презентация  Разложение вектора по базису

Доказательство теоремы о линейно независимой системе векторов в пространстве Rn. Краткое рассмотрение базиса пространства Rn, в котором каждый вектор ортогонален остальным векторам базиса, особенности его представления на плоскости и в пространстве.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

                                             
 ######   ######   ######   ######   ######  
     ##   ##  ##   ##  ##       ##   ##  ##  
   ###     ####     ####      ###        ##  
     ##   ##  ##   ##  ##       ##    ####   
 ##  ##   ##  ##   ##  ##   ##  ##   ##      
 ######   ######   ######   ######   ######  
                                             

Введите число, изображенное выше:

Рубрика Математика
Вид презентация
Язык русский
Дата добавления 21.09.2013
Размер файла 68,5 K

Подобные документы

  • Аксиомы линейного векторного пространства. Произведение любого вектора на число 0. Аксиомы размерности, доказательство теоремы. Дистрибутивность скалярного произведения векторов относительно сложения векторов. Требования, предъявляемые к системе аксиом.

    реферат [80,9 K], добавлен 28.03.2014

  • Определение точки пересечения высот треугольника и координат вектора. Сущность базиса системы векторов и его доказательство. Определение производных функций, исследование ее и построение графика. Неопределенные интегралы и их проверка дифференцированием.

    контрольная работа [168,7 K], добавлен 26.01.2010

  • Правые и левые ориентации. Стороны прямой на плоскости и плоскости в пространстве. Деформации базисов и ориентации. Отношение одноименности отличных от нуля векторов прямой, деформируемости базисов. Задание направления движения по окружности в плоскости.

    контрольная работа [448,0 K], добавлен 09.04.2016

  • Векторы на плоскости и в пространстве. Расстояние между началом и концом. Коллинеарные и нулевые векторы. Условие коллинеарности и перпендикулярности векторов. Определение суммы и разницы векторов. Свойства операций сложения и умножения вектора на число.

    презентация [98,6 K], добавлен 21.09.2013

  • Векторы в трехмерном пространстве. Линейные операции над векторами. Общее понятие про скалярные величины. Проекции векторов, их свойства. Коммутативность скалярного произведения, неравенство Коши-Буняковского. Примеры скалярного произведения векторов.

    контрольная работа [605,8 K], добавлен 06.05.2012

  • Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.

    учебное пособие [312,2 K], добавлен 09.03.2009

  • Отношения зависимости. Произвольные пространства зависимости. Транзитивные и конечномерные пространства зависимости. Существование базиса в транзитивном пространстве зависимости. Связь транзитивных отношений зависимости с операторами замыкания. Матроиды.

    дипломная работа [263,2 K], добавлен 27.05.2008

  • Случай движения, при котором все точки пространства перемещаются в одном и том же пространстве и расстоянии. Параллельный перенос на координатной прямой и плоскости в направлении данного вектора на его длину. Построение трапеции параллельным переносом.

    презентация [121,1 K], добавлен 15.02.2012

  • Схема и разность векторов. Умножение вектора на число. Координаты точки и вектора. Компланарные векторы и прямоугольная система координат. Длина, скалярное произведение, его свойства и угол между векторами. Переместительный и сочетательный законы.

    творческая работа [481,5 K], добавлен 23.06.2009

  • Поверхности и ориентация. Теория внутренней поверхности. Выбор ориентации поверхности при помощи выбора базиса касательных векторов. Выбор вектора единичной нормали. Внутренняя геометрия поверхности, определение развертки и теорема Александрова.

    реферат [144,0 K], добавлен 07.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.