Микробиология и иммунология
Рост и размножение бактерий. Структура вирусов и принципы их классификации. Роль грибов в патологии человека. Возбудители различныз инфекционных заболеваний, лечение, иммунитет. Осложнения антибиотикотерапии, их предупреждение. Химические вакцины.
Рубрика | Медицина |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 13.01.2011 |
Размер файла | 152,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
69. Шигелла
Род Shigella включает 4 вида: S. dysenteriae, S.flexneri, S. boydii, S. sonnei.
Шигеллы неподвижные палочки. Спор и капсул не образуют.Хорошо культивируются на простых питательных средах. На плотных средах образуют мелкие гладкие, блестящие, полупрозрачные колонии; на жидких -- диффузное помутнение.
Биохимическая активность: слабая; отсутствие газообразования при ферментации глюкозы, отсутствие продукции сероводорода, отсутствие ферментации лактозы.Наиболее неустойчив во внешней среде вид S. dysenteriae. Шигеллы переносят высушивание, низкие температуры, быстро погибают при нагревании. S. sonnei в молоке способны не только длительно переживать, но и размножаться.
Эпидемиология: Заболевания - шигеллезы, антропонозы с фекально-оральным механизмом передачи. Заболевание, вызываемое S. dysenteriae, имеет контактно-бытовой путь передачи. S. flexneri -- водный, a S. sonnei -- алиментарный.
Патогенез и клиника: Инфекционные заболевания, характеризующиеся поражением толстого кишечника, с развитием колита и интоксикацией.
Шигеллы взаимодействуют с эпителием слизистой толстой кишки. Прикрепляясь инвазинами к М-клеткам, шигеллы поглощаются макрофагами. Взаимодействие шигелл с макрофагами приводит к их гибели, следствием чего является выделение ИЛ-1, который инициирует воспаление в подслизистой. При гибели шигелл происходит выделение шига токсинов, действие которых приводит к появлению крови в испражнениях.
Микробиологическая диагностика.
Бактериологический: материалом для исследования - испражнения. Для посева отбираются гнойно-кровяные образования из кала, которые при диагностике заболевания высеваются на лактозосодержащие дифференциальные питательные плотные среды. Лечение - бактериофаг орального применения, антибиотики после определения антибиотикограммы; в случае возникновения дисбактериоза -- препараты пробиотиков для коррекции микрофлоры.
48. Иммунологическая память. Иммунологическая толерантность
Иммунологическая память. При повторной встрече с антигеном организм формирует более активную и быструю иммунную реакцию -- вторичный иммунный ответ. Этот феномен получил название иммунологической памяти.
Иммунологическая память имеет высокую специфичность к конкретному антигену, распространяется как на гуморальное, так и клеточное звено иммунитета и обусловлена В- и Т-лимфоцитами. Она образуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций.
Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его длительное время на защитном уровне. Осуществляют это 2--3-кратными прививками при первичной вакцинации и периодическими повторными введениями вакцинного препарата -- ревакцинациями.
Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быструю и бурную реакцию -- криз отторжения.
Иммунологическая толерантность -- явление, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.
В отличие от иммуносупрессии иммунологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.
Иммунологическую толерантность вызывают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.
Иммунологическая толерантность бывает врожденной и приобретенной. Приобретенная толерантность может быть активной и пассивной. Активная толерантность создается путем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать веществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетент-ных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).
Иммунологическая толерантность отличается специфичностью -- она направлена к строго определенным антигенам. По степени распространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной, или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант.
Механизмы толерантности многообразны и до конца не расшифрованы. Выделяют три наиболее вероятные причины развития иммунологической толерантности:
1.Элиминацияизорганизма антигенспецифичес-ких клонов лимфоцитов.
2. Блокада биологической активности им-мунокомпетентных клеток.
3. Быстрая нейтрализация антигена антителами.
Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патологических состояний, связанных с агрессивным поведением иммунной системы.
21 Медицинская биотехнология, ее задачи и достижения.
Биотехнология представляет собой область знаний, которая возникла и оформилась на стыке микробиологии, молекулярной биологии, генетической инженерии, химической технологии и ряда других наук. Рождение биотехнологии обусловлено потребностями общества в новых, более дешевых продуктах для народного хозяйства, в том числе медицины и ветеринарии, а также в принципиально новых технологиях. Биотехнология -- это получение продуктов из биологических объектов или с применением биологических объектов. В качестве биологических объектов могут быть использованы организмы животных и человека (например, получение иммуноглобулинов из сывороток вакцинированных лошадей или людей; получение препаратов крови доноров), отдельные органы (получение гормона инсулина из поджелудочных желез крупного рогатого скота и свиней) или культуры тканей (получение лекарственных препаратов). Однако в качестве биологических объектов чаще всего используют одноклеточные микроорганизмы, а также животные и растительные клетки.
Клетки животных и растений, микробные клетки в процессе жизнедеятельности (ассимиляции и диссимиляции) образуют новые продукты и выделяют метаболиты, обладающие разнообразными физико-химическими свойствами и биологическим действием.
Биотехнология использует эту продукцию клеток как сырье, которое в результате технологической обработки превращается в конечный продукт. С помощью биотехнологии получают множество продуктов, используемых в различных отраслях:
* медицине (антибиотики, витамины, ферменты, аминокислоты, гормоны, вакцины, антитела, компоненты крови, диагностические препараты, иммуномодуляторы, алкалоиды, пищевые белки, нуклеиновые кислоты, нуклеозиды, нуклеоти-ды, липиды, антиметаболиты, антиоксиданты, противоглистные и противоопухолевые препараты);
* ветеринарии и сельском хозяйстве (кормовой белок: кормовые антибиотики, витамины, гормоны, вакцины, биологические средства защиты растений, инсектициды);
* пищевой промышленности (аминокислоты, органические кислоты, пищевые белки, ферменты, липиды, сахара, спирты, дрожжи);
* химической промышленности (ацетон, этилен, бутанол);
* энергетике (биогаз, этанол).
Следовательно, биотехнология направлена на создание диагностических, профилактических и лечебных медицинских и ветеринарных препаратов, на решение продовольственных вопросов (повышение урожайности, продуктивности животноводства, улучшение качества пищевых продуктов -- молочных, кондитерских, хлебобулочных, мясных, рыбных); на обеспечение многих технологических процессов в легкой, химической и других отраслях промышленности. Необходимо отметить также все возрастающую роль биотехнологии в экологии, так как очистка сточных вод, переработка отходов и побочных продуктов, их деградация (фенол, нефтепродукты и другие вредные для окружающей среды вещества) осуществляются с помощью микроорганизмов.В настоящее время в биотехнологии выделяют медико-фармацевтическое, продовольственное, сельскохозяйственное и экологическое направления. В соответствии с этим биотехнологию можно разделить на медицинскую, сельскохозяйственную, промышленную и экологическую. Медицинская в свою очередь подразделяется на фармацевтическую и иммунобиологическую, сельскохозяйственная -- на ветеринарную и биотехнологию растений, а промышленная -- на соответствующие отраслевые направления (пищевая, легкая промышленность, энергетика и т. д.).
Биотехнологию также подразделяют на традиционную (старую) и новую. Последнюю связывают с генетической инженерией. Общепризнанное определение предмета «биотехнология» отсутствует и даже ведется дискуссия о том, наука это или производство.
15. Типы взаимодействия вируса с клеткой. Фазы репродукции вирусов
Типы взаимодействия вируса с клеткой. Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.
Продуктивный тип -- завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма). Абортивный тип -- не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов. Интегративный тип, или вирогения -- характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).
Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.
Адсорбция. Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на определенных участках клеточной мембраны -- так называемых рецепторах. Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 104 до 105. Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.Проникновение в клетку. Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга. «Раздевание». Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства. Реализация генетической информации вируса осуществляется в соответствии с процессами транскрипции, трансляции и репликации. Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически «узнавать» друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей. Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:
1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;
2. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);
3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;
4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).
Выход вирусов из клетки. Различают два основных типа выхода вирусного потомства из клетки. Первый тип -- взрывной -- характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип -- почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.
Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5--6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.
23. Микрофлора воды
Микрофлора воды отражает микробный состав почвы, так как микроорганизмы, в основном, попадают в воду с ее частичками. В воде формируются определенные биоценозы с преобладанием микроорганизмов, адаптировавшихся к условиям местонахождения, освещенности, степени растворимости кислорода и диоксида углерода, содержания органических и минеральных веществ.
В водах пресных водоемов обнаруживаются различные бактерии: палочковидные (псевдомонады, аэромонады), кокковидные (микрококки) и извитые. Загрязнение воды органическими веществами сопровождается увеличением анаэробных и аэробных бактерий, а также грибов. Микрофлора воды выполняет роль активного фактора в процессе самоочищения ее от органических отходов, которые утилизируются микроорганизмами. Вместе с сточными водами попадают представители нормальной микрофлоры человека и животных (кишечная палочка, цитробактер, энтеробактер, энтерококки, клостридии) и возбудители кишечных инфекций (брюшного тифа, паратифов, дизентерии, холеры, лептоспироза, энтеровирусных инфекций). Таким образом, вода является фактором передачи возбудителей многих инфекционных заболеваний. Некоторые возбудители могут даже размножаться в воде (холерный вибрион, легионеллы).
Микрофлора воды океанов и морей также содержит различные микроорганизмы, в том числе светящиеся и галофильные вибрионы, поражающие рыб, при употреблении которых в пищу развивается пищевая токсикоинфекция.
90. Вирус гепатита С относится к семейству Flaviviridae роду Hepacivirus.
Морфология. Сложноорганизованный РНК-содержащим вирус сферической формы. Геном представлен одной линейной «+» цепью РНК, обладает большой вариабельностью. Антигенная структура. Вирус обладает сложной антигенной структурой. Антигенами являются: 1. Гликопротеины оболочки 2. Сердцевинный антиген НСс-антиген 3. Неструктурные белки. Резистентность. Чувствителен УФ-лучам, нагреванию до 50С. Эпидемиология. Наиболее часто ВГС передается при переливаниях крови, трансплацентарно, половым путем. Клиника: Часто встречаются безжелтушные формы, течение инфекции в острой форме, в 50 % случаев процесс переходит в хроническое течение с развитием цирроза и первичного рака печени. Микробиологическая диагностика: Используются ПЦР и серологическое исследование. Серологическое исследование.Профилактика и лечение. Для профилактики - тоже, что и при гепатите В. Для лечения применяют интерферон и рибовирин. Специфическая профилактика - нет.
73.Возбудитель ботулизма
Ботулизм -- острое инфекционное заболевание, характеризующееся интоксикацией организма с преимущественным поражением центральной нервной системы. Болезнь возникает в результате употребления пищевых продуктов, содержащих токсины Clostridium botulinum.-грамположительные палочки с закругленными концами, образуют споры и имеют вид веретена.
На кровяном агаре образует небольшие прозрачные колонии. В столбике сахарного агара можно обнаружить R-формы формы зерен чечевицы и S-формы - пушинок.Выделяет экзотоксин, самый сильный из всех биологических ядов. Ботулинический экзотоксин обладает нейротоксическим действием. Его особенностью является высокая устойчивость к нагреванию (сохраняется в течение 10--15 мин при 100 °С), к кислой среде, высоким концентрациям поваренной соли, замораживанию, пищеварительным ферментам. Споры обладают очень большой резистентностью к высокой температуре (выдерживают кипячение в течение 3--5 ч). Широко распространен в природе. Путь заражения ботулизмом -- пищевой. Чаще всего фактором передачи этой инфекции являются консервы (как правило, домашнего приготовления) -- грибные, овощные, мясные, рыбные. Ботулинический токсин попадает с пищей в ЖКТ. Устойчивый к действию пищеварительных ферментов и хлористоводородной кислоты, токсин всасывается через стенку кишечника в кровь и обусловливает длительную токсинемию. Клиника. Инкубационный период продолжается от 6--24 ч до 2--6 дней и более. Чем короче инкубационный период, тем тяжелее протекает болезнь. Обычно болезнь начинается остро, но температура тела остается нормальной. Возможны различные варианты ботулизма -- с преобладанием симптомов - сухости во рту, тошноты, рвоты, поноса, снижение остроты зрения, двоение. В результате паралича мышц гортани появляется осиплость, а затем голос пропадает. Иммунитет. После перенесенной болезни иммунитет не формируется.
Микробиологическая диагностика. Исследуют промывные воды желудка, рвотные массы, остатки пищи, кровь. Применяют бактериологический метод, биологический серологический методы, позволяющие выявить в исследуемом материале ботулинический токсин.
Лечение.Антитоксические противоботулиничес-кие гетерологичные сыворотки и гомологичные иммуноглобулины.
Профилактика. Соблюдение правил приготовления продуктов, домашних консервов. Для экстренной пассивной профилактики используют противоботулинические антитоксичекие сыворотки.
49. Гиперчувствительность немедленного типа (ГНТ) --гиперчувствительность, обусловленная антителами против аллергенов
Развивается через несколько минут или часов после воздействия аллергена: расширяются сосуды, повышается их проницаемость, развиваются зуд, бронхоспазм, сыпь, отеки. К ГНТ относятся I тип -- анафилактический, II тип -- цитотоксический, III тип -- имму-нокомплексный, аллергических реакций
Основные типы реакций гиперчувствитель-ностиI тип -- анафилактический. Клинические проявления гиперчувствительности I типа могут протекать на фоне атопии. Атопия -- наследственная предрасположенность к развитию ГНТ, обусловленная повышенной выработкой IgE-антител к аллергену, Анафилактический шок -- протекает остро с развитием коллапса, отеков, спазма гладкой мускулатуры; часто заканчивается смертью. Крапивница -- увеличивается проницаемость сосудов, кожа краснеет, появляются пузыри, зуд. Бронхиальная астма -- развиваются воспаление, бронхо-спазм, усиливается се-креция слизи в бронхах. II тип -- цитотоксический. Время реакции -- минуты или часы. По II типу гиперчувствительности развиваются некоторые аутоиммунные болезни, обусловленные появлением аутоантител к антигенам собственных тканей: злокачест-венная миастения, аутоиммунная гемоли-тическая анемия, вульгарная пузырчатка, синдром Гудпасчера, аутоиммунный гипер-тиреоидизм, инсулинозави-симый диабет II типа. Клинические проявления III типа. Сывороточная болезнь происходит при введении высоких доз антигена, например лошадиной противостолбнячной сыворотки. Развиваются системные васкулиты, артриты (отложение комплексов в суставах), нефрит (отложение комплексов в почках).
Гиперчувствительность замедленного типа
возникать при сенсибилизации организма:
1.Микроорганизмами и микробными анти-генами (бактериальными, грибковыми, протозойными, вирусными); 2. Гельминтами; 3. Природнымии искусственно синтезирован-ными гаптенами (лекарственные препараты, красители); 4. Некоторыми белками.
Следовaтельно, реакция замедленного типа может вызываться практически всеми антигенами. При этом реакцию вызывают малые дозы антигенов и лучше всего при внутрикожном введении. Морфологическая картина при аллергиях клеточного типа носит воспалительный характер, обусловленный реакцией лимфоцитов и макрофагов на образующийся комплекс антигена с сенсибилизированными лимфоцитами.Аллергии-ческие реакции клеточ-ного типа проявляются в виде туберкулиновой реакции, замедленной аллергии к белкам, контактной аллергии. Туберкулиновая реакция возникает через 5--6 ч после внутрикожного введения антигенов туберкулезной палочки. Выражается реакция в виде покраснения, припухлости, уплотнения на месте введения туберкулина. Сопровождается иногда повышением температуры тела, лимфопенией. Развитие реакции достигает максимума через 24--48 ч. Замедленная аллергия возникает не раньше чем через 5 дней и длится 2--3 нед. Контактная аллергия возникает при длительном контакте с химическими веществами, в том числе фармацевтическими препаратами, красками, косметическими препаратамиПроявляется контактная аллергия в виде всевозможных дерматитов, т. е. поражений поверхностных слоев кожи.
16. Методы культивирования вирусов.
Культуры клеток. Культуры клеток готовят из тканей животных или человека. Культуры подразделяют на первичные (неперевиваемые), полуперевиваемые и перевиваемые.
Перевиваемые однослойные культуры клеток приготовляют из злокачественных и нормальных линий клеток, обладающих способностью длительно размножаться in vitro в определенных условиях.
Куриные эмбрионы. Куриные эмбрионы по сравнению с культурами клеток обладают сравнительно высокой жизнеспособностью и устойчивостью к различным воздействиям.
Используют 8--12-дневные куриные эмбрионы.
Лабораторные животные.
Преимущество данного метода перед другими состоит в возможности выделения тех вирусов, которые плохо репродуцируются в культуре или эмбрионе. К его недостаткам относятся контаминация организма подопытных животных посторонними вирусами и микоплазмами, а также необходимость последующего заражения культуры клеток для получения чистой линии данного вируса, что удлиняет сроки исследования..
Бактериофаги -- вирусы бактерий, обладающие способностью специфически проникать в бактериальные клетки, репродуцироваться в них и вызывать их растворение (лизис).
По механизму взаимодействия различают вирулентные и умеренные фаги.
Вирулентные фаги, проникнув в бактериальную клетку, автономно репродуцируются в ней и вызывают лизис бактерий. Процесс взаимодействия вирулентного фага с бактерией протекает в виде нескольких стадий и весьма схож с процессом взаимодействия вирусов человека и животных с клеткой хозяина.
Умеренные фаги лизируют не все клетки в популяции, с частью из них они вступают в симбиоз, в результате чего ДНК фага встраивается в хромосому бактерии. В таком случае геномом фага называют профаг. Профаг, ставший частью хромосомы клетки, при ее размножении реплицируется синхронно с геном бактерии, не вызывая ее лизиса, и передается по наследству от клетки к клетке неограниченному числу потомков.
Биологическое явление симбиоза микробной клетки с умеренным фагом (профагом) называется лизогенией, а культура бактерий, содержащая профаг, получила название лизогенной. Это название отражает способность профага самопроизвольно или под действием ряда физических и химических факторов исключаться из хромосомы клетки и переходить в цитоплазму, т. е. вести себя как вирулентный фаг, лизирующий бактерии.
Лизогенные культуры по своим основным свойствам не отличаются от исходных, но они невосприимчивы к повторному заражению гомологичным или близкородственным фагом и, кроме того, приобретают дополнительные свойства, которые находятся под контролем генов профага. Изменение свойств микроорганизмов под влиянием профага получило название фаговой конверсии. Последняя имеет место у многих видов микроорганизмов и касается различных их свойств: культуральных, биохимических, токсигенных, антигенных, чувствительности к антибиотикам и др. Кроме того, переходя из интегрированного состояния в вирулентную форму, умеренный фаг может захватить часть хромосомы клетки и при лизисе последней переносит эту часть хромосомы в другую клетку. Если микробная клетка станет лизогенной, она приобретает новые свойства. Таким образом, умеренные фаги являются мощным фактором изменчивости микроорганизмов.
20. Плазмиды бактерий, их функции и свойства
Плазмиды -- внехромосомные мобильные генетические структуры бактерий, представляющие собой замкнутые кольца двунитчатой ДНК. Плазмиды способны автономно копироваться (реплицироваться) и существовать в цитоплазме клетки, поэтому в клетке может быть несколько копий плазмид. Плазмиды могут включаться (интегрировать) в хромосому и реплицироваться вместе с ней. Различают трансмиссивные и нетрансмиссивные плазмиды. Трансмиссивные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.
Среди фенотипических признаков, сообщаемых бактериальной клетке плазмидами, можно выделить следующие:
1) устойчивость к антибиотикам;
2) образование колицинов;
3) продукция факторов патогенности;
4) способность к синтезу антибиотических веществ;
5) расщепление сложных органических веществ;
6) образование ферментов рестрикции и модификации.
Термин «плазмиды» впервые введен американским ученым Дж. Ледербергом (1952) для обозначения полового фактора бактерий. Плазмиды несут гены, не обязательные для клетки-хозяина, придают бактериям дополнительные свойства, которые в определенных условиях окружающей среды обеспечивают их временные преимущества по сравнению с бесплазмидными бактериями.
Некоторые плазмиды находятся под строгим контролем. Это означает, что их репликация сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутствует одна или, по крайней мере, несколько копий плазмид.
Число копий плазмид, находящихся под слабым контролем, может достигать от 10 до 200 на бактериальную клетку.
Для характеристики плазмидных репликонов их принято разбивать на группы совместимости. Несовместимость плазмид связана с неспособностью двух плазмид стабильно сохраняться в одной и той же бактериальной клетке. Некоторые плазмиды могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона. Такие плазмиды называются интегративными или эписомами.
У бактерий различных видов обнаружены R-плазмиды, несущие гены, ответственные за множественную устойчивость к лекарственным препаратам -- антибиотикам, сульфаниламидам и др., F-плазмиды, или половой фактор бактерий, определяющий их способность к конъюгации и образованию половых пилей, Ent-плазмиды, детерминирующие продукцию энтеротоксина.
Плазмиды могут определять вирулентность бактерий, например возбудителей чумы, столбняка, способность почвенных бактерий использовать необычные источники углерода, контролировать синтез белковых антибиотикоподобных веществ -- бактериоцинов, детерминируемых плазмидами бактериоциногении, и т. д. Существование множества других плазмид у микроорганизмов позволяет полагать, что аналогичные структуры широко распространены у самых разнообразных микроорганизмов.
Плазмиды подвержены рекомбинациям, мутациям, могут быть элиминированы (удалены) из бактерий, что, однако, не влияет на их основные свойства. Плазмиды являются удобной моделью для экспериментов по искусственной реконструкции генетического материала, широко используются в генетической инженерии для получения рекомбинантных штаммов. Благодаря быстрому самокопированию и возможности конъюгаци-онной передачи плазмид внутри вида, между видами или даже родами плазмиды играют важную роль в эволюции бактерий. 51.Реакция агглютинации.
Реакция агглютинации -- простая по постановке реакция, при которой происходит связывание антителами корпускулярных антигенов (бактерий, эритроцитов или других клеток, нерастворимых частиц с адсорбированными на них антигенами, а также макромолекулярных агрегатов). Она протекает при наличии электролитов, например при добавлении изотонического раствора натрия хлорида.
Применяются различные варианты реакции агглютинации: развернутая, ориентировочная, непрямая и др. Реакция агглютинации проявляется образованием хлопьев или осадка (клетки, «склеенные» антителами, име ющими два или более антигенсвязывающих центра -- рис. 13.1). РА используют для:
1) определения антител в сыворотке крови больных, например, при бруцеллезе (реакции Райта, Хеддельсона), брюшном тифе и паратифах (реакция Видаля) и других инфекционных болезнях;
2) определения возбудителя, выделенного от больного;
3) определения групп крови с использованием моноклональных антител против алло-антигенов эритроцитов.
Для определения у больного антител ставят развернутую реакцию агглютинации: к разведениям сыворотки крови больного добавляют диагностикум (взвесь убитых микробов,) и через несколько часов инкубации при 37 ?С отмечают наибольшее разведение сыворотки (титр сыворотки), при котором произошла агглютинация, т. е. образовался осадок.
Характер и скорость агглютинации зависят от вида антигена и антител. Примером являются особенности взаимодействия диагностикумов (О- и H-антигенов) со специфическими антителами. Реакция агглютинации с О-диагностикумом (бактерии, убитые нагреванием, сохранившие термостабильный О-антиген) происходит в виде мелкозернистой агглютинации. Реакция агглютинации с Н-диагностикумом (бактерии, убитые формалином, сохранившие термолабильный жгутиковый Н-антиген) -- крупнохлопчатая и протекает быстрее.
Если необходимо определить возбудитель, выделенный от больного, ставят ориентировочную реакцию агглютинации, применяя диагностические антитела (агглютинирующую сыворотку), т. е. проводят серотипирование возбудителя. Ориентировочную реакцию проводят на предметном стекле. К капле диагностической агглютинирующей сыворотки в разведении 1:10 или 1:20 добавляют чистую культуру возбудителя, выделенного от больного. Рядом ставят контроль: вместо сыворотки наносят каплю раствора натрия хлорида. При появлении в капле с сывороткой и микробами хлопьевидного осадка ставят развернутую реакцию агглютинации в пробирках с увеличивающимися разведениями агглютинирующей сыворотки, к которым добавляют по 2--3 капли взвеси возбудителя. Агглютинацию учитывают по количеству осадка и степени просветления жидкости. Реакцию считают положительной, если агглютинация отмечается в разведении, близком к титру диагностической сыворотки. Одновременно учитывают контроли: сыворотка, разведенная изотоническим раствором натрия хлорида, должна быть прозрачной, взвесь микробов в том же растворе -- равномерно мутной, без осадка.
Разные родственные бактерии могут агглютинироваться одной и той же диагностической агглютинирующей сывороткой, что затрудняет их идентификацию. Поэтому пользуются адсорбированными агглютинирующими сыворотками, из которых удалены перекрестно реагирующие антитела путем адсорбции их родственными бактериями. В таких сыворотках сохраняются антитела, специфичные только к данной бактерии.
75.Стафилококки
род Staphylococcus. К данному роду относятся 3 вида: S.aureus, S.epidermidis и S.saprophyticus. Все виды стафилококков представляют собой округлые клетки. В мазке располагаются несимметричными гроздьями. Грамположительны. Спор не образуют, жгутиков не имеют.
Стафилококки -- факультативные анаэробы. Хорошо растут на простых средах. Стафилококки пластичны, быстро приобретают устойчивость к антибактериальным препаратам. Условно - патогенные..Устойчивость в окружающей среде и чувствительность к дезинфектантам обычная. Источником инфекции стафилококков - человек и некоторые виды животных (больные или носители). Механизмы передачи -- респираторный, контактно-бытовой, алиментарный.
Иммунитет: нестойкий,
Клиника. Около 120 клинических форм проявления, которые имеют местный, системный или генерализованный характер. К ним относятся гнойно-воспалительные болезни кожи и мягких тканей (фурункулы, абсцессы), поражения глаз, уха, носоглотки, урогенитального тракта, пищеварительной системы (интоксикации).
Микробиологическая диагностика. Материал для исследования - гной, кровь, моча, мокрота, испражнения.
Бактериоскопический метод: из исследуемого материала (кроме крови) готовят мазки, окрашивают по Граму. Наличие грам «+» гроздевидных кокков, располагающихся в виде скоплений.
Бактериологический метод Материал на чашки с кровяным и желточно-солевым агаром для получения изолированных колоний. На кровяном агаре отмечают наличие или отсутствие гемолиза. На ЖСА S. aureus образует золотистые круглые выпуклые непрозрачные колонии. Вокруг колоний стафилококков, обладающих лецитиназной активностью, образуются зоны помутнения с перламутровым оттенком. Ферментация:глк, миннита, образование а-токсина.
Лечение и профилактика. Антибиотики широкого спектра действия (устойчивые к в-лактамазе). В случае тяжелых стафилококковых инфекций, не поддающихся лечению антибиотиками, может быть использована антитоксическая противостафилококковая плазма или иммуноглобулин, иммунизированный адсорбированнымстафилококковыманатоксином. 6.Типы и механизмы питания бактерий.
Типы питания. Микроорганизмы нуждаются в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы, использующие для построения своих клеток диоксид углерода С02 и другие неорганические соединения, и гетеротрофы, питающиеся за счет готовых органических соединений. Гетеротрофы, утилизирующие органические остатки отмерших организмов в окружающей среде, называются сапрофитами. Гетеротрофы, вызывающие заболевания у человека или животных, относят к патогенным и условно-патогенным.
В зависимости от окисляемого субстрата, называемого донором электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, использующие в качестве доноров водорода неорганические соединения, называют литотрофными (от греч. lithos -- камень), а микроорганизмы, использующие в качестве доноров водорода органические соединения, -- органотрофами.
Учитывая источник энергии, среди бактерий различают фототрофы, т.е. фотосинтезирующие (например, сине-зеленые водоросли, использующие энергию света), и хемотрофы, нуждающиеся в химических источниках энергии.
Основным регулятором поступления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения питательных веществ в бактериальную клетку: это простая диффузия, облегченная диффузия, активный транспорт, транслокация групп.
Наиболее простой механизм поступления веществ в клетку -- простая диффузия, при которой перемещение веществ происходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Пассивная диффузия осуществляется без затраты энергии.
Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазматической мембраны. Однако этот процесс осуществляется с помощью молекул-переносчиков, Облегченная диффузия протекает без затраты энергии, вещества перемещаются от более высокой концентрации к более низкой.
Активный транспорт - перенос веществ от меньшей концентрации в сторону большей, т.е. как бы против течения, поэтому данный процесс сопровождается затратой метаболической энергии (АТФ), образующейся в результате окислительно-восстановительных реакций в клетке.
Перенос (транслокация) групп сходен с активным транспортом, отличаясь тем, что переносимая молекула видоизменяется в процессе переноса, например фосфорилируется.
Выход веществ из клетки осуществляется за счет диффузии и при участии транспортных систем.
52.Реакция пассивной гемагглюти-нации.
Реакция непрямой (пассивной) гемагглютинации (РНГА, РПГА) основана на использовании эритроцитов (или латекса) с адсорбированными на их поверхности антигенами или антителами, взаимодействие которых с соответствующими антителами или антигенами сыворотки крови больных вызывает склеивание и выпадение эритроцитов на дно пробирки или ячейки в виде фестончатого осадка.
Компоненты. Для постановки РНГА могут быть использованы эритроциты барана, лошади, кролика, курицы, мыши, человека и другие, которые заготавливают впрок, обрабатывая формалином или глютаральдегидом. Адсорбционная емкость эритроцитов увеличивается при обработке их растворами танина или хлорида хрома.
Антигенами в РНГА могут служить полисахаридные АГ микроорганизмов, экстракты бактериальных вакцин, АГ вирусов и риккетсий, а также другие вещества.
Эритроциты, сенсибилизированные АГ, называются эритроцитарными диагностикумами. Для приготовления эритроцитарного диагностикума чаще всего используют эритроциты барана, обладающие высокой адсорбирующей активностью.
Применение. РНГА применяют для диагностики инфекционных болезней, определения гонадотропного гормона в моче при установлении беременности, для выявления повышенной чувствительности к лекарственным препаратам, гормонам и в некоторых других случаях.
Механизм. Реакция непрямой гемагглютинации (РНГА) отличается значительно более высокой чувствительностью и специфичностью, чем реакция агглютинации. Ее используют для идентификации возбудителя по его антигенной структуре или для индикации и идентификации бактериальных продуктов -- токсинов в исследуемом патологическом материале. Соответственно используют стандартные (коммерческие) эритроцитарные антительные диагностикумы, полученные путем адсорбции специфических антител на поверхности танизированных (обработанных танином) эритроцитов. В лунках пластмассовых пластин готовят последовательные разведения исследуемого материала. Затем в каждую лунку вносят одинаковый объем 3 % суспензии нагруженных антителами эритроцитов. При необходимости реакцию ставят параллельно в нескольких рядах лунок с эритроцитами, нагруженными антителами разной групповой специфичности.
Через 2 ч инкубации при 37 °С учитывают результаты, оценивая внешний вид осадка эритроцитов (без встряхивания): при отрицательной реакции появляется осадок в виде компактного.диска или кольца на дне лунки, при положительной реакции -- характерный кружевной осадок эритроцитов, тонкая пленка с неровными краями.
86. Возбудители гепатитов А и Е
Острая инфекционная болезнь, с лихорадкой, поражением печени.
Устойчивостью к нагреванию; инактивируется при кипячении в течение 5 мин. Относительно устойчив во внешней среде (воде).Источник-больные. Механизм заражения -- фекально-оральный. Вирусы выделяются с фекалиями в начале клинических проявлений. С появлением желтухи интенсивность выделения вирусов снижается. Вирусы передаются через воду, пищевые продукты, руки.После заражения репликация вирусов происходит в кишечнике, а оттуда через портальную вену они проникают в печень и реплицируются в цитоплазме гепатоцитов. Повреждение гепатоцитов возникает в результате иммунопатологических механизмов.Клиника. Инкубационный период - от 15 до 50 дней. Начало острое, с повышением т-ры и тошнотой, рвотой). Возможно появление желтухи на 5-й день. Клиническое течение заболевания легкое, без особых осложнений.Продолжительность заболевания 2 нед. Хронические формы не развиваются.
Иммунитет. После инфекции - стойкий пожизненный
Микробиологическая диагностика. Материал для исследования - сыворотка и испражнения. Вирусологическое исследование не проводят.
Лечение. Симптоматическое.
Профилактика.Неспецифическая профилактика. Для специфической пассивной профилактики используют иммуноглобулин..
Гепатит Е
фекально - оральным механизмом передачи. емейство Caliciviridae. Недавно переведен из семейства в группу гепатит Е-подобных вирусов. Вирион безоболочечный, сферический..Основной путь передачи -- водный. Инкубационный период 2--6 недели. Поражение печени, интоксикацией, желтухой. Иммунитет. После перенесенного заболевания стойкий.Микробиологическая диагностика: 1) серологический метод -- в сыворотке, плазме крови 2) молекулярно-генетический метод -- применяют ПЦР для определения РНК вируса (HEV RNA) в кале и в сыворотке крови больных в острой фазе инфекции.
Лечение. Симптоматическое. Беременным рекомендуется введение специфического иммуноглобулина.Профилактика. Неспецифическая профилактика - улучшение санитарно-гигиенических условий и снабжение качественной питьевой водой. Созданы неживые цельновирионные вакцины, разрабатываются рекомбинантные и живые вакцины. 10.Основные принципы культивирования бактерий.
Универсальным инструментом для производства посевов является бактериальная петля. Кроме нее, для посева уколом применяют специальную бактериальную иглу, а для посевов на чашках Петри -- металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пастеровские и градуированные пипетки.
При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая другими пальцами той же руки петлю, набирают ею посевной материал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней части среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами надг писывают, указывая дату посева и характер посевного материала (номер исследования или название культуры).
Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, петлей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горелки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.
Методы культивирования анаэробов.
Для культивирования анаэробов необходимо понизить окислительно-восстановительный потенциал среды, создать условия анаэробиоза, т. е. пониженного содержания кислорода в среде и окружающем ее пространстве. Это достигается применением физических, химических и биологических методов.Физические методы. Основаны на выращивании микроорганизмов в безвоздушной среде, что достигается:1) посевом в среды, содержащие редуцирующие и легко окисляемые вещества;2) посевом микроорганизмов в глубину плотных питательных сред;3) механическим удалением воздуха из сосудов, в которых выращиваются анаэробные микроорганизмы;
4) заменой воздуха в сосудах каким-либо индифферентным газом.
В качестве редуцирующих веществ обычно используют кусочки (около 0,5 г) животных или растительных тканей (печень, мозг, почки, селезенка, кровь, картофель, вата). Чтобы уменьшить содержание кислорода в питательной среде, ее перед посевом кипятят 10--15 мин, а затем быстро охлаждают и заливают сверху небольшим количеством стерильного вазелинового масла. Высота слоя масла в пробирке около 1 см.В качестве легко окисляемых веществ используют глюкозу, лактозу и муравьинокислый натрий.
Посев микроорганизмов в глубину плотных сред производят по способу Виньяль -- Вейона, который состоит в механической защите посевов анаэробов от кислорода воздуха. Берут стеклянную трубку длиной 30 см и диаметром 3--6 мм. Один конец трубки вытягивают в капилляр в виде пастеровской пипетки, а у другого конца делают перетяжку. В оставшийся широкий конец трубки вставляют ватную пробку. В пробирки с расплавленным и охлажденным до 50°С питательным агаром засевают исследуемый материал. Затем насасывают засеянный агар в стерильные трубки Виньяль -- Вейона. Капиллярный конец трубки запаивают в пламени горелки и трубки помещают в термостат. Так создаются благоприятные условия для роста самых строгих анаэробов. Для выделения отдельной колонии трубку надрезают напильником, соблюдая правила асептики, на уровне колонии, ломают, а колонию захватывают стерильной петлей и переносят в пробирку с питательной средой для дальнейшего выращивания и изучения в чистом виде.Удаление воздуха производят путем его механического откачивания из специальных приборов -- анаэроста-тов, в которые помещают чашки с посевом анаэробов. Переносный анаэростат представляет собой толстостенный металлический цилиндр с хорошо притертой крышкой (с резиновой прокладкой), снабженный отводящим краном и вакуумметром. После размещения засеянных чашек или пробирок воздух из анаэростата удаляют с помощью вакуумного насоса.Замену воздуха индифферентным газом (азотом, водородом, аргоном, углекислым газом) можно производить в тех же анаэростатах путем вытеснения его газом из баллона.Химические методы. Основаны на поглощении кислорода воздуха в герметически закрытом сосуде (анаэро-стате, эксикаторе) такими веществами, как пирогаллол или гидросульфит натрия Na2S204.
Биологические методы. Основаны на совместном выращивании анаэробов со строгими аэробами. Для этого из застывшей агаровой пластинки по диаметру чашки вырезают стерильным скальпелем полоску агара шириной около 1 см. Получается два агаровых полудиска в одной чашке. На одну сторону агаровой пластинки засевают аэроб, например часто используют S. aureus или Serratia marcescens. На другую сторону засевают анаэроб. Края чашки заклеивают пластилином или заливают расплавленным парафином и помещают в термостат. При наличии подходящих условий в чашке начнут размножаться аэробы. После того, как весь кислород в пространстве чашки будет ими использован, начнется рост анаэробов (через 3--4 сут). В целях сокращения воздушного пространства в чашке питательную среду наливают возможно более толстым слоем.
Комбинированные методы. Основаны на сочетании физических, химических и биологических методов создания анаэробиоза.
42. Неспецифические факторы защиты организма.
Механические факторы. Кожа и слизистые оболочки механически препятствуют проникновению микроорганизмов и других антигенов в организм. Последние все же могут попадать в организм при заболеваниях и повреждениях кожи (травмы, ожоги, воспалительные заболевания, укусы насекомых, животных и т. д.), а в некоторых случаях и через нормальную кожу и слизистую оболочку, проникая между клетками или через клетки эпителия (например, вирусы). Механическую защиту осуществляет также реснитчатый эпителий верхних дыхательных путей, так как движение ресничек постоянно удаляет слизь вместе с попавшими в дыхательные пути инородными частицами и микроорганизмами.
Физико-химические факторы. Антимикробными свойствами обладают уксусная, молочная, муравьиная и другие кислоты, выделяемые потовыми и сальными железами кожи; соляная кислота желудочного сока, а также протеолитические и другие ферменты, имеющиеся в жидкостях и тканях организма. Особая роль в антимикробном действии принадлежит ферменту лизоциму. Этот протеолитический фермент получил название «мурамидаза», так как разрушает клеточную стенку бактерий и других клеток, вызывая их гибель и способствуя фагоцитозу. Лизоцим вырабатывают макрофаги и нейтрофилы. Содержится он в больших количествах во всех секретах, жидкостях и тканях организма (кровь, слюна, слезы, молоко, кишечная слизь, мозг и т. д.). Снижение уровня фермента приводит к возникновению инфекционных и других воспалительных заболеваний. В настоящее время осуществлен химический синтез лизоцима, и он используется как медицинский препарат для лечения воспалительных заболеваний.
Иммунобиологические факторы. В процессе эволюции сформировался комплекс гуморальных и клеточных факторов неспецифической резистентности, направленных на устранение чужеродных веществ и частиц, попавших в организм.
Гуморальные факторы неспецифической резистентности состоят из разнообразных белков, содержащихся в крови и жидкостях организма. К ним относятся белки системы комплемента, интерферон, трансферрин, в-лизины, белок пропердин, фибронектин и др.
Белки системы комплемента обычно неактивны, но приобретают активность в результате последовательной активации и взаимодействия компонентов комплемента. Интерферон оказывает иммуномодулирующий, пролиферативный эффект и вызывает в клетке, инфицированной вирусом, состояние противовирусной резистентности. в -Лизины вырабатываются тромбоцитами и обладают бактерицидным действием. Трансферрин конкурирует с микроорганизмами за необходимые для них метаболиты, без которых возбудители не могут размножаться. Белок про-пердин участвует в активации комплемента и других реакциях. Сывороточные ингибиторы крови, например р-ингибиторы (р-липопротеины), инактивируют многие вирусы в результате неспецифической блокады их поверхности.
Отдельные гуморальные факторы (некоторые компоненты комплемента, фибронектин и др.) вместе с антителами взаимодействуют с поверхностью микроорганизмов, способствуя их фагоцитозу, играя роль опсонинов.
Большое значение в неспецифической резистентности имеют клетки, способные к фагоцитозу, а также клетки с цитотоксической активностью, называемые естественными киллерами, или NK-клетками. NK-клетки представляют собой особую популяцию лимфоцитоподобных клеток (большие гранулосодержащие лимфоциты), обладающих цитотоксическим действием против чужеродных клеток (раковых, клеток простейших и клеток, пораженных вирусом). Видимо, NK-клетки осуществляют в организме противоопухолевый надзор.
Подобные документы
Изучение морфологии и физиологии листерий как рода грамположительных палочковидных бактерий, выступающих возбудителями заболеваний человека. Экология листерий, антигены, иммунитет. Роль в детской патологии: лабораторная диагностика, профилактика, лечение.
презентация [421,9 K], добавлен 25.04.2011Описание механизмов защиты организма человека от различных возбудителей: вирусов, бактерий, грибов, простейших, гельминтов. Общие свойства клеточных факторов неспецифической защиты. Функции гранулоцитов и нейтрофилов. Свойства антител-иммуноглобулинов.
презентация [176,1 K], добавлен 15.02.2014Возбудители дизентерии и тяжесть течения болезни. Группа острых инфекционных заболеваний, вызываемых видами бактерий из группы Salmonella, эшерихиями, стафилококками и протеем. Лечение больных холерой в больнице. Выделитель ротавируса человека.
реферат [23,3 K], добавлен 06.08.2009Проникновение в человеческий организм бактерий, вирусов, относящихся к сексуально-трансмиссивным инфекциям. Основные возбудители заболеваний. Осложнения сексуальной, менструальной и детородной функций у женщин. Пути инфицирования и инкубационный период.
реферат [18,1 K], добавлен 17.06.2011Рассмотрение способов применения иммунобиологических препаратов для профилактики (живые, инактивированные, химические, рекомбинатные, синтетические, ассоциированные вакцины), лечения (иммуноглобулины, бактериофаги) и диагностики инфекционных заболеваний.
контрольная работа [32,0 K], добавлен 07.04.2010Свойства вирусов и плазмид, по которым они отличаются от остального живого мира. Морфология вирусов. Исходы взаимодействия вирусов с клеткой хозяина. Методы культивирования вирусов. Вирусы бактерий (бактериофаги). Этапы взаимодействия фагов и бактерий.
реферат [25,6 K], добавлен 21.01.2010Вакцинация как мера профилактики инфекционных заболеваний. Побочные эффекты и осложнения. Понятие пассивного иммунитета. Движение антивакцинаторов, оспаривающих безопасность и эффективность прививок. Изучение мнения студентов о необходимости вакцинации.
презентация [164,8 K], добавлен 04.06.2019Живые вакцины. Убитые корпускулярные вакцины. Химические вакцины. Анатоксины. Ассоциированные вакцины. Для создания пассивного иммунитета используются: сыворотки, гамма-глобулины. Методы снижения вирулентности.
реферат [3,3 K], добавлен 25.02.2002Биологический смысл спорообразования у бактерий, особенности химического состава и методы выявления. Методы выделения чистых культур. Экзотоксины бактерий: классификация, механизм действия. Частная микробиология и вирусология, экология микроорганизмов.
контрольная работа [41,2 K], добавлен 25.09.2009Эндокринология как наука о строении, функциях и заболеваниях желез внутренней секреции. Причины и механизмы возникновения инфекционных болезней. Роль бактерий в функционировании организма, классификация, размножение, экологические и биосферные функции.
реферат [20,9 K], добавлен 07.06.2010