Методы преобразования комплексного чертежа

Четыре основные задачи, решаемые методами преобразования. Сущность способа замены плоскостей проекций. Решение ряда задач по преобразованию прямой общего положения в прямую уровня, а затем - в проецирующую, выполнив последовательно два преобразования.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 17.10.2010
Размер файла 185,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

7

План

1. Общие сведения.

2. Замена плоскостей проекций.

3. Вращение вокруг оси, перпендикулярной плоскости проекций.

4. Плоскопараллельное движение.

1. Общие сведения

Проецируемая фигура может занимать по отношению к плоскости проекции удобное (рациональное) и неудобное (нерациональное) положение.

Количество и характер геометрических построений при графическом решении задач определяется не только сложностью самой задачи, но и зависят от рационального или нерационального расположения фигуры относительно плоскости проекций.

Наиболее рациональные частные положения фигуры:

- положение, перпендикулярное к плоскости проекций;

- положение параллельное плоскости проекций.

При общем положении фигуры, она проецируется на плоскость проекций в искаженном виде.

Методы преобразования комплексного чертежа применяются для приведения фигуры общего положения в частное положение, наиболее выгодное для решения задач.

Четыре основные задачи, решаемые методами преобразования

1. Прямую общего положения преобразовать в прямую уровня.

2. Прямую общего положения преобразовать в проецирующую прямую.

3. Плоскость общего положения преобразовать в проецирующую плоскость.

4. Плоскость общего положения преобразовать в плоскость уровня.

Достигается это:

а) введением дополнительных плоскостей проекций так, чтобы прямая линия или плоская фигура, не меняя своего положения в пространстве, оказалась в частном положении в новой системе плоскостей проекций (способ перемены плоскостей проекций);

б) изменением положения прямой линии или какой-либо фигуры путем поворота вокруг некоторой оси так, чтобы прямая или фигура оказалась в частном положении относительно неизменной системы плоскостей проекций (способ вращения и плоскопараллельного перемещения).

2. Замена плоскостей проекций

Сущность способа замены плоскостей проекций заключается в том, что при неизменном положении объекта в пространстве производится замена данной системы плоскостей проекций новой системой взаимно перпендикулярных плоскостей проекций (рис. 75).

При переходе к новой системе одну из плоскостей проекций заменяют новой таким образом, чтобы данный геометрический элемент (прямая, плоскость) занял частное положение и проецировался без искажения.

Рис. 75

При решении ряда задач, например, требуется преобразовать прямую общего положения в прямую уровня, а затем -- в проецирующую, выполнив при этом последовательно два преобразования.

Рассмотрим ход решения задач.

РЕШЕНИЕ I ОСНОВНОЙ ЗАДАЧИ. Для того, чтобы прямая АВ стала линией уровня (рис. 76, а), следует ввести новую плоскость проекций и расположить ее параллельно данной прямой. При этом новая ось x1 будет параллельна одной из проекций прямой. Проведем ось параллельно горизонтальной проекции АВ. Новая плоскость проекций V1 расположится параллельно прямой АВ, которая проецируется на эту плоскость в истинную величину Новая ось x1 и плоскость проекции V1 могут быть расположены на любом расстоянии от прямой, они могут совпадать с прямой и ее проекцией.

Правило: при замене плоскостей проекций расстояние от новой проекции точки до новой оси равно расстоянию от заменяемой проекции точки до старой оси проекций.

Рис. 76

;

;

Иными словами, высоты (аппликаты) концов отрезка в новой системе плоскостей проекций останутся прежними. В результате этой замены решена задача на определение действительной величины отрезка и угла наклона ? к плоскости H. На чертеже плоскость V1 совмещают с плоскостью H.

РЕШЕНИЕ II ОСНОВНОЙ ЗАДАЧИ. Для того, чтобы прямая АВ оказалась проецирующей (рис. 76,б), т.е. изобразилась точкой, необходимо решить I основную задачу, а затем произвести вторую замену плоскости проекций и расположить новую плоскость H1 перпендикулярно прямой. Новую ось x2 располагаем перпендикулярно новой фронтальной проекции прямой А1В1. На новой плоскости проекций Н1 прямая изобразится точкой, так как координаты концов отрезка в системе Н/V1 одинаковы.

Таким образом, прямая АВ в системе H1/V1 стала проецирующей относительно плоскости H1. Преобразования в этой задаче могли быть выполнены и в другой последовательности: сначала могла быть заменена горизонтальная плоскость проекций, а затем -- фронтальная.

Рассмотрим еще одну задачу -- требуется определить истинную величину плоской фигуры -- треугольника АВС, занимающего в пространстве общее положение. Для решения этой задачи необходимо преобразовать чертеж (эпюр) так, чтобы плоскость общего положения стала параллельной одной из плоскостей проекций новой системы Сначала следует преобразовать плоскость общего положения в проецирующую, а затем -- в плоскость уровня..

РЕШЕНИЕ III ОСНОВНОЙ ЗАДАЧИ. Сначала заменим фронтальную плоскость проекций новой плоскостью V1, перпендикулярной плоскости треугольника. Это условие выполнено с помощью вспомогательной прямой -- линии уровня (горизонталь AN) (рис. 77). Новая ось x1 проводится перпендикулярно горизонтальной проекции горизонтали. На новой плоскости проекций V1 горизонталь спроецировалась в точку, а плоскость треугольника -- в линию. Угол ? определяет угол наклона треугольника к горизонтальной плоскости H.

Рис. 77

;

;

РЕШЕНИЕ IV ОСНОВНОЙ ЗАДАЧИ. Для решения задачи новая плоскость проекций должна быть параллельна заданной плоскости. Производим две последовательные перемены. При первой перемене располагаем новую плоскость проекций перпендикулярно к прямой уровня заданной плоскости общего положения, т.е. решаем третью основную задачу - преобразуем плоскость общего положения в проецирующую. При второй перемене новую плоскость проекций H1 устанавливаем параллельно треугольнику. Новую ось x2 проводим параллельно новой фронтальной проекции треугольника -- прямой B1A1C1. Построенная проекция определяет истинную величину и форму треугольника.


Подобные документы

  • Замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Линейчатые поверхности вращения. Точка на поверхности тора и сферы. Понятие меридиональной плоскости. Преобразование комплексного чертежа. Метод замены плоскостей проекций.

    презентация [69,8 K], добавлен 27.10.2013

  • Методика преобразования вращения и ее значение в решении алгебраических систем уравнений. Получение результирующей матрицы. Ортогональные преобразования отражением. Итерационные методы с минимизацией невязки. Решение методом сопряженных направлений.

    реферат [116,3 K], добавлен 14.08.2009

  • Изучение способов работы с файлами с помощью автоматического преобразования данных. Решение иррациональных уравнений методами хорд и половинного деления. Вычисление определенного интеграла. Решение систем линейных алгебраических уравнений. Ряды Фурье.

    курсовая работа [759,3 K], добавлен 16.08.2012

  • Понятие о геометрическом преобразовании. Роль движений в геометрии. Применение аффинных преобразований при решении задач. Свойства аффинного преобразования. Транзитивность, рефлексивность и симметричность. Свойство перспективно-аффинного соответствия.

    курсовая работа [547,9 K], добавлен 08.05.2011

  • Основа физики – геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света.

    статья [6,1 K], добавлен 22.06.2008

  • Определение и формула аффинного преобразования в сопряжённых комплексных координатах. Уравнение образа прямой при аффинном преобразовании. Частные виды аффинных преобразований в сопряжённых комплексных координатах.

    дипломная работа [222,8 K], добавлен 08.08.2007

  • Преобразования уравнений, нахождение соответствующих критериев подобия. Подобие стационарных и нестационарных физических полей. Масштабные преобразования алгебраических и дифференциальных уравнений. Моделирование задач с начальным и граничным условиями.

    реферат [2,8 M], добавлен 20.01.2010

  • Решение системы линейных обыкновенных дифференциальных уравнений, описывающей боковое перемещение нестабильного самолета относительно заданного курса полета методом преобразования Лапласа. Стабилизация движения путем введения отрицательной обратной связи.

    курсовая работа [335,8 K], добавлен 31.05.2016

  • Рассмотрение понятия и сущности линеаризации. Изучение способов линейной аппроксимации функции преобразования средств измерений. Поиск погрешностей линеаризации; сопоставление полученных результатов для каждого метода на примере решения данных задач.

    контрольная работа [46,4 K], добавлен 03.04.2014

  • Основы формальной логики Аристотеля. Понятия инверсии, конъюнкции и дизъюнкции. Основные законы алгебры логики. Основные законы, позволяющие производить тождественные преобразования логических выражений. Равносильные преобразования логических формул.

    презентация [67,8 K], добавлен 23.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.