Интеграл Лебега-Стилтьеса
Понятие интеграла Стилтьеса. Общие условия существования интеграла Стилтьеса, классы случаев его существования и предельный переход под его знаком. Приведение интеграла Стилтьеса к интегралу Римана. Применение в теории вероятностей и квантовой механике.
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 20.07.2009 |
Размер файла | 848,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Идея стилтьесовского интегрирования могла оказаться полезной с самого начала. Но в момент зарождения квантовой механики и некоторое время спустя интегрирование по Стилтьесу было еще недостаточно разработано, а главное - слишком мало известно, чтобы лечь в основу квантовой механики. И Дирак повернул направление ее развития в ином направлении.
Дирак в качестве исходной позиции тож ставит проблему единообразного описания дискретных и непрерывных явлений. При этом за основное понятие он берет понятие непрерывности, а дискретное описывает в терминах последнего. Против такого подхода сразу восстал И. Нейман, предложив заменить обобщенные функции интегралами Стилтьеса. Большинство физиков не приняло концепции Неймана, тем не менее он продолжал отстаивать и развивать свою точку зрения, подробно изложив свои соображения в своей монографии. И хотя его концепция была принята не сразу, тем не менее в квантовой механике интеграл Стилтьеса нашел своё применение.
Интеграл Стилтьеса и линейные функционалы.
Понятие функционала явилось предметом многочисленных исследований, восходящих ещё к Эйлеру. Среди этих исследований важное место заняли изыскания по аналитическому изображению функционалов.
В явной форме понятие функционала сформулировал Вольтера в 1887году. Он же дал и первое аналитическое выражение для некоторого класса функционалов в виде выражения, аналогичного ряду Тейлора с привлечением понятия производной функционала. В теории функций наиболее распространенным способом изображения функций является выражение их рядами того или иного типа. По аналогии начались попытки представления функционалов в виде рядов по функционалам
,
где - некоторые константы, зависящие от природы разлагаемого в ряд функционала , а - определенная последовательность фиксированных функционалов. Первым таким разложением было разложение, предложенное Пинкерле и Амальди в 1901 г. Оно имело вид:
,
где с - некоторое фиксированное число промежутка , на котором задано рассматриваемое множество функций .
Кроме них предложили общие выражения линейных функционалов Фреше и Адамар, но все эти способы пригодны только для относительно узких классов непрерывных функций. Поэтому поиски новых аналитических выражений для функционалов продолжались.
Решающим в этом направлении был результат Рисса. В 1909 г. Он доказал, что всякий линейный функционал , определенный в пространстве непрерывных функций , заданных на , раастояние между которыми выражается интегралом Стилтьеса
где - функция с ограниченным изменением, определяемая через
Заключение
Интеграл, который мы рассмотрели в данной работе, был введен Стилтьесом. Новое понятие ему было нужно, как мы уже говорили в первой главе, в разрабатывавшейся им теории цепных дробей; он ввел его и применил в интересовавших его вопросах. Разработка же выпала на доли других математиков, таких, как Кёниг, А.А. Марков, А.М. Ляпунов, Г.Ф. Вороной, Рисс, Гильберт, Хеллингер, причем каждый из них пришел к понятию интеграла Стилтьеса, отправляясь от разных задач. В теории цепных дробей применяли его сам Стилтьес и А.А. Марков, в теории R-интеграла - Кёниг, в теории чисел - Г.Ф. Вороной, в небесной механике - А.М. Ляпунов, в теории интегральных уравнений - Гильберт, Хеллингер, в теории линейных функционалов - Рисс. В дальнейшем разработкой интеграла занимались также У.Г. Юнг и Радон. Юнг использовал интеграл Стилтьеса в теории тригонометрических рядов, Радон применял также в теории линейных функционалов, в теории интегральных уравнений.
Очень велико число работ, посвященных изучению различных свойств интеграла Стилтьеса. Это работы Хелли, Брэй, Гильдебрандт, Р. Юнг, Г.М. Шварц, Яджи и др.
Совершенно необозримо поле приложений различных типов интеграла Стилтьеса. Разумеется, та исходная проблема, из которой родилось само понятие интеграла Стилтьеса, - проблема моментов, - не перестала быть связанной с этим понятием. После работ Стилтьеса, Маркова, Юнга и других ученых, о которых сказано выше, поток применений интеграла Стилтьеса вырос в трудно обозримый комплекс. Многие разделы математики невозможно представить без использования интеграла Стилтьеса.
Идея стилтьесовского интегрирования использовалась и продолжает использоваться при изучении различных вопросов математики, физики, квантовой механики. Поэтому данная работа может быть использована в качестве пособия для студентов физико-математичсеких факультетов.
Список литературы
Александров П.С., Колмогоров А. Введение в теорию функций действительного переменного. Изд.3-е, переработ. М. - Л., Гостехтеориздат., 1938г.
Брудно А.Л. Теория функций действительного переменного. Избранные главы.М., "Наука", 1971
Гливенко В.И. Интеграл Стилтьеса. - М., 1936, 216с.
Гохман Э.Х. Интеграл Стилтьеса и его приложения. Государственное издательство физ. - мат. литературы, М., 1958
Дьяченко М.И., Ульянов П.Л. Мера и интеграл. - М.: Издательство "Факториал Пресс", 2002. - 160с.
Камке Э. Интеграл Лебега-Стилтьеса. Перевод с немецкого Г.П. Сафроновой. Под ред. И.П. Натансона. - М.: Государственное издательство физ. - мат. литературы, 1959г.
Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа: Учебник для вузов. - 6-е изд., испр. - М.: Наука, Главная редакция физ. - мат. Литературы, 1989. - 624 с.
Леонтьева Т.А. и др. Задачи по теории функций действительного переменного: Учеб. Пособие по спец. "Математика"/ Панферов В.С., Серов В.С. - М.: Изд-во МГУ, 1997 - 208с.
Макаров И.П. Теория функций действительной переменной. Под ред. И.Я. Верченко - М.: Государственное издательство "Высшая школа" - 1965
Медведев Ф.А. Развитие понятия интеграла. - М., "Наука", 1974г.
Песин И.Н. Развитие понятия интеграла, М., "Наука", 1966. - 207с.
Самородницкий А.А. Теория меры/ Сыктывкар. Гос. Университет. - Л.: Издательство ЛГУ, 1990. - 267с.
Теория функций вещественной переменной. И.П. Натансон. Главная редакция физико-математической литературы издательства "Наука", 1974
Теория функций и функциональный анализ: [Сборник статей/ Науч. ред. проф. Б.М. Гагаев]. - Казань: Издательство Казанского университета, 1976г. - 98с.
Тимофеев А.Ф. Интегрирование функций. М. - Л. Издательство технико-теоретической литературы, 1948
Толстов Г.П. Мера и интеграл. Главная редакция физ. - мат. Литературы, "Наука", 1976г
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. В трех томах. Том III/ - СПб.: Издательство Лань, 1997. - 672с.
Фролов Н.А. Теория функций действительного переменного. Учебное пособие для пединститутов. Изд-во 2-е, М., Учпедгиз, 1961
Эйлер Л. Интегральное исчисление. Т.2. Пер. с латинского. - М., Гостехтеориздат., 1957. - 368с.
http://go. mail.ru
www.aggregateria.com
Приложение
СТИЛТЬЕС ТОМАС ИОАННЕС (Stieltjes Thomas Johannes 1856-1894).
Стилтьес Томас Иоаннес (29.12.1856-31.12.1894) - нидерландский математик и астроном. Член Нидерландской Академии наук (1886г) Родился в Зволле. Окончил Политехническую школу в Делфте. В 1877-1883гг. работал в Лейденской обсерватории, с 1886г. - профессор Тулузского университета. Научные исследования Стилтьеса в основном касаются теории функциональных непрерывных дробей, проблемы моментов, теории ортогональных многочленов, приближенного интегрирования и других вопросов классического анализа. Обобщенное Стилтьесом понятие интеграла Римана играет важную роль в современной математике. Известно также интегральное преобразование Стилтьеса.
Подобные документы
Понятие интеграла Римана, анализ его определений. Интеграл как предела интегральных сумм Римана, единственное число, разделяющее верхние и нижние суммы Дарбу. Интеграл от непрерывной функции как приращение первообразной (формула Ньютона-Лейбница).
курсовая работа [2,2 M], добавлен 30.10.2015Понятие нормированного пространства. Пространства суммируемых функций. Интеграл Лебега-Стилтьеса. Интерполяция в пространствах суммируемых функций. Теорема Марцинкевича и ее применение. Пространства суммируемых последовательностей.
дипломная работа [354,0 K], добавлен 08.08.2007Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.
презентация [174,5 K], добавлен 18.09.2013Понятие двойного интеграла, условия его существования, свойства и методы вычисления: сведение двойного интеграла к повторному для прямоугольной и криволинейной областей; двойной интеграл в полярных координатах; замена переменных; вычисление объемов тел.
контрольная работа [321,9 K], добавлен 21.07.2013Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.
контрольная работа [617,2 K], добавлен 08.07.2011Определение двойного интеграла, его геометрический смысл, свойства, область интегрирования. Условия существования двойного интеграла, его сведения к повторному; формула преобразования при замене переменных, геометрические и физические приложения.
презентация [1,5 M], добавлен 18.03.2014Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.
курсовая работа [1,9 M], добавлен 21.01.2008История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.
курсовая работа [2,7 M], добавлен 16.10.2013Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.
контрольная работа [257,4 K], добавлен 23.02.2011Вычисление двойного интеграла в прямоугольных координатах. Замена переменных в двойном интеграле. Аналог формул прямоугольников и формулы трапеции. Теорема существования двойного интеграла, его геометрический и физический смысл и основные свойства.
курсовая работа [1,3 M], добавлен 13.02.2013