_________ !_!

1 Разрежем Таблицу № 1 на вертикальные колонки шириной 6 клеток.

2. Отрежем от каждой колонки белую неразлинованную часть.

3 Совместим колонки, наложив друг на друга. Если первая колонка имеет ширину меньше, чем 6 клеток, то она сдвигается вправо, а последняя - влево до боковой линии.

4 Допустим, что лист прозрачный. Тогда пустые клетки в совмещенной колонке

соответствуют простым числам ( Таблицы № 2А и2В ). Формулы вверху Таблицы № 2В для чисел f периодов от 0 и выше, формулы внизу - для чисел d периодов от 0 и ниже. (Периоды f и d - №№ строчек ).

Таблица № 2А Таблица № 2В Периоды

_____________________________________________

!_36f+25 !_36f+19!_36f+13 !_36f+7_!_36f+1_!_36f-5_! F

___________ ______________________________________________

!х!х!х!_!_!х! !_______!_______!_______!__547__!__541__!_______! 15

!х!_!х!х!х!_! !_______!__ 523_ !_______!_______!_______!__499__! 14

!х!_!х!х!х!_! !_______!__487__!_______!_______!_______!__463__! 13

!_!х!х!_!_!х! !__457__!_______!_______!__439__!__433__!_______! 12

!_!х!_!х!_!х! !__421__!_______!__409__!_______!__397__!_______! 11

!х!_!_!_!х!х! !_______!__379__!__373__!__367__!_______!_______! 10

!_!х!_!_!х!х! !__349__!_______!__337__!__331__!_______!_______! 9

!_!_!х!х!х!_! !__313__!__307__!_______!_______!_______!__283__! 8

!_!_!х!х!х!х! !__277__!__271__!_______!_______!_______!_______! 7

!_!х!_!_!х!_! !__241__!_______!__229__!__223__!_______!__211__! 6

!х!_!_!х!_!х! !_______!__199__!__193__!_______!__181__!_______! 5

!х!_!_!_!х!_! !_______!__163__!__157__!__151__!_______!__139__! 4

!х!_!х!х!_!_! !_______!__127__!_______!_______!__109__!__103__! 3

!_!х!х!_!_!_! !___97__!_______!_______!___79__!___73__!___67__! 2

!_!х!х!_!_!_! !___61__!_______!_______!___43__!___37__!___31__! 1

!х!_!_!_!0!_! !_______!___19__!___13__!____7__!_______!____5__! 0

!_!_!_!_!х!_! !___11__!___17__!____23_!___29__!_______!___41__! 1

!_!_!_!х!_!х! !___47__!___53__!___59__!_______!___71__!_______! 2

!_!_!х!_!_!_! !___83__!___89__!_______!__101__!__107__!__113__! 3

!х!х!_!_!х!_! !_______!_______!__131__!__137__!_______!__149__! 4

!х!х!_!_!_!х! !_______!_______!___167_!__173__!__179__!_______! 5

!_!_!х!х!х!х! !__191__!__197__!_______!_______!_______!_______! 6

!_!_!_!х!_!_! !__227__!__233__!__239__!_______!__251__!__257__! 7

!_!_!х!_!х!_! !__263__!__269__!_______!__281__!_______!__293__! 8

!х!х!_!_!х!х! !_______!_______!__311__!__317__!_______!_______! 9

!х!х!_!_!_!х! !_______!_______!__347__!__353__!__359__!_______! 10

!х!х!_!_!х!_! !_______!_______!__383__!__389__!_______!__401__! 11

!х!х!_!х!_!х! !_______!_______!__419__!_______!__443__!_______! 12

!_!_!х!_!_!х! !__443__!__449__!_______!__461__!__467__!_______! 13

!_!х!_!х!_!_! !__479__!_______!__491__!_______!__503__!__509__! 14

!х!_!х!х!х!х! !_______!__521__!_______!_______!_______!_______! 15

!х!_!_!_!х!х! !_______!__557__!__563__!__569__!_______!_______! 16

!_!_!_!х!х!_! !__587__!__593__!__599__!_______!_______!__617 _! 17

_______________________________________________

!36d -25 _!36d-19_!36d-13_!_36d-7_ !_36d-1_ !_36d+5_! D

Построение Таблицы № 1

1. Числовая ось. ( Таблица № 3А)

Числовая ось - это два ряда натуральных чисел, которые идут вверх и вниз от 0 в центре таблицы. Числа на оси - номера периодов.

2. Периоды чисел. ( Таблица № 3А)

Период чисел - это одна строчка (6 клеток) в колонке. Вверх от 0 идут №№ периодов f чисел вида (6а + 1), вниз от 0 идут №№ периодов d чисел вида (6а - 1).

3. Числовые узлы. ( Таблица № 3В)

Числовые узлы - это числа d на оси, равные квадратам чисел (1 4 9 16 ... n ^ 2).

4. Числовые цепочки . ( Таблицы № 3В и №3С)

Числовые цепочки - парные. Они симметричны относительно оси. Каждая клетка в цепочке сдвинута относительно предыдущей на 1 клетку в сторону от числовой оси, на n клеток вверх или вниз (похоже на «ход конем» в шахматах.)

а) Числовые цепочки внизу от 0 исходят из числовых узлов d. Клетки в них сдвинуты на 1 в стороны от числовой оси и на n вниз (Таблица № 3В). Параметры построения цепочек вниз от 0 приведены в Таблице № 4А

Таблица № 3

А. Числовая ось. В. Числовые узлы d = n^2 C. Числовые

Периоды чисел и числовые цепочки d' цепочки f'

_______f___ ________ ________ _______________

!_!_!_!_!4!_! !_!_!х!_!_! !_!_!х!_!_! !х!_!_!_!3!_!_!_!х!

!_!_!_!_!3!_! !_!х!2!х!_! !_!_!5!_!_! !_!х!_!_!2!_!_!х!_!

!_!_!_!_!2!_! !х!_!3!_!х! !_!х!6!х!_! !_!_!х!_!1!_!х!_!_!

!_!_!_!_!1!_! !_!_!7!_!_! !_!_!_!_!0!_!_!_!_!

!_!_!_!_!0!_! d = 1^2 !х!_!8!_!х!

!_!_!_!_!1!_! f = 1^2

!_!_!_!_!2!_! d = 2^2

!_!_!_!_!4!_!

d

b) Цепочки вверх от 0 начинаются на расстоянии 2n клеток по обе стороны от f = n^2 (клетка f при этом отсчете выполняет роль 0) и сдвинуты на 1 клетку в стороны от оси и на n клеток вверх (Таблица № 3С)

Параметры построения цепочек от 0 и выше приведены в Таблице № 4В

Таблица № 4А.Параметры Таблица № 4В. Параметры

цепочек чисел вида (6а - 1) цепочек чисел вида (6а + 1)

(вниз от 0) (вверх от 0)

___________________________ ________________________________________

! Числовые ! Колич.! Колич. ! ! Число ! Количество ! Колич, ! Колич. !

! узлы ! клеток !клеток в ! ! на оси ! клеток от числа! клеток ! клеток в !

! ! вниз ! сторону ! ! ! на оси до ! вниз ! сторону !

! ! ! ! ! ! начала цепочки! ! !

!--------------!-----------!-----------! !-----------!-------------------- !-----------!-------------!

! 1 ^ 2= 1 ! 1 ! 1 ! ! 1 ^ 2= !! 1 х 2 ! 1 ! 1 !

! 2 ^ 2 = 4 ! 2 ! 1 ! ! 2 ^2 = 4 ! 2 х 2 ! 2 ! 1 !

! 3 ^ 2 = 9 ! 3 ! 1 ! ! 3 ^ 2= 9 ! 3 х 2 ! 3 ! 1 !

! n ^ 2 ! n ! 1 ! ! n ^ 2 ! 2n ! n ! 1 !

!--------------!----------!----------- ! !-----------!---------------------!-----------!------------ !

Построим числовые цепочки до нужного нам числа. Все непомеченные знаком {x} клетки соответствуют простым числам. Следует предусмотреть, что запись цифр на числовой оси не является зачеркиванием клеток

Таким способом можно определить все простые числа от 5 и больше до технически возможных пределов.


Подобные документы

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

  • Исторические факты исследования простых чисел в древности, настоящее состояние проблемы. Распределение простых чисел в натуральном ряде чисел, характер и причина их поведения. Анализ распределения простых чисел-близнецов на основе закона обратной связи.

    статья [406,8 K], добавлен 28.03.2012

  • Сумма n первых чисел натурального ряда. Вычисление площади параболического сегмента. Доказательство формулы Штерна. Выражение суммы k-х степеней натуральных чисел через детерминант и с помощью бернуллиевых чисел. Сумма степеней и нечетных чисел.

    курсовая работа [8,2 M], добавлен 14.09.2015

  • Характеристика истории изучения значения простых чисел в математике путем описания способов их нахождения. Вклад Пьетро Катальди в развитие теории простых чисел. Способ Эратосфена составления таблиц простых чисел. Дружественность натуральных чисел.

    контрольная работа [27,8 K], добавлен 24.12.2010

  • Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).

    лекция [268,6 K], добавлен 07.05.2013

  • Применение способа решета Эратосфена для поиска из заданного ряда простых чисел до некоторого целого значения. Рассмотрение проблемы простых чисел-близнецов. Доказательство бесконечности простых чисел-близнецов в исходном многочлене первой степени.

    контрольная работа [66,0 K], добавлен 05.10.2010

  • Поиски и доказательства простоты чисел Мерсенна. Окончание простых чисел Мерсенна на цифру 1 и 7. Вопрос сужения диапазона поиска. Эффективный алгоритм Миллера-Рабина. Разделение алгоритмов на вероятностные и детерминированные. Числа джойнт ряда.

    статья [127,5 K], добавлен 28.03.2012

  • Числа натурального ряда, их закономерное периодическое изменение: сведение бесконечного к конечному путем выявления периодичности. Обоснование метода поиска простых чисел с помощью "решета" Баяндина. Закон динамического сохранения относительных величин.

    книга [359,0 K], добавлен 28.03.2012

  • Проблема универсального генератора простых чисел. Попытки создания формул для нахождения простых чисел. Сущность теоремы сравнений. Доказательство "Малой теоремы Ферма". "Золотая теорема" о квадратичном законе взаимности. Генераторы простых чисел Эйлера.

    реферат [22,8 K], добавлен 22.03.2016

  • Вивчення властивостей натуральних чисел. Нескінченість множини простих чисел. Решето Ератосфена. Дослідження основної теореми арифметики. Асимптотичний закон розподілу простих чисел. Характеристика алгоритму пошуку кількості простих чисел на проміжку.

    курсовая работа [79,8 K], добавлен 27.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.