Частично-упорядоченные множества

Бинарные отношения на множестве. Рефлективность, примеры рефлективности. Симметричность, транзитивность, отношение порядка. Примеры дестрибутивных и недестребутивных решеток. Основные определения и свойства теории структур. Операции над множествами.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 04.06.2015
Размер файла 64,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Теория частичных действий как естественное продолжение теории полных действий. История создания и перспективы развития теории упорядоченных множеств. Частично упорядоченные множества. Вполне упорядоченные множества. Частичные группоиды и их свойства.

    реферат [185,5 K], добавлен 24.12.2007

  • Типичные примеры рефлексивных бинарных отношений. Понятие множества и его элементов. Операции над множествами: объединение, пересечение и разность. Декартово произведение множеств. Отношения функциональные, эквивалентности, порядка. Отношения степени n.

    контрольная работа [163,2 K], добавлен 08.11.2009

  • Типы бинарных отношений. Изображение графов в виде схемы. Цикл в графе, совпадение его начальной и конечной вершины. Понятие достижимости в теории графов, их математические свойства. Частично упорядоченное множество как один из типов бинарного отношения.

    контрольная работа [116,5 K], добавлен 04.09.2010

  • Определения понятия множество. Предельная точка множества, предел функции в точке. Эквивалентные, счетные и несчетные множества. Замкнутые и открытые множества. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве.

    курсовая работа [222,3 K], добавлен 11.01.2011

  • Отношение Р и наличие стандартных свойств: рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность. Графы и матрицы замыканий отношения Р. Таблица значений, граф и матрица функции f. Исследование М на линейность (полноту).

    контрольная работа [3,3 M], добавлен 06.06.2011

  • Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна.

    реферат [70,9 K], добавлен 11.03.2009

  • Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения.

    презентация [1,2 M], добавлен 12.12.2012

  • Множеством именуется некоторая совокупность элементов, объединенных по какому-либо признаку. Над множествами определяют операции, во многом сходные с арифметическими. Операции над множествами интерпретируют геометрически с помощью диаграмм Эйлера-Венна.

    реферат [15,8 K], добавлен 03.02.2009

  • Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.

    лекция [540,0 K], добавлен 25.03.2012

  • Характеристика булевой алгебры и способы представления булевых функций. Понятие и сущность бинарных диаграммах решений. Упорядоченные бинарные диаграммы решений, их построение и особенности применения для обработки запросов в реляционных базах данных.

    дипломная работа [391,7 K], добавлен 21.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.