дипломная работа  Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью

Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

  ___    ___   _  _     ___   ______ 
 / _ \  / _ \ | || |   / _ \ |____  |
| | | || (_) || || |_ | | | |    / / 
| | | | > _ < |__   _|| | | |   / /  
| |_| || (_) |   | |  | |_| |  / /   
 \___/  \___/    |_|   \___/  /_/    
                                     
                                     

Введите число, изображенное выше:

Рубрика Математика
Вид дипломная работа
Язык русский
Дата добавления 17.05.2010
Размер файла 1,7 M

Подобные документы

  • Этапы развития теории описания пространства, сущность принципа относительности, сформулированного Галилеем. Геометрия Минковского как описание пространства – времени, основные понятия ее описания. Разработка практических занятий по данным темам.

    дипломная работа [354,6 K], добавлен 24.02.2010

  • Основная задача геометрии чисел. Теорема Минковского. Доказательство теоремы Минковского. Решётки. Критические решётки. "Неоднородная задача". Герман Минковский (Minkowski) (1864 - 1909) - выдающийся математик, еврей, родом из России, профессор.

    курсовая работа [581,4 K], добавлен 29.05.2006

  • Способы формообразования и отображения поверхностей. Закон образования поверхности. Основные свойства, вытекающие из закона образования поверхности вращения. Линейчатые поверхности с плоскостью параллелизма. Образование каркаса циклических поверхностей.

    реферат [2,0 M], добавлен 19.05.2014

  • Различные способы задания прямой на плоскости и в пространстве. Конструктивные задачи трехмерного пространства. Изображения фигур и их правильное восприятие и чтение. Использование в геометрии монографического и математического метода исследования.

    курсовая работа [1,1 M], добавлен 22.09.2014

  • Наделение множества метрикой, основные аксиомы метрического пространства. Равномерная метрика, нормы элементов и линейное пространство. Фундаментальная последовательность элементов линейного нормированного пространства. Понятие банахова пространства.

    реферат [375,9 K], добавлен 04.12.2011

  • Понятие и характеристика линейного пространства, его главные свойства и особенности. Исследование аксиом векторного пространства. Анализ отличий и признаков векторного подпространства. Базис и формулы линейного пространств, определение его размерности.

    реферат [249,4 K], добавлен 21.01.2011

  • Искривленность пространства. Изучение "параллельных прямых" на поверхности планеты. Первая и вторая основная квадратичная форма. Классификация точек поверхности. "Мыльные пленки", возникающие на замкнутых контурах. Нахождение средних кривизн поверхностей.

    курсовая работа [2,1 M], добавлен 11.03.2014

  • Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.

    реферат [38,5 K], добавлен 16.01.2010

  • Аксиомы стереометрии, простейшие следствия. Параллельность прямых и плоскостей. Перпендикулярность прямых, плоскостей. Декартовы координаты и векторы в пространстве. Доказательство того, что через две скрещивающиеся можно провести параллельные плоскости.

    книга [4,2 M], добавлен 12.02.2009

  • Понятие нормированного пространства. Пространства суммируемых функций. Интеграл Лебега-Стилтьеса. Интерполяция в пространствах суммируемых функций. Теорема Марцинкевича и ее применение. Пространства суммируемых последовательностей.

    дипломная работа [354,0 K], добавлен 08.08.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.