Связь комбинаторики с различными разделами математики

Применение леммы Бернсайда к решению комбинаторных задач. Орбиты группы перестановок. Длина орбиты группы перестановок. Лемма Бернсайда. Комбинаторные задачи. "Метод просеивания". Формула включения и исключения.

Рубрика Математика
Вид дипломная работа
Язык русский
Дата добавления 14.06.2007
Размер файла 163,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Число счастливых билетов, сумма первых трёх цифр которых равна n, есть an2 (как в начале, так и в конце номера счастливого билета можно поставить любую тройку цифр с суммой n). Таким образом, для подсчёта числа счастливых билетов нам достаточно вычислить числа an, а затем найти сумму квадратов этих 28 чисел.

Для вычисления значений an посчитаем число одно- и двухзначных чисел с суммой цифр n. Для каждого n = 0, 1, 2, …,9 существует ровно одно однозначное число с суммой цифр n (запись этого числа совпадает с записью числа n). Будем описывать однозначные числа многочленом . Смысл у этого многочлена следующий: коэффициент при sn в многочлене А1 равен числу однозначных чисел, сумма цифр которых равна n. Другими словами, коэффициент при sn в многочлене А1 равен 1, если 0? n ?9, и равен 0, если n>9.

Выпишем многочлен А2(s), описывающий двузначные числа. Коэффициент при sn в многочлене А2(s) равен числу двузначных чисел с суммой цифр n. (Мы рассматриваем и такие двузначные числа, в которых первая цифра или обе цифры могут равняться нулю). Степень многочлена А2 равна 18 (это наибольшая возможная сумма цифр двузначного числа): .

Предложение 1. А2(s) = (А1(s))2.

Доказательство. Произведение мономов sk и sm даёт вклад в коэффициент при мономе sn многочлена (А1(s))2 в том и только в том случае, если n= k+m. Поэтому коэффициент при мономе sn в многочлене (А1(s))2 есть в точности число способов представить число n в виде суммы n= k+m, k,m = 0, 1, ..., 9. Таким образом, многочлен в правой части равенства совпадает с многочленом А2.

Выпишем многочлен .

Предложение 2. А3(s) = (А1(s))3.

Доказательство. Коэффициент при мономе sn в многочлене (А1(s))3 равен числу представлений числа n в виде суммы трёх цифр n= k+m+l, k, m , l= 0, 1, ..., 9.

Итак, задача о числе счастливых билетов свелась к следующему: надо посчитать число р0 - сумму квадратов коэффициентов многочлена (А1(s))3. Умножение на многочлен А1(s) - очень простая операция. Но мы применим аппарат математического анализа.

Подставим вместо s выражение e. Тогда А3(e) = (А1(e))3 будет тригонометрическим полиномом 27-й степени:

.

Воспользовавшись тем, что

, получим

Суммируя геометрическую прогрессию и пользуясь тем, что ,

получаем , откуда искомая величина равна

. (15)

Попробуем оценить значение интеграла (15). График функции на отрезке выглядит так:

В нуле функция достигает своего максимума, равного 10. Вне отрезка величина функции f не превосходит . Поэтому вклад дополнения к отрезку в интеграл (1) не превосходит р?36?2100 (на самом деле он значительно меньше). Основная же составляющая интеграла (1) сосредоточена на отрезке . Для оценки вклада этого отрезка воспользуемся методом стационарной фазы. Этот метод позволяет оценить значение интеграла при t > ?. При больших значениях t величина интеграла определяется поведением функции ln f («фазы») в окрестности своей стационарной точки 0 (точки, в которой (ln f)? = 0, или, что то же самое, f ? = 0). В окрестности нуля , а .

При больших t имеем

.

Полагая t = 6 и пользуясь формулой (15), получаем приближённое равенство . Полученный результат с хорошей точностью (отклонение составляет не более 3%) приближает искомое значение.

На основании рассмотренного примера можно сделать некоторые выводы о комбинаторных задачах и методах их решения. Задачи перечислительной комбинаторики состоят в подсчёте числа объектов, принадлежащих некоторому семейству конечных множеств. У каждого множества семейства имеется свой номер (в задаче о счастливых билетах таким номером была сумма цифр трёхзначного числа).

Как правило, задача перечислительной комбинаторики «в принципе» разрешима: для каждого множества из семейства можно выписать все его элементы и таким образом узнать их число. Проблема состоит в том, чтобы найти «хорошее» решение, не требующее выписывания всех элементов изучаемых множеств. Определить, что такое «хорошее» решение, довольно трудно.

При решении задач перечислительной комбинаторики очень полезно рассматривать производящие многочлены. В нашем случае пользу принёс производящий многочлен А3. Операции с комбинаторными объектами очень естественно выражаются в терминах производящих функций. Так, переход от однозначных чисел с заданной суммой цифр к трёхзначным числам состоял просто в возведении производящего многочлена А1 в куб. Привлечение методов из смежных областей математики (например, из анализа) позволяет по-иному взглянуть на перечислительную задачу и найти новые, зачастую неожиданные, подходы к её решению.

Библиографический список

1. Болтянский, В.Г. Теоремы и задачи комбинаторной геометрии [Текст] / В.Г. Болтянский, И.Ц. Гохберг // - М.: Наука, 1965.

2. Болтянский, В.Г. Разбиение фигур на меньшие части [Текст] / В.Г. Болтянский, И.Ц. Гохберг // - М.: Наука, 1971.

3. Калужнин, Л.А. Преобразования и перестановки [Текст] / Л.А. Калужнин, В.И. Сущанский // - М.: Наука, 1979.

4. Кофман, А. Развитие методов пересчета [Текст] / А. Кофман // Введение в прикладную комбинаторику - М.: Наука, 1975. - с. 60-73.

5. Ландо, С.К. Счастливые билеты [Текст] // Математическое просвещение, сер. 3, вып. 2. - М.: Просвещение, 1998. - с. 127-132.


Подобные документы

  • Бинарная алгебраическая операция. Разновидности групп, использование рациональных чисел вместо вещественных. Действие группы на множестве. Группа симметрий тетраэдра. Формулировка и доказательство леммы Бернсайда о количестве орбит. Задачи о раскрасках.

    курсовая работа [822,9 K], добавлен 25.02.2015

  • Содержание правил суммы и произведения; их применение с целью решения комбинаторных задач. Виды комбинаторных соединений. Обозначение и свойства факториала. Формулы расчета всех возможных перестановок и размещений. Понятие и разновидности сочетаний.

    реферат [22,1 K], добавлен 08.09.2014

  • Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.

    учебное пособие [659,6 K], добавлен 07.05.2012

  • Основополагающие понятия теории графов и теории групп. Определение эквивалентности, порождаемой группой подстановок, и доказательство леммы Бернсайда о числе классов такой эквивалентности. Сущность перечня конфигурации, доказательство теоремы Пойа.

    курсовая работа [682,9 K], добавлен 20.05.2013

  • Знакомство с основными понятиями и формулами комбинаторики как науки. Методы решения комбинаторных задач. Размещение и сочетание элементов, правила их перестановки. Характеристики теории вероятности, ее классическое определение, свойства и теоремы.

    презентация [1,3 M], добавлен 21.01.2014

  • Возникновение и развитие теории групп. Проблема интегрирования дифференциальных уравнений. Алгебраические конструкции в теории автоматов. Появление понятия перестановок. Группы и классификация голограмм. Применение теории групп в квантовой механике.

    реферат [457,3 K], добавлен 08.02.2013

  • Основополагающие понятия теории графов. Определение эквивалентности, порождаемое группой подстановок, и доказательство леммы Бернсайда о числе ее классов. Понятие перечня конфигурации и доказательство теоремы Пойа. Решение задачи о перечислении графов.

    курсовая работа [649,2 K], добавлен 18.01.2014

  • Сущность комбинаторики как области математики, исследующей количество и разновидности комбинаций заданных объектов в определенных условиях. Особенности и понятие комбинаторной задачи. Примеры составления комбинаторных задач и способы их решения.

    презентация [15,3 M], добавлен 19.02.2012

  • Методы решения комбинаторных задач детьми на уроках математики. Определение уровня логического и алгоритмического мышления учащихся. Ознакомление школьников с методом организованного перебора, с помощью графа, таблицы и дерева возможных вариантов.

    курсовая работа [1,3 M], добавлен 24.11.2014

  • Перестановка як перевпорядкованість наборів елементів, об’єктів або функція, що задає таку перевпорядкованість. Всі можливі варіанти перестановок елементів множини за умови наявності трьох елементів за умови, що жоден елемент не залишається на місці.

    задача [222,1 K], добавлен 23.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.