Алгоритм Прима и Крускала
Остовное дерево связного неориентированного графа. Алгоритм создания остовного дерева, его нахождение. Сущность и главные особенности алгоритма Крускала. Порядок построения алгоритма Прима, вершина наименьшего веса. Промежуточная структура данных.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 16.09.2013 |
Размер файла | 140,8 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Алгоритм построения минимального остовного дерева. Последовательность выполнения алгоритма Прима, его содержание и назначение. Процедура рисования графа. Порядок составления и тестирования программы, ее интерфейс, реализация и правила эксплуатации.
курсовая работа [225,0 K], добавлен 30.04.2011Минимальное остовное дерево связного взвешенного графа и его нахождение с помощью алгоритмов. Описание алгоритма Краскала, возможность строить дерево одновременно для нескольких компонент связности. Пример работы алгоритма Краскала, код программы.
курсовая работа [192,5 K], добавлен 27.03.2011Особливості реалізації алгоритмів Прима та Крускала побудови остового дерева у графі. Оцінка швидкодії реалізованого варіанта алгоритму. Характеристика різних методів побудови остовних дерев мінімальної вартості. Порівняння використовуваних алгоритмів.
курсовая работа [177,3 K], добавлен 18.08.2010Изучение основных вопросов теории графов и области ее применения на практике. Разработка алгоритма кластеризации по предельному расстоянию и построение минимального остовного дерева каждого кластера. Результаты тестирований работы данного алгоритма.
курсовая работа [362,9 K], добавлен 24.11.2010Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.
курсовая работа [625,4 K], добавлен 30.09.2014Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.
курсовая работа [118,7 K], добавлен 30.04.2011Алгоритм перехода к графическому представлению для неориентированного графа. Количество вершин неориентированного графа. Чтение из матрицы смежностей. Связи между вершинами в матрице. Задание координат вершин в зависимости от количества секторов.
лабораторная работа [34,0 K], добавлен 29.04.2011Нахождение минимального пути от фиксированной до произвольной вершины графа с помощью алгоритма Дейкстры, рассмотрение основных принципов его работы. Описание блок-схемы алгоритма решения задачи. Проверка правильности работы разработанной программы.
курсовая работа [495,4 K], добавлен 19.09.2011Эйлеровы цепи и циклы, теоремы. Алгоритм построения эйлерова цикла. Обоснование алгоритма. Нахождение кратчайших путей в графе. Алгоритм Форда отыскания кратчайшего пути. Задача отыскания кратчайших расстояний между всеми парами вершин. Алгоритм Флойда.
реферат [108,4 K], добавлен 01.12.2008Вид графов, используемых в теории электрических цепей, химии, вычислительной технике и в информатике. Основные свойства деревьев. Неориентированный граф. Алгоритм построения минимального каркаса. Обоснование алгоритма. Граф с нагруженными ребрами.
реферат [131,8 K], добавлен 11.11.2008