Метод Дейкстры нахождения кратчайшей цепи в связном графе
Понятия теории графов, их связность и задача о кратчайшей цепи. Программная реализация метода Дейкстры, его сравнение с методом простого перебора. Описание логики программного модуля. Примеры работы программы нахождения кратчайшей цепи в связном графе.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 25.11.2011 |
Размер файла | 330,2 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основные понятия теории графов. Содержание метода Дейкстры нахождения расстояния от источника до всех остальных вершин в графе с неотрицательными весами дуг. Программная реализация исследуемого алгоритма. Построение матриц смежности и инцидентности.
курсовая работа [228,5 K], добавлен 30.01.2012Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.
курсовая работа [1006,8 K], добавлен 23.12.2007Основные понятия и свойства эйлеровых и гамильтоновых цепей и циклов в теории графов. Изучение алгоритма Дейкстры и Флойда для нахождения кратчайших путей в графе. Оценки для числа ребер с компонентами связанности. Головоломка "Кенигзберзьких мостов".
курсовая работа [2,4 M], добавлен 08.10.2014Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.
презентация [430,0 K], добавлен 19.11.2013Цепь Маркова как простой случай последовательности случайных событий, области ее применения. Теорема о предельных вероятностях в цепи Маркова, формула равенства Маркова. Примеры для типичной и однородной цепи Маркова, для нахождения матрицы перехода.
курсовая работа [126,8 K], добавлен 20.04.2011Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.
курсовая работа [625,4 K], добавлен 30.09.2014Теория графов как математический аппарат для решения задач. Характеристика теории графов. Критерий существования обхода всех ребер графа без повторений, полученный Л. Эйлером при решении задачи о Кенигсбергских мостах. Алгоритм на графах Дейкстры.
контрольная работа [466,3 K], добавлен 11.03.2011Понятия и определения орграфа и неориентированного графа, методы решения. Неориентированные и ориентированные деревья. Подробное описание алгоритмов нахождения кратчайших путей в графе: мультиграф, псевдограф. Матрица достижимостей и контрдостижимостей.
курсовая работа [251,0 K], добавлен 16.01.2012Нахождение минимального пути от фиксированной до произвольной вершины графа с помощью алгоритма Дейкстры, рассмотрение основных принципов его работы. Описание блок-схемы алгоритма решения задачи. Проверка правильности работы разработанной программы.
курсовая работа [495,4 K], добавлен 19.09.2011Дифференциальные уравнения при входном воздействии типа скачка для заданной электрической цепи. Применение преобразования Лапласа при нулевых начальных условиях. Решение уравнения операторным методом. Построение частотных характеристик цепи. Ее динамика.
курсовая работа [721,0 K], добавлен 27.05.2008