Нормированные пространства
Понятие нормированного пространства. Пространства суммируемых функций. Интеграл Лебега-Стилтьеса. Интерполяция в пространствах суммируемых функций. Теорема Марцинкевича и ее применение. Пространства суммируемых последовательностей.
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 08.08.2007 |
Размер файла | 354,0 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Наделение множества метрикой, основные аксиомы метрического пространства. Равномерная метрика, нормы элементов и линейное пространство. Фундаментальная последовательность элементов линейного нормированного пространства. Понятие банахова пространства.
реферат [375,9 K], добавлен 04.12.2011Понятие интеграла Стилтьеса. Общие условия существования интеграла Стилтьеса, классы случаев его существования и предельный переход под его знаком. Приведение интеграла Стилтьеса к интегралу Римана. Применение в теории вероятностей и квантовой механике.
дипломная работа [848,9 K], добавлен 20.07.2009Основные композиции движений пространства. Композиции центральных симметрий пространства. Композиция зеркальной и центральной симметрий пространства. Композиции подобий и аффинных преобразований пространства.
дипломная работа [132,4 K], добавлен 08.08.2007Понятие и основные характеристики пространства Соболева, их главные свойства, сущность простейшей теоремы вложения. Порядок применения пространства Соболева для доказательства существования и единственности обобщённого решения уравнения Лапласа.
курсовая работа [232,5 K], добавлен 12.10.2009Понятие и характеристика линейного пространства, его главные свойства и особенности. Исследование аксиом векторного пространства. Анализ отличий и признаков векторного подпространства. Базис и формулы линейного пространств, определение его размерности.
реферат [249,4 K], добавлен 21.01.2011Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.
дипломная работа [1,7 M], добавлен 17.05.2010Векторные пространства, скалярное произведение и норма функций, ортогональные системы функций, равенства и тригонометрический ряд Фурье. Сходимость интеграла Фурье, основные сведения теории преобразования. Операционное исчисление, преобразование Лапласа.
учебное пособие [1,2 M], добавлен 23.12.2009Этапы развития теории описания пространства, сущность принципа относительности, сформулированного Галилеем. Геометрия Минковского как описание пространства – времени, основные понятия ее описания. Разработка практических занятий по данным темам.
дипломная работа [354,6 K], добавлен 24.02.2010Общая теория топологических и векторных пространств, внутренняя логика развития; аксиоматика. Структура построения нормированного пространства; рассмотрение и развитие понятия банахова пространства как определённого типа векторных пространств с нормой.
реферат [14,9 K], добавлен 11.01.2011Особенности неподвижного геометрического трехмерного пространства, его отличительные признаки от подвижного пространства. Отличия физической сущности скорости от математической. Понятие производной вектора по времени, методика и этапы ее определения.
статья [174,3 K], добавлен 25.12.2010