Методологические подходы компьютерного поиска лекарственных веществ

Состояние фармацевтической промышленности сегодня, пути и перспективы ее реформирования. Создание новых лекарственных средств: алгоритм процесса, метод молекулярного моделирования и виртуального скрининга. Визуализация взаимодействия ГАМК с рецептором.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 07.06.2011
Размер файла 50,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

На этом этапе моделирования механизма рецепции был проведен анализ наиболее предпочтительной конформации ГАМК с помощью программы Hyper Chem V 6.0. Сейчас в мире достаточно много современных вычислительных комплексов, реализующих методы квантовой химии и молекулярной динамики, однако, для широкого круга пользователей наиболее доступно использование этих методов обеспечивается известной квантово-химической и молекулярно-динамической программой HyperChem.

Программа HyperChem может выполнять расчеты энергии систем и их равновесной геометрии методом молекулярной механики, полуэмпирическими квантово-химическими методами. Полуэмпирические методы расчета можно использовать для всех типов расчетов. Полуэмпирические методы решают уравнение Шредингера для атомов и молекул с использованием определенных приближений и упрощений. Все методы этой группы характеризуются тем, что: расчет ведется только для валентных электронов; пренебрегаются интегралы определенных взаимодействий; используются стандартные не оптимизированные базисные функции электронных орбиталей и используются некоторые параметры, полученных в эксперименте. Экспериментальные параметры устраняют необходимость расчетов ряда величин и корректируют ошибочные результаты приближений.

Анализ наиболее предпочтительной конформации ГАМК проводился полуэмпирическим методом РМ 3, это один из наиболее точных методов. Используется для органических молекул, содержащих элементы из главных подгрупп 1 и 2 групп периодической системы. Этот метод позволяет получать качественные результаты, для молекул, содержащих как азот, так и кислород. Вычисляет электронную структуру, оптимизирует геометрию, рассчитывает полную энергию и теплоты образования. Для подтверждения необходимо построение молекул субъединиц ГАМК-рецептора по известной аминокислотной последовательности. Данные о строении рецептора ГАМК были получены из базы данных по трехмерной структуре биологических макромолекул RCSB.PDB (Protein Data Bank). Полученные данные были загружены в программу DeepView - The Swiss - PdbViewer v. 3.7 разработанной одной из ведущих в мире фармацевтических компаний GlaxoSmithKline, для молекулярного моделирования и визуализации веществ белковой структуры и нуклеиновых кислот. В связи с малой производительностью рабочей вычислительной системы и не возможностью детального изучения изменения ориентации двойного слоя липидных и фосфолипидных молекул, что должно приводить к изменению мембранной проводимости за счет образования пор в белковой мембране, было сделано допущение, которое основывается на изменение пространственной ориентации молекул медиатора и рецептора вследствие изменения электростатической потенциальной энергии. В молекуле рецептора, с помощью программы Hyper Chem, был выделен сайт связывания медиатора с рецептором. Пространственное строение сайта связывания оптимизировалось при помощи молекулярной механики. Была определена карта плотности электростатических потенциалов сайта. Исходя из изложенных выше представлений был произведен докинг характерного лиганда сайта в полученную модель канала. Метод комплементарности (докинг) заключается в подборе низкомолекулярного объекта, наилучшим образом соответствующего «посадочному месту» высокомолекулярного объекта. При этом считается, что низкомолекулярного объект конформационно подвижен, а высокомолекулярный - нет, так как характерные времена конформационных движений высокомолекулярного объекта много больше таковых низкомолекулярного. Малая молекула одновременно приближается к большой по вектору, соединяющему центр масс малой молекулы и «посадочное место» большой. Докинг лигандов ГАМК к белку проводился вручную с последующей полной оптимизацией геометрии лиганд-белкового комплекса. Комплекс вытянутой конформации ГАМК после взаимодействия с сайтом рецептора начинает изменять свою геометрическое строение, изменяя при этом строение рецептора и ориентацию двойного слоя липидных и фосфолипидных молекул

Работы по созданию лекарственного средства

На следующем этапе предпринята попытка создать новый лекарственный препарат на основе дикаина. Комплексная работа выполнена выпускником Биотехнологического факультета Шульгиным С.В., в которой реализованы все этапы технологии разработки нового лекарственного вещества.

Создание менее токсичного аналога дикана

В настоящее время клиническое моделирование все более уверенно входит в практику технологии создания новых синтетических лекарственных средств. Предварительно проверенный компьютерный скрининг экономит время, материалы и силы при аналоговом поиске лекарственных препаратов. В качестве объекта исследования выбран местноанестезирующий препарат дикаина, который имеет более высокий уровень токсичности в ряду своих аналогов, но при этом незаменим в глазной и оториноларингологической практике. Целью исследования является разработка новых дикаиноподобных молекулярных структур, обладающих меньшей токсичностью с сохранением или усилением местноанестезирующего эффекта. Дикаин относится к классу сложных эфиров п-аминобензойной кислоты (?-диметиламиноэтиловый эфир п-бутиламинобензойной кислоты гидрохлорид). Расстояние С-N в 2-аминоэтанольной группе определяет двухточечный контакт молекулы дикаина с рецептором через диполь-дипольное и ионное взаимодействие. В основу модифицирования молекулы дикаина для создания новых анестетиков нами положен принцип введения химических группировок и фрагментов в существующий анестезиофор, которые усиливают взаимодействие вещества с биорецептором, снижают токсичность и дают метаболиты с положительным фармакодействием. Исходя из этого нами предложены следующие варианты новых молекулярных структур:

- в бензольное кольцо введена «облагораживающая» карбоксильная группа, диметиламиногруппа замещена на более фармакоактивную диэтиламиногруппу;

- алифатический н-бутильный радикал замещен на адреналиновый фрагмент;

- ароматическая основа п-аминобензойной кислоты заменена на никотиновую кислоту;

- бензольное кольцо замещено на пиперидиновое, характерное для эффективного анестетика промедол.

В работе выполнено компьютерное моделирование всех указанных структур с применением программы HyperChem.

1). Проведено графическое построение молекул, расчет и оптимизация геометрии молекул, исследовано распределение электростатического потенциала на всех радикальных структурах.

На слайдах представлены молекулы анестетиков, визуализированы стехиометрические особенности строения молекул и показано распределение электростатического потенциала, зеленым цветом положительный знак электростатического потенциала, красным цветом - отрицательный знак.

2). В работе выполнен расчет изменения потенциальной энергии. Один из графиков структуры, представлен на слайде.

3). С помощью программы HyperChem рассчитаны длины связей и валентные углы различными методами и проведено сравнение со справочными значениями.

Один из вариантов

Видно, что расчет по всем методам коррелируется со справочными данными, но лучше всего по методу MNDO. В работе выполнено исследование биологической активности всех молекулярных структур с помощью PASS программы. Определен спектр биологической активности по видам фармакологического действия. Суммарно характеристики всех молекулярных структур представлены в таблицах. Из таблицы видно, что порог ингибирования Pi практически для всех видов биологической активности незначителен, поэтому в дальнейшем сравнительный анализ фармакоактивности проводили по порогу активности Pa. Одновременно переводили значения Pa программы PASS в условные проценты относительно базовой структуры - дикаина, принимая его характеристики за 100%. Результаты представлены в таблице. Сравнивая характеристики фармакологических структур и их соотношение, по анестезирующему эффекту, исследуемые структуры можно представить на следующей диаграмме. Наибольший анестезирующий эффект проявляет структура 4, а наименьшей токсичностью обладает структура 3. Результаты машинного анализа новых лекарственных веществ на основе молекулы дикаина, с целью снижения токсичности и усиления местноанестезирующего эффекта позволяют исследуемые структуры расположить в следующий ряд. По результатам выполненной научно-исследовательской работы можно сделать выводы:

1 выполнен 1-ый этап создания новых лекарственных веществ для поверхностной анестезии. Использован интуитивный, умозрительный принцип химического модифицирования структуры молекулы дикаина и предложены 4 новых соединения;

2 освоены программы компьютерного модифицирования при создания новых лекарственных веществ;

3 выполнен машинный анализ новых веществ (с помощью программы HyperChem и PASS);

4 проведен сравнительный анализ потенциальной биологической активности новых соединений с базовым анестетиком;

5 ранжирован ряд исследуемых соединений по комплексной оценке фармакологических и токсических свойств;

6 показана возможность и перспективность использования методов компьютерного моделирования для создания новых лекарственных веществ.

Заключение

Исследование, проведенное корпорацией IBM, показывает, что использование новых технологий в фармацевтическом секторе позволит компаниям снизить затраты на разработку лекарств на 75%, сократить сроки разработки на 9 лет, а также значительно повысить вероятность успеха в поиске лекарства и доходы акционеров. «Информационные технологии - важнейший фактор трансформации фармацевтической отрасли, - говорит Стив Арлингтон (Steve Arlington), руководитель направления по мировой фармацевтической отрасли IBM BCS. - Сегодня для этой отрасли пришло время поставить на службу колоссальные научные достижения эры геномики. Для этого компаниям необходимо инвестировать средства в новые технологии, способные стать двигателем для беспрецедентного роста и средством выживания на конкурентном рынке. Технологии, освещаемые в отчете, позволяют принципиально изменить подходы к ведению бизнеса в фармацевтике. Компании, не сумевшие отреагировать на возникающие сегодня требования рынка, в ближайшем будущем столкнутся с дальнейшим снижением привлекательности своих акций». В отчете отмечается, что сегодня компании фармацевтической отрасли тратят на информационные технологии около $20 млрд. в год, однако редко получают от этих инвестиций полноценную отдачу. Большинство ИТ-ресурсов компаний направляется на технологии, предназначенные для сокращения затрат - управление цепочкой поставок, обработку транзакций, услуги поддержки, - и все больше таких технологий передается для поддержки внешним поставщикам. Таким образом перед отечественными производствами стоит нелегкая задача модернизации, реорганизации и рестуктуризации существующей на данный момент системы. В этом им должно помогать государство путем снижения пошлин, напротив введения пошлин для иностранных компаний и обширных инвестиций. Предприятия должны создавать свои собственные научные разработки и следовательно новые лекарственные средства.

Список использованных источников

1 Натрадзе, А.Г. Очерк развития химико-фармацевтической промышленности СССР. - М.: Медицина, 1977, 328 с.

2 Надрадзе, А.Г. Химико-фармацевтическая промышленность - медицине. - М.: Знание, 1985, 64 с.

3 Чупандина Е.Е, Сливкин А.И., Сафонова Состояние и перспективы развития фармацевтического менеджмента в России // Фармация. - 2006. - №5. - С. 16

4 Яворский Д.Я. Фармацевтическая торговая марка: проблема выбора // Фармация. - 2007. - №8. - С. 22.

5 Нилова Е.И. Саморегулирование на фармацевтическом рынке // Фармация. - 2007. - №7. - С. 3.

6 Государственная программа реформирования «Фарма 2020». М.: Октябрь, 2009, 70 с.

7 Национальный приоритетный проект «Здоровье». М.: Проф, 2008, 327 с.

8 А.В. Погребняк Молекулярное моделирование и дизайн биологически активных веществ. - Ростов-на-Дону: Издательство СКНЦ ВШ, 2003.

9 Х.-Д. Хельтье, В. Зиппль, Д. Роньян, Г. Фолькерс, Молекулярное моделирование Теория и практика, 2010.

10 Тихонова И.Г., Баскин И.И., Палюлин В.А., Зефиров Н.С. Виртуальный скрининг баз данных органических соединений. Создание сфокусированных библиотек потенциальных лигандов NMDA- и AMPA-рецепторов // Известия Академии наук. Серия химическая. - 2004. - №6. - С. 1282-1291.

11 Шульгин С.В. Компьютерный поиск менее токсичных аналогов дикаина: Дипломный проект: 10.02.05. - Защищена 25.03.08; Утв. 22.06.08; 048005556. - М., 2008. - 145 с.

Размещено на Allbest.ru


Подобные документы

  • Краткий исторический очерк развития фармацевтической химии. Развитие фармацевтики в России. Основные этапы поиска лекарственных веществ. Предпосылки создания новых лекарственных препаратов. Эмпирический и направленный поиск лекарственных веществ.

    реферат [81,9 K], добавлен 19.09.2010

  • Связь проблем фармацевтической химии с фармакокинетикой и фармакодинамикой. Понятие о биофармацевтических факторах. Способы установления биологической доступности лекарственных средств. Метаболизм и его роль в механизме действия лекарственных веществ.

    реферат [49,5 K], добавлен 16.11.2010

  • Комбинированное действие лекарственных веществ. Синергизм и его основные виды. Понятие антагонизма и антидотизма. Фармацевтическое и физико-химическое взаимодействие лекарственных средств. Основные принципы взаимодействия лекарственных веществ.

    курсовая работа [157,9 K], добавлен 25.09.2014

  • Организация производства лекарственных средств. Создание интегрированных производств лекарственных средств. Управление созданием и производством новой фармацевтической продукции. Превентивная концепция управления техническим уровнем и качеством продукции.

    курсовая работа [54,6 K], добавлен 11.05.2009

  • Виды и механизмы взаимодействия лекарственных средств. Клиническое значение фармакинетического и фармакодинамического взаимодействия лекарственных средств. Классификация нарушений ритма сердца. Клиническая фармакология калийсберегающих диуретиков.

    контрольная работа [37,1 K], добавлен 18.01.2010

  • Предмет и объект фармацевтической химии, ее связь с другими дисциплинами. Современные наименования и классификация лекарственных средств. Структура управления и основные направления фармацевтической науки. Современные проблемы фармацевтической химии.

    реферат [54,6 K], добавлен 19.09.2010

  • Направления создания новых лекарственных веществ. Фракции каменноугольной смолы. Получение лекарственных веществ из растительного и животного сырья, биологического синтеза. Методы выделения биологически активных веществ. Микробиологический синтез.

    реферат [43,7 K], добавлен 19.09.2010

  • Помещение и условия хранения фармацевтической продукции. Особенности контроля качества лекарственных средств, правила Good Storage Practice. Обеспечение качества лекарственных препаратов и средств в аптечных организациях, их выборочный контроль.

    реферат [33,6 K], добавлен 16.09.2010

  • Особенности анализа полезности лекарств. Выписка, получение, хранение и учет лекарственных средств, пути и способы их введения в организм. Строгие правила учета некоторых сильнодействующих лекарственных средств. Правила раздачи лекарственных средств.

    реферат [16,3 K], добавлен 27.03.2010

  • Понятие биологической доступности лекарственных средств. Фармако-технологические методы оценки распадаемости, растворения и высвобождения лекарственного вещества из лекарственных препаратов различных форм. Прохождение лекарственных веществ через мембраны.

    курсовая работа [2,2 M], добавлен 02.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.