Бета- и гамма-функции
Определение функций "бета", "гамма". Эйлеров интеграл первого и второго рода. Связь между функциями "бета" и "гамма". Формула Эйлера, интеграл Раабе. Основные свойства гамма-функции при ее определении. Отличие дифференцирования от интегрирования.
Рубрика | Математика |
Предмет | Высшая математика |
Вид | дипломная работа |
Язык | русский |
Прислал(а) | Владимир |
Дата добавления | 08.10.2011 |
Размер файла | 167,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Класс функций, представимых в виде собственного либо несобственного интеграла, зависящего не только от формальной переменной, а и от параметра. Эти функции называются интегралами зависящими от параметра. К ним относятся гамма и бета функции Эйлера.
курсовая работа [851,0 K], добавлен 03.07.2008Несобственные интегралы первого, второго и третьего рода. Вычисление несобственных интегралов с помощью вычетов. Несобственные интегралы, содержащие параметр. Гамма-функция и бета-функция Эйлера. Критерий Коши и эквивалентные условия сходимости.
курсовая работа [1,5 M], добавлен 20.09.2013Сущностные характеристики плоского и планарного графа. Основные особенности формулы Эйлера и критерия Понтрягина-Куратовского, их доказательства. Общая характеристика двух критериев планарности. Сущность и значение процесса применения гамма-алгоритмов.
реферат [148,8 K], добавлен 25.12.2011Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.
контрольная работа [257,4 K], добавлен 23.02.2011Поверхностный интеграл как интеграл от функции, заданной какой-либо поверхности. Сущность и понятие поверхностного интеграла первого и второго рода, взаимосвязь между ними и вычисление. Формулы Остроградского и Стокса, их доказательство и применение.
курсовая работа [321,7 K], добавлен 09.10.2011Криволинейный интеграл первого рода. Двойной интеграл в декартовой и полярной системе координат. Интеграл по поверхности (первого рода). Приложение определенного интеграла в геометрии: площадь плоской фигуры и цилиндрической поверхности, объем тела.
методичка [517,1 K], добавлен 27.01.2012Общее определение коэффициентов по методу Эйлера-Фурье. Ортогональные системы функций. Интеграл Дирихле, принцип локализации. Случай непериодической функции, произвольного промежутка, четных и нечетных функций. Примеры разложения функций в ряд Фурье.
курсовая работа [296,3 K], добавлен 12.12.2010Функции нескольких переменных. Локальные экстремумы функции двух переменных. Производная по направлению. Двойные и тройные интегралы. Вычисление объемов тел и площадей плоских фигур. Тройной интеграл, криволинейные интегралы первого и второго рода.
учебное пособие [511,2 K], добавлен 23.04.2012Несобственные интегралы первого рода. Понятие абсолютно и условно сходящегося интеграла. Несобственные интегралы второго рода. Определение непрерывности функции и равномерной сходимости. Свойства несобственных интегралов, зависящих от параметра.
курсовая работа [240,1 K], добавлен 23.03.2011Первообразная функции и неопределенный интеграл. Геометрический смысл производной. Совокупность всех первообразных для функции f(x) на промежутке Х. Понятие подынтегрального выражения. Проверка правильности результата интегрирования, примеры задач.
презентация [198,4 K], добавлен 18.09.2013