Построение эйлерова цикла. Алгоритм Форда и Уоршелла

Эйлеровы цепи и циклы, теоремы. Алгоритм построения эйлерова цикла. Обоснование алгоритма. Нахождение кратчайших путей в графе. Алгоритм Форда отыскания кратчайшего пути. Задача отыскания кратчайших расстояний между всеми парами вершин. Алгоритм Флойда.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 01.12.2008
Размер файла 108,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Общее понятие теоремы Эйлера, этапы ее доказательства. Необходимые и достаточные условия существования эйлерова цикла. Сущность задачи о построении каркаса куба. Алгоритм Флери построения эйлерова цикла. Обход полуэйлерова графа с нечетной вершины.

    презентация [27,1 K], добавлен 12.04.2014

  • Метод Форда-Беллмана для нахождения расстояния от источника до всех вершин графа. Алгоритмы поиска расстояний и отыскания кратчайших путей в графах. Блочно-диагональный вид и матрица в исследовании системы булевых функций и самодвойственной функции.

    курсовая работа [192,1 K], добавлен 10.10.2011

  • Поиск кратчайших путей для пар вершин взвешенного ориентированного графа с весовой функцией. Включение матрицы в алгоритм Флойда, содержащую вершину, полученную при нахождении кратчайшего пути. Матрица, которая содержит длины путей из вершины в вершину.

    презентация [36,1 K], добавлен 16.09.2013

  • Основные понятия теории графов. Матричные способы задания графов. Выбор алгоритма Форда–Бэллмана для решения задачи поиска минимальных путей (маршрутов) в любую достижимую вершину нагруженного орграфа. Способы выделения пути с наименьшим числом дуг.

    курсовая работа [109,1 K], добавлен 22.01.2016

  • Способы решения задач дискретной математики. Расчет кратчайшего пути между парами всех вершин в ориентированном и неориентированном графах с помощью использования алгоритма Флойда. Анализ задачи и методов ее решения. Разработка и характеристика программы.

    курсовая работа [951,4 K], добавлен 22.01.2014

  • Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.

    курсовая работа [625,4 K], добавлен 30.09.2014

  • Основные понятия и свойства эйлеровых и гамильтоновых цепей и циклов в теории графов. Изучение алгоритма Дейкстры и Флойда для нахождения кратчайших путей в графе. Оценки для числа ребер с компонентами связанности. Головоломка "Кенигзберзьких мостов".

    курсовая работа [2,4 M], добавлен 08.10.2014

  • Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.

    курсовая работа [1006,8 K], добавлен 23.12.2007

  • Граф как совокупность объектов со связями между ними. Характеристики ориентированного и смешанного графов. Алгоритм поиска кратчайшего пути между вершинами, алгоритм дейкстры. Алгебраическое построение матрицы смежности, фундаментальных резервов и циклов.

    методичка [29,4 M], добавлен 07.06.2009

  • Общая характеристика распространенных проблем поиска величины максимального потока в сети при помощи алгоритма Форда-Фалкерсона. Знакомство с задачами по дискретной математике. Рассмотрение особенностей и этапов постройки дерева кратчайших расстояний.

    контрольная работа [740,3 K], добавлен 09.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.