Применение программных средств мультимедиа на уроках информатики

Использование мультимедийных технологий в учебном процессе. Особенности применения и виды программных средств мультимедиа на уроках информатики. Разработка урока с использованием презентаций, направленных на развитие познавательной активности учеников.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 16.06.2015
Размер файла 2,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Средства, обеспечивающие "виртуальную реальность". Виртуальная реальность как разновидность мультимедиа

Развитие современных мультимедиа-средств позволяет реализовывать образовательные технологии на принципиально новом уровне, используя для этих целей самые прогрессивные технические инновации, позволяющие предоставлять и обрабатывать информацию различных типов. Одними из наиболее современных мультимедиа-средств, проникающих в сферу образования, являются различные средства моделирования и средства, функционирование которых основано на технологиях, получивших название виртуальная реальность.

К виртуальным объектам или процессам относятся электронные модели как реально существующих, так и воображаемых объектов или процессов. Прилагательное виртуальный используется для подчеркивания характеристик электронных аналогов образовательных и других объектов, представляемых на бумажных и иных материальных носителях. Кроме этого, данная характеристика означает наличие основанного на мультимедиа технологиях интерфейса, имитирующего свойства реального пространства при работе с электронными моделями- аналогами.

Виртуальная реальность - это мультимедиа-средства, предоставляющие звуковую, зрительную, тактильную, а также другие виды информации и создающие иллюзию вхождения и присутствия пользователя в стереоскопически представленном виртуальном пространстве, перемещения пользователя относительно объектов этого пространства в реальном времени.

Системы "виртуальной реальности" обеспечивают прямой "непосредственный" контакт человека со средой. В наиболее совершенных из них учитель или ученик может дотронуться рукой до объекта, существующего лишь в памяти компьютера, надев начиненную датчиками перчатку. В других случаях можно "перевернуть" изображенный на экране предмет и рассмотреть его с обратной стороны. Пользователь может "шагнуть" в виртуальное пространство, вооружившись "информационным костюмом", "информационной перчаткой", "информационными очками" (очки-мониторы) и другими приборами.

Использование подобных мультимедиа-средств в системе образования изменяет механизм восприятия и осмысления получаемой пользователем информации. При работе с системами "виртуальной реальности" в образовании происходит качественное изменение восприятия информации. В этом случае восприятие осуществляется не только с помощью зрения и слуха, но и с помощью осязания и даже обоняния. Возникают предпосылки для реализации дидактического принципа наглядности обучения на принципиально новом уровне.

Перспективно использование этой мультимедиа технологии в образовании для развития пространственных представлений, для организации тренировок специалистов в условиях, максимально приближенных к реальной действительности.

Осмысление информации, предоставляемой системами "виртуальной реальности", может быть уже не только теоретическим, но и практическим, а именно: наглядно-образным или наглядно-действенным. Практическое мышление требует меньших усилий по сравнению с теоретическим мышлением, восприятие образной информации, как правило, легче восприятия символьной информации. Поэтому мультимедиа-средства, построенные с использованием технологии виртуальной реальности в состоянии обеспечить лучшее понимание и усвоение учебного материала в процессе обучения. Однако важно понимать, что чем выше уровень систем виртуальной реальности, тем больше труда должно быть вложено в их создание, тем совершеннее должны быть технические средства информатизации, доступные учителям и школьникам.

Учителя и ученики не являются разработчиками мультимедиа-ресурсов, используемых в образовании. Чаще всего педагоги и школьники выступают в качестве пользователей таких средств. Однако практика показывает, что с каждым годом все большее количество учителей не может остаться в стороне от разработки пусть и простых, но электронных средств обучения. В связи с этим современному педагогу целесообразно иметь представление, как о технологиях разработки качественных мультимедиа-ресурсов, так и об аппаратных и программных средствах - инструментах для создания компьютерных средств обучения.

Для создания многих простейших мультимедиа-ресурсов широко используются различные HTML- редакторы. Следует при этом учитывать, что язык HTML достаточно динамично развивается, так что ресурсы, удовлетворяющие новому стандарту языка, могут некорректно воспроизводиться старыми версиями браузеров.

Кроме того, использование браузеров для просмотра накладывает дополнительные ограничения на характер представления учебной мультимедиа информации.

Следует заметить, что системы программирования, используемые для создания локальных компонент, позволяют включать в мультимедиа курс и обращение к ресурсам сети Интернет, интегрируя сетевые и локальные образовательные ресурсы.

Говоря более точно, следует отметить, что при создании мультимедийных гипертекстовых ресурсов и мультимедийных страниц для сети Интернет чаще всего используются следующие языки и инструменты:

· язык разметки гипертекста (HTML) - стандартный язык, используемый в Интернет для создания, форматирования и демонстрации информационных страниц;

· язык Java - специализированный объектно-ориентированный язык программирования, аналогичный языку C++. Данный язык был разработан специально для использования интерактивной графики и анимации в ресурсах Интернет. Многие готовые приложения (Java applets) доступны в Интернет и их можно выгрузить на компьютер пользователя для дальнейшего использования при создании собственных информационных сетевых и несетевых мультимедиа-ресурсов;

· язык VRML (Virtual Reality Modeling Language) позволяет создавать и размещать в сети объемные трехмерные объекты, создающие иллюзию реального объекта намного сильнее, чем простые анимации. Подобные трехмерные объекты в зависимости от их "объема" принято называть "виртуальными комнатами", "виртуальными галереями" и "мирами";

CGI (Common Gateway Interface) - по сути является не языком программирования, а спецификацией, описывающей правила сбора информации и создания баз данных. Разработчики используют язык PERL или какой-либо другой язык для того, чтобы создавать CGI-программы, которые позволяют размещать в сети и обеспечивать работу "динамических документов". Так, например, пользователи сталкиваются с подобными программами, заполняя в режиме реального времени на Интернет-страницах бланки анкет и отзывов, отвечая на вопросы тестов и т.п. [5].

Учителя и учащиеся могут использовать и другие инструменты для создания мультимедиа-ресурсов. Для этого педагоги должны выбрать программу-редактор, которая будет использоваться для создания страниц мультимедиа-средства. Существует целое множество инструментальных сред для разработки мультимедиа, позволяющих создавать полнофункциональные мультимедийные приложения. Такие пакеты, как Macromedia Director или Authoware Professional являются высокопрофессиональными и дорогими средствами разработки, в то время, как FrontPage, mPower 4.0, HyperStudio 4.0 и Web Workshop Pro являются их более простыми и дешевыми аналогами. Такие средства, как PowerPoint и текстовые редакторы (например, Word) также могут быть использованы для создания простейших мультимедиа-ресурсов.

Перечисленные средства разработки снабжены подробной документацией, которую легко читать и воспринимать. Конечно же, существует множество других средств разработки, которые могут быть с равным успехом применены вместо названных.

Мультимедийная информация, размещенная в Интернет может представлять из себя компьютерные файлы достаточно больших размеров. Это может быть связано с наличием средств интерактивности, подключения аудио- и видеофрагментов, графических изображений высокого разрешения и пр. В связи с недостаточной пропускной способностью и надежностью существующих каналов связи полномасштабное использование таких информационных ресурсов в учебном процессе может быть затруднено.

В некоторых случаях избежать проблем, связанных с отсутствием или плохим качеством телекоммуникационных сетей, можно за счет работы с такими ресурсами в локальном режиме. В ходе локального взаимодействия с мультимедиа-ресурсом, школьники получают информацию не из телекоммуникационных сетей, а из источников внутренней или внешней памяти своего же компьютера. При этом содержание информационного ресурса и способы представления информации в нем полностью соответствуют тем, что размещены в Интернет. Зачастую, такие ресурсы просто копируются из сетевых источников в ходе сеанса телекоммуникационной работы, а затем предъявляются учащимся в локальном варианте.

Сравнительно большой объем предоставляемой в таком случае мультимедийной информации не позволяет использовать традиционные гибкие магнитные диски (дискеты) для ее переноса и хранения. Частично, хранение набора Интернет-сайтов может быть обеспечено за счет использования несъемных жестких магнитных дисков ("винчестеров"), имеющихся на всех современных компьютерах. Однако такой способ представления мультимедийной информации практически полностью блокирует возможность переноса информации с одного компьютера на другой. Наиболее перспективным, с точки зрения образования, средством хранения мультимедийной информации, получаемой из Интернет являются оптические лазерные компакт-диски (CD). Благодаря высокотехнологичным лазерным методам записи и считывания информации на этом носителе при его относительно малом физическом размере можно качественно представить достаточно большое количество мультимедиа информации.

Использование CD в качестве средства обучения может привнести в учебный процесс школы следующие основные преимущества:

· предоставление школьникам мультимедиа информации, традиционно размещаемой на средствах телекоммуникаций, с учетом ее структуры и специфики визуализации;

· предоставление обучаемым новых возможностей для глубокого понимания содержания учебных курсов и их взаимосвязей, тренинга навыков и умений, запоминания и самоконтроля знаний;

· компенсация недостаточности времени, уделяемого педагогом индивидуальной работе с учащимся, а в некоторых случаях и недостаточный профессионализм учителя;

· осуществление комплексного мультимедийного воздействия с обратной связью;

· обеспечение самоконтроля в режиме ограниченного времени;

· высокая мобильность, переносимость и тиражируемость мультимедийного информационного материала, используемого в учебном процессе.

Вопросы разработки мультимедиа-ресурсов для общего среднего образования являются многоаспектными и не простыми. Технические и технологические особенности таких разработок рассматриваются в специальной литературе. Основные вопросы содержательного наполнения и проблемы эргономического характера, касающиеся создания мультимедиа-ресурсов, будут частично рассмотрены в других подразделах настоящего Интернет издания.

Программные средства делятся на прикладные и специализированные.

Прикладные - это сами приложения Windows, представляющие пользователю информацию в том или ином виде (например, универсальный проигрыватель - медиаплеер, предназначенный для воспроизведения аудио- и видеозаписей, мультфильмов и видеофильмов).

Специализированные- это средства создания мультимедийных приложений - мультимедиа проектов (например, программа для создания мультимедиа презентаций Microsoft Power Point).

Сюда также входят графические редакторы, редакторы видеоизображений (например, Adobe Premier), средства для создания и редактирования звуковой информации и т.д.

А простейший мультимедийный продукт можно создать даже в программе Word, просто встроив в текст пару фотографий и видео-клипов[6]. Типы данных мультимедиа- информации и средства их обработки Стандаpт МРС (точнее сpедства пакета пpогpамм Multimedia Windows - опеpационной сpеды для создания и воспpоизведения мультимедиа-инфоpмации) обеспечивают pаботу с pазличными типами данных мультимедиа.

Мультимедиа-инфоpмация содеpжит не только тpадиционные статистические элементы: текст, гpафику, но и динамические: видео-, аудио- и анимационные последовательности.

Неподвижные изображения. Сюда входят вектоpная гpафика и pастpовые каpтинки; последние включают изобpажения, полученные путем оцифpовки с помощью pазличных плат захвата, гpаббеpов, сканеpов, а также созданные на компьютеpе или закупленные в виде готовых банков изобpажений. Максимальное pазpешение - 640 * 480 пpи 256 цветных (8 бит/пиксел); такая каpтинка занимает около 300 Кбайт памяти; сжатие стандаpтно пока не обеспечивается; загpузка одного изобpажения на CD-ROM занимает " сек.

Сpедства pаботы с 24-битным цветом, как пpавило, входят в состав сопутствующего пpогpаммнного обеспечения тех или иных 24-битных видеоплат; в составе Windows такие инстpументы пока отсутствуют. Человек воспринимает 95% поступающей к нему извне информации визуально в виде изображения, то есть "графически". Такое представление информации по своей природе более наглядно и легче воспринимаемое чем чисто текстовое, хотя текст это тоже графика. Однако в силу относительно невысокой пропускной способности существующих каналов связи, прохождение графических файлов по ним требует значительного времени. Это заставляет концентрировать внимание на технологиях сжатия данных, представляющих собой методы хранения одного и того же объема информации путем использовании меньшего количества бит.

Оптимизация (сжатие) - представление графической информации более эффективным способом, другими словами "выжимание воды" их данных. Требуется использовать преимущество трех обобщенных свойств графических данных: избыточности, предсказуемости и необязательности. Схема, подобная групповому кодированию (RLE), которая использует избыточность, говорит: "здесь три идентичных желтых пиксела", вместо "вот желтый пиксел, вот еще один желтый пиксел, вот следующий желтый пиксел". Кодирование по алгоритму Хаффмана и арифметическое кодирование, основанные на статистической модели, использует предсказуемость, предполагая более короткие коды для более часто встречающихся значений пикселов. Наличие необязательных данных предполагает использование схемы кодирование с потерями ("JPEG сжатие с потерями"). Например, для случайного просмотра человеческим глазом не требуется того же разрешения для цветовой информации в изображении, которая требуется для информации об интенсивности. Поэтому данные, представляющие высокое цветовое разрешение, могут быть исключены. Но это мало интересная теория, а что касается практики, то предназначенную к публикации в сети Интернет графику необходимо предварительно оптимизировать для уменьшения ее объема и как следствие трафика. К сожалению, в сети встречаются узлы с совершенно "неподьемной" графикой.

Таким образом владелец узла заведомо ставит себя в невыгодное положение. Все его старания по "украшению" страницы остаются невостребованными, более того он теряет потенциальных клиентов. Сетевая графика представлена преимущественно двумя форматами файлов - GIF (Graphics Interchange Format) и JPG (Joint Photographics Experts Group). Оба этих формата являются компрессионными, то есть данные в них уже находятся в сжатом виде. Сжатие, тем не менее, представляет собой предмет выбора оптимального решения. Каждый из этих форматов имеет ряд настраиваемых параметров, позволяющих управлять соотношением качество-размер файла, таким образом за счет сознательного снижения качества изображения, зачастую практически не влияющего на восприятие, добиваться уменьшения объема графического файла, иногда в значительной степени. GIF поддерживает 24-битный цвет, реализованный в виде палитры содержащей до 256 цветов. К особенностям этого формата следует отнести последовательность или перекрытие множества изображений (анимация) и отображение с чередованием строк (Interlaced). Несколько настраиваемых параметров GIF формата, позволяют управлять размером получаемого файла.

Наибольшее влияние оказывает глубина цветовой палитры. GIF-файл может содержать от 2-х до 256 цветов. Соответственно меньшее содержание цветов в изображении (глубина палитры), при прочих равных условиях, дает меньший размер файла. Другой параметр влияющий на размер GIF-файла - диффузия. Это позволяет создавать плавный переход между различными цветами или отображать цвет, отсутствующий в палитре путем смешения пикселов разного цвета. Применение диффузии увеличивает размер файла, но зачастую это единственный способ более менее адекватной передачи исходной палитры рисунка после редуцирования. Другими словами применение диффузии позволяет в большей степени урезать глубину палитры GIF-файла и тем самым способствовать его "облегчению".

При создании изображения, которое в последующем будет переведено в GIF формат, следует учитывать следующую особенность алгоритма LZW сжатия. Степень сжатия графической информации в GIF зависит не только от уровня ее повторяемости и предсказуемости (однотонное изображение имеет меньший размер, чем беспорядочно "зашумленное"), но и от направления, т.к. сканирование рисунка производится построчно. Это хорошо видно на примере создания GIF-файла с градиентной заливкой. Для примера приведены два рисунка. При прочих равных условиях файл с вертикальным градиентом сжат на 15% сильнее файла с горизонтальным градиентом (2.6 Кб против 3.0 Кб). На самом деле не существует формата JPG, как такового. В большинстве случаев это файлы форматов JFIF и JPEG-TIFF сжатые по JPEG технологиям сжатия. Однако для практики это не имеет особого значения, поэтому будем придерживаться общепринятой терминологии. Алгоритм сжатия JPEG с потерями не очень хорошо обрабатывает изображения с небольшим количеством цветов и резкими границами их перехода. Например нарисованную в обыкновенном графическом редакторе картинку или текст. Для таких изображений более эффективным может оказаться их представление в GIF-формате. В то же время он незаменим при подготовке к web-публикации фотографий. Этот метод может восстанавливать полноцветное изображение практически неотличимое от подлинника, используя при этом около одного бита на пиксел для его хранения. Алгоритм сжатия JPEG достаточно сложен, поэтому работает медленнее большинства других. Кроме того к этому типу сжатия относится несколько близких по своим свойствам JPEG технологий. Основным параметром присутствующим у всех них является качество изображения (Q-параметр) измеряемое в процентах. Размер выходного JPG-файла находится в прямой зависимости от этого параметра, т.е. при уменьшении "Q", уменьшается размер файла.

Видео и анимация. Cейчас, когда сфера применения персональных компьютеров всё расширяется, возникает идея создать домашнюю видеостудию на базе компьютера. Однако, при работе с цифровым видеосигналом возникает необходимость обработки и хранения очень больших объёмов информации, например одна минута цифрового видеосигнала с разрешением SIF (сопостовимым с VHS) и цветопередачей true color (миллионы цветов) займёт (288 x 358) пикселов x 24 бита x 25 кадров/с x 60 c = 442 Мб, то есть на носителях, используемых в современных ПК, таких, как компакт-диск (CD-ROM, около 650 Мб) или жеский диск (несколько гигабайт) сохранить полноценное по времени видео, записанное в таком формате не удастся. С помощью MPEG-сжатия объем видеоинформации можно заметно без заметной деградации изображения. Что такое MPEG? MPEG - это аббревиатура от Moving Picture Experts Group. Эта экспертная группа работает под совместным руководством двух организаций - ISO (Организация по международным стандартам) и IEC (Международная электротехническая комиссия). Официальное название группы - ISO/IEC JTC1 SC29 WG11. Ее задача - разработка единых норм кодирования аудио- и видеосигналов. Стандарты MPEG используются в технологиях CD-i и CD-Video, являются частью стандарта DVD, активно применяются в цифровом радиовещании, в кабельном и спутниковом ТВ, Интернет-радио, мультимедийных компьютерных продуктах, в коммуникациях по каналам ISDN и многих других электронных информационных системах. Часто аббревиатуру MPEG используют для ссылки на стандарты, разработанные этой группой. На сегодняшний день известны следующие:

MPEG-1 предназначен для записи синхронизированных видеоизображения (обычно в формате SIF, 288 x 358) и звукового сопровождения на CD-ROM с учетом максимальной скорости считывания около 1.5 Мбит/с. Качественные параметры видеоданных, обработанных MPEG-1, во многом аналогичны обычному VHS-видео, поэтому этот формат применяется в первую очередь там, где неудобно или непрактично использовать стандартные аналоговые видеоносители.

MPEG-2 предназначен для обработки видеоизображения соизмеримого по качеству с телевизионным при пропускной способности системы передачи данных в пределах от 3 до 15 Мбит/с, профессионалы используют и большие потоки. аппаратуре используются потоки до 50 Мбит/с. На технологии, основанные на MPEG-2, переходят многие телеканалы, сигнал сжатый в соответствии с этим стандартом транслируется через телевизионные спутники, используется для архивации больших объёмов видеоматериала.

MPEG-3 - предназначался для использования в системах телевидения высокой чёткости (high-defenition television, HDTV) со скоростью потока данных 20-40 Мбит/с , но позже стал частью стандарта MPEG-2 и отдельно теперь не упоминается. Кстати, формат MP3, который иногда путают с MPEG-3, предназначен только для сжатия аудиоинформации и полное название MP3 звучит как MPEG Audio Layer III .

MPEG-4 - задает принципы работы с цифровым представлением медиа-данных для трех областей: интерактивного мультимедиа (включая продукты, распространяемые на оптических дисках и через Сеть), графических приложений (синтетического контента) и цифрового телевидения. Как происходит сжатие? Базовым объектом кодирования в стандарте MPEG является кадр телевизионного изображения. Поскольку в большинстве фрагментов фон изображения остается достаточно стабильным, а действие происходит только на переднем плане, сжатие начинается с создания исходного кадра. Исходные (Intra) кадры кодируются только с применением внутрикадрового сжатия по алгоритмам, аналогичным используемым в JPEG. Кадр разбивается на блоки 8х8 пикселов. Над каждым блоком производится дискретно-косинусное преобразование (ДКП) с последующим квантованием полученных коэффициентов. Вследствии высокой пространственной корелляции яркости между соседними пикселами изображения, ДКП приводит к концентрации сигнала в низкочастотной части спектра, который после квантования эффективно сжимается с использованием кодирования кодами переменной длины. Обработка предсказуемых (Predicted) кадров производится с использованием предсказания вперёд по предшествующим исходным или предсказуемым кадрам. Кадр разбивается на макроблоки 16х16 пикселов, каждому макроблоку ставится в соответствие наиболее похожий участок изображения из опорного кадра, сдвинутый на вектор перемещения.

Эта процедура называется анализом и компенсацией движения. Допустимая степень сжатия для предсказуемых кадров превышает возможную для исходных в 3 раза. В зависимости от характера видеоизображения, кадры двунаправленной интерполяции (Bi-directional Interpolated ) кодируются одним из четырёх способов: предсказание вперёд; обратное предсказание с компенсацией движения - используется когда в кодируемом кадре появляются новые объекты изображения; двунаправленное предсказание с компенсацией движения; внутрикадровое предсказание - при резкой смене сюжета или при высокой скорости перемещения злементов изображения. С двунаправвленными кадрами связано наиболее глубокое сжатие видеоданных, но, поскольку высокая степень сжатия снижает точность восстановления исходного изображения, двунаправленние кадры не используются в качестве опорных. Если бы коэффициенты ДКП передавались точно, восстановленное изображение полностью совпадало бы с исходным. Однако ошибки восстановления коэффициентов ДКП, связванные с квантованием, приводят к искажениям изображения.

Чем грубее производится квнтование, тем меньший объём занимают коэффициенты и тем сильнее сжатие сигнала, но и тем больше визуальных искажений.

Звук. Возможна цифpовая запись, pедактиpование, pабота с волновыми фоpмами звуковых данных (WAVE), а также фоновое воспpоизведение цифpовой музыки. Пpедусмотpена pабота чеpез поpты MIDI. Упомянутый выше конвеpтоp пpеобpазует также и аудиоданные между фоpматами WAVE, PCM, AIFF (фоpмат аудиофайлов Apple). В последнее время особую популярность получил формат Mp3. В его основу MPEG-1 Layer III (об этой части стандарта у на и идет речь) положены особенности челевеческого слухового восприятия, отраженные в "псевдоаккустической" модели. Разработчики MPEG исходили из постулата, что далеко не вся информация, которая содержится в звуковом сигнале, является полезной и необходимой - большинство слушателей ее не воспринимают. Поэтому определенная часть данных может быть сочтена избыточной. Эта "лишняя" информация удаляется без особого вреда для субъективного восприятия. Приемлемая степень "очистки" определялась путем многократных экспертных прослушиваний. При этом стандарт позволяет в заданных пределах менять параметры кодирования - получать меньшую степень сжатия при лучшем качестве или, наоборот, идти на потери в восприятии ради более высокого коэффициента компрессии. Звуковой wav-файл, преобразованный в формат MPEG-1 Layer III со скоростью потока (bitrate) в 128 Кбайт/сек, занимает в 10-12 раз меньше места на винчестере. На 100-мегабайтной ZIP-дискете умещается около полутора часов звучания, на компакт-диске - порядка 10 часов. При кодировании со скоростью 256 Кбайт/сек на компакт-диске можно записать около 6 часов музыки при разнице в качестве по сравнению с CD, доступной лишь тренированному экспертному уху.

Текст. В pуководстве Microsoft уделено особое внимание сpедствам ввода и обpаботки больших массивов текста. Рекомендуются pазличные методы и пpогpаммы пpеобpазования текстовых документов между pазличными фоpматами хpанения, с учетом стpуктуpы документов, упpавляющих кодов текстовых пpоцессоpов или набоpных машин, ссылок, оглавлений, гипеpсвязей и т.п., пpисущих исходному документу. Возможна pабота и со сканиpованными текстами, пpедусмотpено использование сpедств оптического pаспознания символов.

В состав пакета pазpаботчика Multimedia Development Kit (MDK) входят инстpументальные сpедства (пpогpаммы) для подготовки данных мультимедиа BitEdit, PalEdit, WaveEdit, FileWalk, а также MSDK - библиотеки языка С для pаботы со стpуктуpами данных и устpойствами мультимедиа, pасшиpения Windows 3.0 SDK.

Сpеди автоpских сpедств, pекомендуемых для МОС, - ТoolBook, Guide и Authorware Professional. Аpхитектуpа Multimedia Windows пpедусматpивает независимость от устpойств и возможности pасшиpения. Веpхний системный уpовень тpансляции, пpедставленный модулем ММsystem, изолиpует пользовательские пpогpаммы (пpикладной уpовень) от дpайвеpов конкpетных устpойств.

В состав MMsystem входят сpедства Media Control Interface (MCI), котоpые упpавляют видеомагнитофонами, видеодисками, звуковыми компакт-дисками, обеспечивают pаботу со сканеpами, дигитайзеpами и дpугими устpойствами. Для этого они обpащаются к дpайвеpам MCI, обеспечивающим веpхний уpовень тупpавления. Дpайвеpы MCI, обpаботав запpос, обpащаются к устpойствам, а также к MEDIAMAN (Media Element Manager). MEDIAMAN упpавляет обpаботчиками ввода-вывода для pастpовых файлов и звуковых WAVE-файл.

MMsystem включает также пpогpаммы нижнего уpовня - Low-Level Functions, упpавляющие дpайвеpами звуковых WAVE-устpойств, MIDI, джойстиков. Необходимые дpайвеpы подключаются на этапе выполнения. Обpащение к дpайвеpам основано на пpинципах посылки сообщений, что упpолщает унифициpует их написание и pаботу с ними. Для пpедставления данных мультимедиа pазpаботана стpуктуpа файлов RIFF (ResourseInterchange File Formal), котоpая должна обеспечить единые пpавила записи и воспpоизведения данных мультимедиа, обмен данными между пpиложениями, а в пеpспективе - и между pазными платфоpмами.

В целом сpедства Multimedia Windows спpоектиpованы интеpфейсом, хотя и несколько тяжеловесным, лишенным элегантности, легкости, для пользователя. В недалеком будущем, с появлением новых инстpументальных сpедств, созданных специально для этой аpхитектуpы или пеpенесенной с дpугих платфоpм, с пpеодолением баpьеpа pазpешения VGA, сpеда Multimedia Windows будет вполне "truemultimedia" - системой "истинного мультимедиа". Уже появились пpикладные пpогpаммы для этой сpеды, использующие методы пpогpаммного сжатия инфоpмации и воспpоизводящие видео - до 15 кадpов/с в небольшом окошке на экpане. Microsoft pазpаботал собственные сpедства пpогpаммного сжатия, Audio-Video Interieaved (AVI), котоpые выпустил во втоpой половине 1992 года. Опеpационная сpеда Microsoft Windows 3.1, котоpая поставляется с мультимедиа системами, интегpиpует многие свойства Multimedia Windows, обеспечивает стандаpтно поддеpжку CD-ROM плейеpов.

В 1992-93 гг. консоpциум МРС пеpеоpиентиpовался на мультимедиа-системы, постpоенные на базе пеpсональных компьютеpов IBM PC AT 486 со скоpостным CD-ROM (MPC Level 2).

Основное тpебование к мультимедиа системе, удовлетвоpяющей втоpому уpовню, - способность воспpоизводить цифpовой видеофильм в окне pазмеpом 320 * 40 точек со скоpостью 15 кадpов/с, а также наличие видеоадаптеpа обеспечивающего не менее 65000 цветовых оттенков.

Аппаратные средства мультимедиа.

Для построения мультимедиа системы необходима дополнительная аппаратная поддержка: аналогоцифровые и цифроаналоговые преобразователи для перевода аналоговых аудио и видео сигналов в цифровой эквивалент и обратно, видеопроцессоры для преобразования обычных телевизионных сигналов к виду, воспроизводимому электронно лучевой трубкой дисплея, декодеры для взаимного преобразования телевизионных стандартов, специальные интегральные схемы для сжатия данных в файлы допустимых размеров и так далее. Все оборудование отвечающее за звук объединяются в так называемые звуковые карты, а за видео в видео карты. Дальше рассматривается подробно и в отдельности об устройстве и характеристиках звуковых карт, видео карт и CD-ROM приводах.

Звуковые карты. С течением времени перечень задач выполняемых на ПК вышел за рамки просто использования электронных таблиц или текстовых редакторов. Компакт- диски со звуковыми файлами, подготовка мультимедиа призентаций, проведение видео конференций и телефонные средства, а также игры и прослушивание аудио CD для всего этого необходимо чтобы звук стал неотъемлемой частью ПК. Для этого необходима звуковая карта. Любители игр будут удовлетворены новыми возможностями объемного звучания.

Для звуковых карт IBM совместимых компьтеров прослеживаются следующие тенденции:

Вопервых, для воспроизведения звука вместо частотной модуляции (FM) теперь все больше используют табличный (wavetable) или WTсинтез, сигнал полученный таким образом, более похож на звук реальных инструментов, чем при FMсинтезе. Используя соответствующие алгоритмы, даже только по одному тону музыкального инструмента можно воспроизводить все остальное, то есть восстановить его полное звучание. Выборки таких сигналов хранятся либо в постоянно запоминающем устройстве (ROM) устройства, либо программно загружается в оперативную память (RAM) звуковой карты. В более дешевых платах чаще реализован частотно модулированный синтез с использованием синусоидальным колебаний что в результате при водит к несовсем точному звучанию инструментов, отражение звука и рева, характерных для последнего поколения игр в игровых залах. Расположенная на плате микросхема для волнового синтеза хранит записанные заранее оцифрованные образцы (Samples) звучания музыкальных инструментов и звуковых эффектов. Достигаемые результаты очевидны музыкальные записи получаются более убедительны, а азартные игроки более впечатлительны. Пионером в реализации WTсинтеза стала в 1984 году фирма Ensoning. Вскоре WTсинтезаторы стали производить такие известные фирмы, как Emu, Korg, Roland и Yamaha.

Фирмы производители звуковых карт добавляют WTсинтез двумя способами либо встраивают на звуковую карту в виде микросхем, либо реализуя в виде дочерней платы. Во втором случае звуковая карта дешевле, но суммарная стоимость основной и дочерней платы выше.

Вовторых, это совместимость звуковых карт. За сравнительно не долгую историю развития средств мультимедиа появилось уже несколько основных стандартов де-факто на звуковые карты. Так почти все звуковые карты, предназначенные для игр и развлечений, поддерживают совместимость с Adlib и Sound Blaster. Все звуковые карты, ориентированные на бизнес- приложения, совместимы обычно с MS Windows Sound Sistem фирмы Microsoft.

В третьих, одним из компонентов современных звуковых карт стал сигнальный процессор DSP(Digital Signal Processor) к возможности функциональным обязанностям этого устройства можно отнести : распознание речи, трехмерное звучание, WTсинтез, сжатие и декомпрессия аудиосигналов. Количество звуковых карт, оснащенных DSP, не так велико. Причина этого то что такое достаточно мощное устройство помогает только при решении строго определенных задач.

Как правило DSP устройство достаточно дорогое, поэтому сразу устанавливается только на профессиональных музыкальных картах. Одним из мощных DSP производителей сейчас является фирма Texas Instruments.

В-четвертых, появилась устойчивая тенденция интегрирования функций звуковых карт на системной плате. Несмотря на то что ряд производителей материнских плат уже включают в свои изделия микросхемы для воспроизводства звука, обеспокоиности в рядах поставщиков звуковых карт незаметно.

Потенциальная проблема при использовании встроенных средств обработки звука состоит в ограниченности системных ресурсов IBM PC совместимых компьютеров, а именно в возможности конфликтов по каналам прямого доступа к памяти (DMA). Пример такой платы это системная плата OPTi495 SLC, в которой используется 16-разрядный звуковой стереокодек AD 1848 фирмы ANALOG DEVICES.

В пятых, стремление к более естественному воспроизведению звука заставляет фирмы производителей использовать технологии объемного или трехмерного (3D) звучания.

Самое модное направление в области воспроизведения звука в наши дни предоставляет так называемые объемность звучания. Применение этих эффектов объемного звучания позволяет расширить стерео пространство что в свою очередь придает большую глубину ограниченного поля воспроизведения присущем не большим близко расположенным друг к другу колонок.

В шестых, это подключение приводов CD-ROM. Практически все звуковые карты имеют встроенные интерфейсы для подключения приводов CD-ROM одной или сразу всех трех фирм Sony, Panasonic/Matsushita и Mitsumi.Тем не менее большинство звуковых карт рассчитано на подключение приводов Sony.

Появились карты и приводы поддерживающие стандартный интерфейс ATA(IDE), используемый для компьютеров с винчестером.

В седьмых, на картах используется режим DualDMA то есть двойной прямой доступ к памяти. С помощью двух каналов DMA можно реализовать одновременно запись и воспроизведение.

И последние это устойчивое внедрение звуковых технологий в телекоммуникации.

Звуковые карты приобретаются в 90% случаев для игр, из оставшихся 10% для речевого сопровождения мультимедиа программ. В таком случае потребительские качества зависят только от ЦАП (цифро-аналогового преобразователя ) и от усилителя звуковой частоты. Еще более важным является совместимость со стандартом Sound Blaster, так как далеко не все программы будут поддерживать менее распространенные стандарты. В набор Звуковых карт входят драйвера, утилиты, программы записи и воспроизведения звука, средства для подготовления и произведения презентаций, энциклопедий, игр.

Лазерные диски, CD-ROM.

В связи с ростом объемов и сложности программного обеспечения, широким внедрением мультимедиа приложений, сочетающих движущиеся изображения, текст и звук, огромную популярность в последнее время приобрели устройства для чтения компакт- дисков CD-ROM. Эти устройства и сами диски, относительно недорогие, очень надежны и могут хранить весьма большие объемы информации (до 650 Мбайт), поэтому они очень удобны для поставки программ и данных большего объема, например каталогов, энциклопедий, а также обучающихся, демонстрационных и игровых программ. И многие программы полностью или частично поставляются на CD-ROM.

История развития. Компакт- диски изначально разработанные для любителей высоко качественного звучания, прочно вошли на рынок компьютерных устройств. Оптические компакт- диски перешли на смену виниловым в 1982 году. Было решено что стандарт рассчитан на 74 минуты звучания "Red Book". Когда 74 минуты пересчитали в байты получилось 640 Мбайт. Первые приводы имели единичную скорость (Single speed) равную 150 Кбайт/с. Модели накопителей с удвоенной скоростью появились в 1992 году. Приводы с утроенной и с учетверенной скоростью в начале 1994 году. Сегодня речь уже идет о скорости увеличенной в шесть и даже восемь раз. Коэффициент увеличения скорости не обязательно целый. Принцип действия. Как и в компакт-дисках, применяемых в бытовых СD-плейерах, информация на компьютерных компакт-дисках кодируется посредством чередования отражающих и не отражающих свет участков на подложке диска. При промышленном производстве комакт-дисков эта подложка выполняется из алюминия, а не отражающие свет участки делаются с помощью продавливания углублений в подложке специальной пресформой. При единичном производстве компакт-дисков (так называемых СD-R дисков) подложка выполняется из золота, а нанесение информации на нее осуществляетя лучом лазера. В любом случае сверху от подложки на компакт-диске находится прозрачное покрытие, защищающее занесенную на компакт-диск информацию от повреждений. Хотя по внешнему виду и размеру используемые в компьютерах компакт-диски не отличаются от дисков, применяемых в бытовых СD плейерах, однако компьютерные устройства для чтения компакт-дисков стоят существенно дороже. Это не удивительно, ведь чтение программ и компьютерных данных должно выполняться с гораздо высокой надежностью, чем та, которая достаточна при воспроизведении музыки. Поэтому чтение используемых в компьютере компакт-дисков осуществляется с помощью луча лазера небольшой мощности. Использование такой технологии позволяет записывать на компакт-диски очень большой объем информации (650 Мбайт), и обеспечивает высокую надежность информации.

Однако скорость чтения данных с компакт-дисков значительно ниже, чем с жестких дисков. Одна из причин этого состоит в том, что компакт-диски при чтении вращаются не с постоянной угловой скоростью, а так, чтобы обеспечить неизменную линейную скорость отхождения информации под читающей головкой. Стандартная скорость чтения данных с компакт-дисков всего 150-200 Кбайт/с, а время доступа 0,4 с. Впрочем, в последнее время выпускаются в основном устройства с двойной, тройной и даже четвертой скоростью вращения, они обеспечивают соответственно более высокие скоростные показатели: время доступа 0,2-0,3 с, скорость считывания 500 Кбайт/с. Заметим, однако, что устройства с тройной скоростью в реальных задачах увеличивают скорость работы с компакт-диском не в полтора и не в два раза по сравнению с устройством с двойной скоростью, а всего на 30 - 60%.

Видеокарты

Имеется большое количество устройств, предназначенных для работ с видеосигналами на IBM PC совместимых компьютеров. Условно можно разбить на несколько групп: устройства для ввода и захвата видеопоследовательностей (Cupture play), фреймграбберы (Framegrabber), TV-тюнеры, преобразователи сигналов VGATV и MPEG-плейеры.

TVтюнеры.

Эти устройства выполняются обычно в виде карт или бокса (небольшой коробочки). Они преобразуют аналоговый видеосигнал поступающий по сети кабельного телевидения или от антенны, от видеомагнитофона или камкодера (camcorder). TV-тюнеры могут входить в состав других устройств таких как MPEG-плейеры или фреймграбберы.

Некоторые из них имеют встроенные микросхемы для преобразования звука. Ряд тюнеров имеют возможность для вывода телетекста.

Фрейм грабберы.

Появились примерно 6 лет назад . Как правило они объединяют графические, аналогово-цифровые и микросхемы для обработки видеосигналов, которые позволяют дискретизировать видеосигнал, сохранять отдельные кадры изображения в буфере с последующей записью на диск либо выводить их непосредственно в окно на мониторе компьютера. Содержимое буфера обновляется каждые 40 мс. то есть с частотой смены кадров. Вывод видеосигналов происходит в режиме наложения (overby). Для реализации окна на экране монитора с "живым" видео карта фреймграббера соединена с графическим адаптером через 26 контактный Feature коннектор. С ним обычно поставляется пакет Video fjr Windows вывод картинки размером 240*160 пикселов при воспроизведении 256 цветов и больше. Первые устройства Video Blaster, Video Spigot.

Преобразователи VGA-TV.

Данные устройства транслируют сигнал в цифровом образе VGA изображения в аналоговый сигнал пригодный для ввода на телевизионный приемник.Производители обычно предлагают подобные устройства выполненные либо как внутренние ISA карта либо как внешний блок.

Ряд преобразователей позволяют накладывать видеосигнал например для создания титров. При этом осуществляется полная синхронизация преобразованного компьютерного сигнала по внешнему(gtnlok). При наложении формируется специальный ключевой (key) сигнал трех видов lumakey, chromakey или alpha chenol.

1. В первом случае наложение производится там где яркость Y превышает заданного уровня.

2. Накладывание изображения прозрачно только там где его цвет совпадает с заданным.

3. Альфа канал используется в профессиональном оборудовании основанном на формировании специального сигнала с простым распределением, который определяет степень смещения видеоизображения в различных точках.

MPEG-плейеры.

Данные устройства позволяют воспроизводить последовательности видеоизображения (фильмы) записываемых на компакт- дисках, качеством VNS Cкорость потока сжатой информации не превышает обычно 150 Кбайт/с. Основная сложность задачи решаемой MPEG кодером, состоит в определении для каждого конкретного видеопотока оптимального соотнашения между тремя видами изображения: (I)ntra, (P)redicted и (B)idirectional. Первым MPEG -плейерам была плата Reel Magic компании Sigina Desing в 1993 году [3].

Мультимедиа может быть грубо классифицировано как линейное и нелинейное.

Аналогом линейного способа представления может являться кино. Человек, просматривающий данный документ никаким образом не может повлиять на его вывод.

Нелинейный способ представления информации позволяет человеку участвовать в выводе информации, взаимодействуя каким-либо образом со средством отображения мультимедийных данных. Участие человека в данном процессе также называется «интерактивностью». Такой способ взаимодействия человека и компьютера наиболее полным образом представлен в категориях компьютерных игр. Нелинейный способ представления мультимедийных данных иногда называется «гипермедиа».

В качестве примера линейного и нелинейного способа представления информации, можно рассматривать такую ситуацию, как проведение презентации. Если презентация была записана на пленку и показывается аудитории, то при этом способе донесения информации просматривающие данную презентацию не имеют возможности влиять на докладчика. В случае же живой презентации, аудитория имеет возможность задавать докладчику вопросы и взаимодействовать с ним прочим образом, что позволяет докладчику отходить от темы презентации, например поясняя некоторые термины или более подробно освещая спорные части доклада. Таким образом, живая презентация может быть представлена, как нелинейный (интерактивный) способ подачи информации [1].

1.3 Использование мультимедийных технологий в учебном процессе

Информационно-коммуникативная компетентность - один из основных приоритетов в целях общего образования, и связано это не только с внутриобразовательными причинами. Компьютеры основательно вошли в нашу жизнь, меняется весь характер жизни, необыкновенно возрастает роль информационной деятельности, а внутри нее - активной, самостоятельной обработки информации человеком, принятия им принципиально новых решений в непредвиденных ситуациях с использованием технологических средств.

В этой ситуации возникает вопрос, как на компьютере максимально удобно и эффективно представить нужную информацию для ученика, чтобы облегчить его общение с компьютером, привлечь его внимание, заинтересовать. Здесь большую помощь могут оказать современные мультимедиа технологии, в особенности компьютерная презентация, подготовленная в среде Power Point.

Мультимедиа технологии - это способ подготовки электронных документов, включающих визуальные и аудиоэффекты, мультипрограммирование различных ситуаций.

В условиях образования мультимедийные продукты выступают как средства коммуникации, а также как выразительное средство в различных педагогических сценариях. Понятие педагогический сценарий означает определенную, заранее заданную последовательность событий учебной ситуации. Каждое из этих событий характеризуется определенной ролью в нем учителя, ученика и образовательного мультимедийного пособия. Некоторые мультимедиа средства разработаны для управления процессом представления учебного материала, и учащиеся в таком случае играют пассивную роль получателя информации. Другие образовательные мультимедийные продукты являются интерактивными в этом смысле, что учащимся принадлежит активная роль - они могут самостоятельно выбирать темы для изучения и переходить от одной темы к другой.

Оперируя мультимедийными пособиями, в работе используется 4 типа педагогических сценариев:

Использование мультимедийных линейных образовательных ресурсов - последовательное представление информации. Например, последовательное представление нового для учащихся учебного материала некоторой темы, выполненное с использованием мультимедийных средств, таких как звук, анимация, компьютерное моделирование, видео.

Использование мультимедийных гипертекстовых материалов - непоследовательное представление информации. Это работа с электронными энциклопедиями или Интернет-ресурсами для поиска материалов по теме реферата.

Использование мультимедийных обучающих продуктов - исследовательская деятельность с использованием мультимедиа. Обычно сценарий 3 включает элементы как сценария 1, так и сценария 2.

Использование специальных средств для создания собственных мультимедийных продуктов. Например, учащиеся могут использовать стандартный редактор web-страниц или Power Point вместе с текстовым редактором для создания линейной презентации. В сценариях 1,2,3 ученики рассматриваются как конечные пользователи образовательных мультимедиа, в то время как в сценарии 4 они выступают как разработчики небольших мультимедийных продуктов.

Известно, что человек большую часть информации воспринимает органами зрения (80%) и органами слуха (15%) (это давно замечено и эффективно используется в кино и на телевидении). Мультимедиа технологии позволяют воздействовать одновременно на эти важнейшие органы чувств человека. Сопровождая динамический визуальный ряд (слайд-шоу, анимацию, видео) звуком, мы можем рассчитывать на большее внимание со стороны ученика. В отличие от видео, мультимедиа технологии позволяют управлять потоком информации, т.е. могут быть интерактивны. Мультимедиа презентации дают прямой доступ к информации. Пользователь может сразу видеть все содержание и переходить к тому, что его заинтересовало. С помощью презентации можно удобно, быстро, технологично и качественно подготовить наглядный материал к конкретному уроку, без усилий создать анимированный слайд, осуществить контроль знаний, обобщить основные этапы урока. Применение методических пособий-презентаций, созданных в программе Power Point, позволяет отказаться почти от всех ТСО старого поколения, поднять наглядность на более высокий уровень (использование звука, показ слайда в “движении”, видео). С помощью презентации можно быстро применить разнообразные формы обучения (фронтальные (при наличии мультимедийного проектора), групповые, индивидуальные), оказывающие огромное воздействие на эмоциональное восприятие учащихся, способствующие более глубокому усвоению учебного материала.

Новые информационные технологии активно используются на занятиях. Специфика данной программы состоит в том, что она дает возможность использовать навыки, полученные во время обучения, включая детей в систему средств массовой коммуникации общества. На занятиях ученики знакомятся с особенностями работы в печатных изданиях, на радио и телевидении, просматривают и прослушивают радио и телепередачи, определяют их жанровую принадлежность, методы и приемы, используемые авторами, оценивают их уровень мастерства, поэтому почти каждое занятие технически оснащено: телевизором, компьютером, видеомагнитофоном. Кроме этого, на уроках присутствуют справочники, словари, тематический материал периодической печати, а также схемы, видеозаписи сюжетов на различные темы. В последнее время все перечисленные средства активно использую в виде компьютерной презентации, которую демонстрирую через мультимедийный проектор на экран или индивидуально на компьютеры. Ученики работают в своем индивидуальном темпе и не зависят от того, как быстро справляются с заданиями другие учащиеся.

При изучении тем курса лекции сопровождаются показом презентаций. На слайды вынесены основные понятия и определения учебного материала, схемы, фотографии, видеозаписи сюжетов. Во время работы учащиеся создают в тетради конспект новой темы. Для закрепления знаний и приобретения умений и навыков ученики выполняют практические задания по инструкции, используя алгоритм выполнения работы.

Преимущества применения презентации в следующем:

· презентации, созданные в Power Point, это своего рода мини-конспекты урока;

· презентация объединяет большое количество демонстрационного материала, освобождая учителя от большого объема иллюстративного материала и всевозможных ТСО.

Компьютерные презентации учащиеся успешно делают сами, когда выступают с докладами, сообщениями на занятиях; защищают проекты, рефераты; делают презентации к конспектам лекций; сопровождают выступление на школьной научно-практической конференции.

Презентации учащихся оцениваются по следующим критериям:

1. Содержание презентации, оно включает такие условия:

· раскрытие темы;

· подача материала (обоснованность разделения на слайды);

· наличие и обоснованность графического оформления (фотографий, схем, рисунков);

· грамотность изложения;

· наличие интересной дополнительной информации по теме проекта;

· ссылки на источники информации (в т.ч. ресурсы Интернета).


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.