Представления конечных групп
Группа как непустое множество с бинарной алгебраической операцией, ее свойства и требования. Представления унитарными матрицами и полная приводимость представлений конечных групп. Доказательство основных теорем. Соотношения ортогональности для характеров.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 22.09.2009 |
Размер файла | 380,6 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Понятие и виды бинарной алгебраической операции. Определения, примеры и общие свойства -перестановочных подгрупп. Характеристика и методика решения конечных групп с заданными -перестановочными подгруппами. Доказательство p-разрешимости конечных групп.
курсовая работа [1,1 M], добавлен 22.09.2009Разрешимость факторизуемой группы с разложимыми факторами. Свойства конечных групп, являющихся произведением двух групп, одна из которых группа Шмидта, вторая - 2-разложимая. Произведение бипримарной и 2-разложимой групп. Доказательство теорем и лемм.
курсовая работа [475,0 K], добавлен 22.09.2009Понятие, истоки, систематизация и развитие теории групп. Множество как совокупность объектов, рассматриваемых как единое целое. Нильпотентные группы - непустые множества, замкнутые относительно бинарной алгебраической операции, их свойства и признаки.
курсовая работа [541,3 K], добавлен 27.03.2011Свойства примитивных конечных разрешимых произведений N-разложимых групп. Условия факторизуемости проекторов конечных разрешимых произведений N-разложимых групп для случая. Порядок определения приложений полученных результатов для классических формаций.
дипломная работа [239,8 K], добавлен 14.12.2009Изучение строения групп по заданным свойствам системы их подгрупп как направлениt в теории конечных групп. Обзор конечных групп с плотной системой F-субнормальных подгрупп в случаях, когда F - произвольная S-замкнутая формация p-нильпотентных групп.
курсовая работа [163,6 K], добавлен 07.03.2010Строение конечных групп по заданным свойствам их обобщенно субнормальных подгрупп. Использование методов абстрактной теории групп и теории формаций конечных групп. Субнормальные и обобщенно субнормальные подгруппы и их свойства. Обобщение теоремы Хоукса.
дипломная работа [288,7 K], добавлен 20.12.2009Разрешимости, сверхразрешимости и изоморфизма конечных групп. Доказательства теорем о произведении двух групп, одна из которых содержит циклическую подгруппу индекса менее или равную двум. Произведение разрешимой и циклической групп, рассмотрение лемм.
курсовая работа [523,5 K], добавлен 26.09.2009Определение и основные свойства конечных групп с условием плотности для F-субнормальных подгрупп. Общие свойства, использующиеся для изучения строения конечных групп с плотной системой F-субнормальных подгрупп. Особенности развития теории формаций.
курсовая работа [155,1 K], добавлен 02.03.2010Неразрешимые конечные группы с нильпотентными добавлениями к несверхразрешимым подгруппам. Нормальные подгруппы конечных-обособленных груп. Факторизуемые группы с разрешимыми факторами нечетных индексов. Произведения 2-разложимых групп специальных видов.
курсовая работа [546,1 K], добавлен 26.09.2009Выработка современного абстрактного понятия групп. Простейшие свойства конечных нильпотентных групп. Подгруппа Фраттини конечной группы нильпотентна. Нахождение прямого произведения нильпотентных групп. Бинарная алгебраическая операция на множестве.
курсовая работа [393,4 K], добавлен 21.09.2013