Применение информационных технологий в организации деятельности учащихся по решению физических задач

Классификация и характеристика программных средств информационной технологии обучения. Использование компьютерных технологий на уроках физики. Курс виртуальных лабораторных работ по дисциплине "Оптические методы и устройства обработки информации".

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 06.07.2015
Размер файла 874,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рисунок 11. отклик коррелятора ВДЛ при точном совпадении эталонной и вводимой функции.

Пространственный фильтр (коррелятор) Вандер Люгта используется в оптических системах распознавания и обработки изображений, например, для идентификации отпечатков пальцев в дактилоскопии, выявлении артефактов (строения, самолеты, корабли и т. п.) на аэрофотоснимках и др. Конструкция фильтра обычно включает несколько параллельно действующих каналов,

при этом отдельным эталонным сигналам соответствуют определенные признаки таких изображений - углы, окружности, прямые линии и т. п. Отклик коррелятора ВДЛ инвариантен к параллельным смещениям вводимого в плоскости (Рис. 5) сигнала, что можно истолковать как следствие сдвиговой инвариантности (6) преобразования Фурье. При этом имеет место взаимно однозначное соответствие координаты отклика в выходной плоскости фильтра ВДЛ и координаты центра вводимого изображения. Недостатками коррелятора ВДЛ являются высокая чувствительность отклика к изменению масштаба и поворотам вводимого изображения. Эта чувствительность возрастает при увеличении частоты пространственного спектра, то есть тонкой

структуры вводимого изображения. Кроме этого, весьма высокие требования предъявляются к качеству оптико-механической конструкции всей системы пространственной фильтрации, например, точность установки пространственного фильтра составляет доли микрометра.

Задание: создать эталонное изображение: треугольник. Вычислить кэффициент пропускания.

Контрольные вопросы:

1. Как создается голографическое эталонное изображение?

2. Выяснить чувствительность к масштабу исходного сигнала?

Лабораторная работа № 7

Оптическое преобразование Меллина.

Цель работы: изучить оптическое преобразование Меллина.

Оптическое преобразование Меллина

Устранить один из серьезных недостатков коррелятора Вандер Люгта - повышенная чувствительность сигнала отклика к изменениям масштаба изображения - можно, реализовав в оптике преобразование функции, обладающее свойством инвариантности к преобразованиям масштаба функции. Примером такого преобразования является преобразование Меллина, представляемое (например, для одномерных функций) интегралом

(36)

Преобразование Меллина обладает свойством инвариантности к изменению масштаба исходной функции,

(37)

и тесно связано с преобразованиями Лапласа и Фурье,

(38)

Свойство (48) показывает, что преобразование Меллина можно представить как преобразование Фурье от исходной функции при экспоненциальном преобразовании ее аргумента,

(39)

При этом, очевидно, новые координаты исходной функции логарифмически связаны с начальными, о = ln x .Следует отметить, что, в отличие от преобразования Фурье, преобразование Меллина не обладает свойством сдвиговой инвариантности. В корреляторе Меллина запись пространственного фильтра осуществляется по обычной голографической схеме (Рис. 9) при том условии, что вводимое эталонное изображение предварительно преобразуется согласно логарифмическому изменению его масштабов. При этом, например, одномерная периодическая амплитудная решетка отображается в апериодическую решетку с логарифмически изменяющимся периодом. Такое преобразование может быть выполнено при отображении исходного изображения на экране монитора, временная развертка которого управляется логарифмическими усилителями сигналов. Возможен ввод изображения в систему пространственной фильтрации и с помощью электрически управляемого транспаранта с нелинейным (также логарифмическим) преобразованием масштаба функции пропускания транспаранта. Действие коррелятора Меллина аналогично выше описанному действию пространственного фильтра ВДЛ (Рис. 11), при этом вводимое в коррелятор изображение предварительно нелинейно «растягивается» по осям координат с логарифмическим изменением его масштабов. Мощность корреляционного пика на выходе пространственного фильтра Меллина не зависит от масштаба вводимого изображения (определяется исключительно его структурой), а положение этого пика в выходной плоскости коррелятора прямо связано с масштабом вводимого изображения. Импульсный отклик оптического коррелятора Меллина инвариантен к изменениям масштаба вводимого изображения. Экспериментально был реализован коррелятор Меллина, отклик которого нечувствителен даже к двукратному изменению масштаба изображения по сравнению с эталонным. Недостатками оптического коррелятора Меллина является необходимость предварительной оптоэлектронной обработки вводимого изображения (нелинейное изменение его масштабов) и техническая сложность такой системы фильтрации изображений.

Задание: создать эталонное изображение: треугольник. Создать проходящее изображение: треугольник 1.5 масштабе. Вычислить коэффициент пропускания. Для вычислений использовать программу MathCAD.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.