курсовая работа  Предельные точки

Определения понятия множество. Предельная точка множества, предел функции в точке. Эквивалентные, счетные и несчетные множества. Замкнутые и открытые множества. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

  ###    #####   #####  #        #####  
 #   #  #     # #     # #    #  #     # 
#     # #     # #     # #    #  #       
#     #  ######  ###### #    #  ######  
#     #       #       # ####### #     # 
 #   #  #     # #     #      #  #     # 
  ###    #####   #####       #   #####  
                                        

Введите число, изображенное выше:

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 11.01.2011
Размер файла 222,3 K

Подобные документы

  • Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.

    лекция [540,0 K], добавлен 25.03.2012

  • Свойства множества Кантора. Исследование заданной функции на непрерывность. Выражение множества B (кладбище Серпинского) и D (гребёнка Кантора) через множество Кантора. Свойства и построение всюду непрерывной, но нигде не дифференцируемой функции.

    курсовая работа [1,1 M], добавлен 24.06.2015

  • Бинарные отношения на множестве. Рефлективность, примеры рефлективности. Симметричность, транзитивность, отношение порядка. Примеры дестрибутивных и недестребутивных решеток. Основные определения и свойства теории структур. Операции над множествами.

    курсовая работа [64,0 K], добавлен 04.06.2015

  • Нумерация как отображение некоторого подмножества множества натуральных чисел N на исследуемый класс конструктивных объектов. Приведение к общему знаменателю на основе понятия нумерованного множества. Каноническое представление морфизма функции.

    реферат [2,1 M], добавлен 16.05.2009

  • Мера ограниченного открытого множества. Мера ограниченного замкнутого множества. Внешняя и внутренняя меры ограниченного множества. Измеримые множества. Измеримость и мера как инварианты движения. Класс измеримых множеств.

    курсовая работа [122,6 K], добавлен 28.05.2007

  • Теория частичных действий как естественное продолжение теории полных действий. История создания и перспективы развития теории упорядоченных множеств. Частично упорядоченные множества. Вполне упорядоченные множества. Частичные группоиды и их свойства.

    реферат [185,5 K], добавлен 24.12.2007

  • Краткое историческое описание становления теории множеств. Теоремы теории множеств и их применение к выявлению структуры различных числовых множеств. Определение основных понятий, таких как мощность, счетные, замкнутые множества, континуальное множество.

    дипломная работа [440,3 K], добавлен 30.03.2011

  • Алгоритм упорядочивания множества. Определение декартового произведения, его графическая интерпретация. Обратное декартово произведение множеств. Проецирование на оси координат и на координатные плоскости. Область определения и область значений.

    лекция [126,5 K], добавлен 18.12.2013

  • Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.

    курсовая работа [358,3 K], добавлен 07.12.2012

  • Понятие, истоки, систематизация и развитие теории групп. Множество как совокупность объектов, рассматриваемых как единое целое. Нильпотентные группы - непустые множества, замкнутые относительно бинарной алгебраической операции, их свойства и признаки.

    курсовая работа [541,3 K], добавлен 27.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.