Информационные технологии как средство формирования пространственного воображения школьников при изучении курса стереометрии
Развитие школьного образования. Психологические закономерности развития пространственного воображения. Использование информационных технологий при изучении стереометрии. Формирование пространственного воображения учащихся в компьютерной предметной среде.
Рубрика | Педагогика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 29.12.2009 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Тема: «Горизонтальные, вертикальные, наклонные отрезки и прямые».
Цели: Развитие пространственного мышления.
Тип урока: урок изучения нового материала.
Методы обучения: частично - поисковый.
Оборудование: модели куба, карандаши, компьютер, колонки и мультимедийный проектор.
Ход урока.
Деятельность учителя |
Деятельность учащихся |
|
I. Актуализация (Этап использования мультимедийного сопровождения) Учитель на экране демонстрирует тему «Горизонтальные, вертикальные, наклонные отрезки и прямые» останавливаясь на каждом кадре темы, задает вопросы по просмотренному материалу. II1. Подготовительный этап. Посмотрите на куб в основном положении. Изобразите в тетради переднее нижнее, заднее правое, левое верхнее. Есть ли среди нарисованных вами рёбер такие, которые расположены (направлены) так же, как линия горизонта? Возьмите карандаш. Изобразите им линию горизонта. III1. Ориентировочный этап. Отрезки, прямые, расположенные так же, как и линия горизонта, называют горизонтально расположенными или горизонтальными. VI1. Первичное закрепление. Найдите вокруг вас модели горизонтальных отрезков. Назовите горизонтальные рёбра куба в основном положении. Представьте, что куб, находящийся в основном положении, наклонили. Можете ли вы теперь указать горизонтально расположенные рёбра? Как расположены относительно друг друга граница стены и крыши и край фундамента дома? Какими линиями их можно изобразить? Представьте, что вы будете продолжать эти линии в оба конца бесконечно, пересекутся ли они? II2. Подготовительный этап. Перед вами нить с привязанным в одному из её концов грузиком. Поднимите её за свободный конец, так, чтобы нить была натянута. У всех ли у вас нити одинаково направлены? Как вы назовёте такое направление нити? А как расположена та часть деревянной горки для катания зимой, с которой съезжают дети? III2. Ориентировочный этап. Отрезки, прямые, расположенные так же, как и нить отвеса, называют вертикально расположенными или вертикальными. Если направление отрезков, прямых не является ни горизонтальным, ни вертикальным, то говорят, что они расположены наклонно. IV2. Первичное закрепление. Возьмите карандаш и расположите его вертикально, наклонно. Сделайте из конструктора сооружение «Проект будущего». Придумайте название, обоснуйте его. Отметьте бумажными кружками с буквой «г» элементы сооружения, расположенные как горизонтальные отрезки; с буквой «в» - как вертикальные отрезки; с буквой «н» - наклонные. Представьте, что вы будете продолжать в обе стороны бесконечно: а) вертикальные отрезки, б) наклонные отрезки, в) горизонтальные отрезки. Пересекутся ли они? Итак, горизонтально или наклонно расположенные в пространстве прямые могут пересекаться, вертикальные прямые не пересекаются. Крокодил Гена решил проверить знания Чебурашки по геометрии и сказал: «Чебурашка, на этом кубе есть вертикальные и горизонтальные рёбра. Покажи их». Чебурашка взял кубик в руки и сказал: «Здесь нет ни одного горизонтального или вертикального ребра. Они все наклонные.» Кто же из них прав и почему? Куб находится в основном положении. Вы видите горизонтально, вертикально расположенные рёбра, а какие вершины можно соединить, чтобы получить наклонный отрезок? Найдите вокруг себя вертикальные модели отрезков. Нарисуйте в тетради по паре вертикально, горизонтально расположенных отрезков. Назовите те отрезки, которые при продолжении за оба конца бесконечно могли бы пересечься. Как надо расположить два карандаша, чтобы при их мысленном вытягивании они могли бы пересечься? Значит, горизонтальный и вертикальный; вертикальный и наклонный; горизонтальный и наклонный, а иногда и 2 наклонных и 2 горизонтальных отрезка при продолжении их за оба конца бесконечно могут пересечься только в этом случае, если они принадлежат одной плоской поверхности. V. Самостоятельная работа. На открытке с калькой обведите объекты, которые можно рассматривать как горизонтальные, вертикальные и наклонные отрезки и обозначьте их соответственно буквами «г», «в», «н». (раздать открытки с калькой). VI. Домашнее задание. На вашем рисунке с домиком отметьте зелёным карандашом вертикально расположенные отрезки, а синим - наклонно, красным - горизонтально. |
Показывают «Правое верхнее, правое заднее, верхнее заднее» «Есть - переднее нижнее ребро» «Левое нижнее ребро» Называют «Нет» «Горизонтально» «Нет» «У всех» Выдвигают предложения «Наклонно» Слушают, запоминают Выполняют задание «Вертикальные не пересекутся, а остальные могут пересечься» «Оба правы, так как Гена смотрел на куб в основном положении, а Чебурашка наклонил кубик» «Нужно расположить их на одной плоской поверхности, при чём хотя бы один из них должен быть не вертикальным» Выполняют задание Записывают задание |
1.5 Формирование пространственного воображения учащихся в компьютерной предметной среде
Структура геометрической деятельности учащихся в единстве ее наглядно-образной и логико-интуитивной сторон позволяет в системе конкретных действий учащихся по конструированию, анализу и синтезу геометрических фигур, решению задач различной направленности, исследованию понятий, фактов геометрии спроектировать процесс их обучения, обеспечивающий гармоничное сочетание всех компонентов деятельности. При этом покомпонентный состав деятельности, выступающий по отношению к реальным учебным действиям учащихся в качестве всеобщей теоретической основы, охватывает как внешнюю, практическую познавательную сферу, так и внутреннюю интеллектуальную среду, в которой осуществляется создание и оперирование мыслительными геометрическими образами, выступающую в качестве ведущей цели геометрической деятельности.
В проектировании геометрической деятельности учащихся средствами новых информационных технологий задача формирования пространственного мышления решается весьма противоречиво и недостаточно эффективно:
· многочисленные программные средства направлены на исключение учителя из учебной деятельности, моделирование или замену чертежных инструментов, выключение из решения геометрических задач процесса построения фигур и т.д.;
· и в современных компьютерных геометрических системах решаются лишь частные аспекты формирования определенных компонентов пространственного мышления, не создающие в сознании учащихся устойчивых, целостных пространственных представлений [37, 54].
В геометрической деятельности учащихся осуществляется формирование пространственного мышления. На опосредованность структуры мышления содержанием деятельности указывал Ж.Пиаже, сопоставляя основные структуры математики (алгебраические, порядковые, топологические) основным элементарным структурам мышления [43]. Эту же мысль подчеркивает Г.Д.Глейзер: «Успех на пути исследования структуры математического мышления заложен в сопоставлении общих закономерностей мышления с методами математики, как объективированным воплощением специфически математических способов мышления».
Опосредованность пространственного мышления содержанием геометрической деятельности ставит задачу проектирования технологии геометрической деятельности, гарантирующей становление и развитие всех компонентов пространственного мышления в их системной взаимосвязи. В свою очередь, проектированию технологии предшествует анализ структуры геометрической деятельности, внутренней связи ее компонентов, последовательности этапов формирования соответствующих действий.
Выводы по первой главе:
1. Развитие пространственного воображения школьников на уроках геометрии важным моментом в преподавании курса геометрии. Подтверждением этого являются многочисленные исследования в различных областях: философии и методологии математического познания и математического образования; создания и использования средств обучения и учебно-материальной базы; теории методологии и практики информатизации образования; теории и методики обучения математике; психологии и педагогики.
2. Под пространственным представлением, формируемым в процессе обучения геометрии, понимается обобщенный образ геометрического объекта, складывающийся в результате переработки (анализа) информации о нем, поступающей через органы чувств. Базисными для пространственного воображения являются основные подструктуры: топологическая, проективная, порядковая, метрическая и алгебраическая.
3. Правомерность использования информационных технологий в качестве вспомогательного средства в процессе обучения геометрии основывается на том факте, что рисунок любого объемного тела является имитацией трехмерного пространства на плоском двумерном листе бумаги. Применение же трехмерного компьютерного моделирования позволяет облегчить процесс понимания конструкции реального трехмерного тела, а также дает возможность проследить пространственные линии связей с помощью каркасной модели объекта и, в конечном счете, получить реалистическую визуализацию с помощью наложения текстур и фактур.
4. При изучении школьного курса геометрии возможны различные способы использования информационных технологий (индивидуальное, в качестве презентации). Их можно использовать на всех этапах урока.
5. Одним из основных условий формирования пространственных представлений в процессе обучения геометрии является использование упражнений, которые требуют оперирования ранее созданными пространственными представлениями, в которых происходит включение пространственных представлений в новые связи, помещение их в новые условия, определяемые условием задачи.
Глава 2. ПРОВЕРКА ЭФФЕКТИВНОСТИ МЕТОДИКИ ИСПОЛЬЗОВАНИЯ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В ПРОЦЕССЕ ФОРМИРОВАНИЯ ПРОСТРАНСТВЕННОГО ВООБРАЖЕНИЯ
Исходя из целей и задач исследования, была проведена экспериментальная работа (констатирующий, формирующий и контрольный эксперимент). Базой для ее проведения явились учащимися группы ПР - 1 в 2007 учебном году в федеральном государственном образовательном учреждении среднего профессионального образования СГХТ. В качестве контрольной группы выступала группа ТП - 1.
В нем приняли участие 60 учащихся.
К целям эксперимента мы отнесли:
ь выявление уровня сформированности пространственного воображения учащихся 10-11-х классов, необходимых при решении геометрических задач;
ь разработка и апробирование комплекса методических приемов по усвоению новых знаний, направленного на формирование пространственного воображения школьников;
ь подтверждение гипотезы о том, что применение в процессе обучения стереометрии разработанной нами методики с использованием информационных технологий будет способствовать формированию пространственных представлений школьников.
Проверка эффективности разработанной методики использования информационных технологий как средства формирования пространственного воображения учащихся при изучении курса стереометрии проводилась во время занятий.
Апробирование проводилось в три этапа: констатирующий срез, формирующий эксперимент, контрольный срез. Охарактеризуем каждый этап.
2.1 Констатирующий срез
Цель первого этапа - убедить учащихся в том, что уровень сформированности пространственного воображения школьников не достаточно высокий.
Психолого-педагогический и дидактико-методический анализ работ Е.Г.Ананьева, Г.Г.Глейзера, В.П.Зинченко, Е.Н.Кабановой - Миллер, И.Н. Каплуновича, Л.Купера, К. Робинса, И.Рока, И.С. Якиманской, Л.Л.Якобсон и др. позволил определить последовательность этапов формирования пространственного представления тел вращения:
1. Ощущение, восприятие и анализ наглядной модели тела вращения.
2. Создание пространственного представления о телах вращения (в памяти и в воображении).
3. Оперирование пространственным образом тела вращения.
4. Овладение методами изображения пространственных объектов.
5. Установление взаимосвязи между телами вращения и их графическим изображением (овладение приемами содержательного анализа графического изображения тела вращения; создание пространственного образа по изображению).
6. Установление взаимосвязи между двумерным представлением о теле вращения и его реальным графическим изображением (создание мысленного двумерного образа тела вращения; отображение двумерного представления о теле вращения на реальную плоскость в виде графического изображения).
На основе анализа педагогической, психологической и методической литературы нами сформулированы следующие показатели сформированности пространственного воображения школьников 10-11-х классов:
1. Глубина характеризуется целостностью восприятия, то есть способностью видеть весь объект в целом, а также определять структуру объекта, связи между его элементами, взаимосвязь данного объекта с другими, понимать способ возникновения той или иной конфигурации, предвидеть ее дальнейшее развитие. Данное качество пространственного мышления проявляется в процессе формирования пространственных представлений на этапах анализа визуальной информации, выявления стандартов, определения дополнительной информации и включения пространственных представлений в новые связи.
2. Широта пространственного мышления характеризуется способностью к формированию обобщенных способов действий, имеющих широкий диапазон переноса и применимым к частным нетипичным случаям. Это качество проявляется в готовности принять во внимание новую информацию в знакомой ситуации. Данное качество участвует в формировании и развитии пространственных представлений при обучении геометрии на этапе анализа визуальной информации, в процессе выявления стандартов, а, особенно, в процессе получения новой дополнительной информации.
3. Гибкость пространственного мышления характеризуется способностью к варьированию способов действия; легкостью перестройки при изменении условий действия; легкостью перехода от одной точки отсчета к другой; от одного способа действий к другому; умением переносить качества одного предмета на другой; выходить за границы привычного способа действия; умением видеть несколько возможных ситуаций, в которых сохраняются существенные свойства объекта, но изменяются несущественные. Данное качество мышления проявляется на всех этапах формирования и развития пространственных представлений при обучении геометрии.
4. Устойчивость пространственных представлений представляет степень свободы манипулирования образом с учетом той наглядной основы, на которой образ первоначально создавался. Свобода такого оперирования проявляется в легкости и быстроте перехода от одного вида наглядности к другому, в своеобразном перекодировании их содержания, что требует умения удерживать в памяти образ пространственного объекта и фиксировать изменения, происходящие в нем, умения анализировать образ пространственного объекта. Такая свобода оперирования характерна для развитых пространственных представлений, в то время как скованность каким-либо одним изображением, неумение увидеть то же самое на другом изображении свидетельствуют о недостаточном их развитии. При изучении геометрии устойчивость пространственных представлений способствует рассмотрению множества различных геометрических образов, в которых сохраняются существенные признаки и изменяются несущественные. Развитию этого показателя способствует широта и гибкость пространственного мышления
5. Полнота пространственных представлений характеризует структуру пространственного образа, то есть набор элементов, связи между ними, их динамическое соотношение. В образе отражается не только состав входящих в его структуру элементов (форма, величина), но и их пространственное размещение (относительно заданной плоскости или взаимного расположения элементов). Следовательно, в структуру образа геометрического объекта включаются представление о форме, величине геометрического объекта, взаимном его расположении относительно других объектов, или взаимном расположении его частей относительно друг друга. Развитию этого показателя способствует глубина и широта визуального мышления.
6. Динамичность пространственных представлений выражается в способности к произвольной смене точек отсчета, к произвольному изменению положения пространственного объекта, его элементов. Изменение систем отсчета позволяет найти такую позицию наблюдателя, с которой субъект, рассматривая пространственную фигуру, знакомиться и с плоскими фигурами, полученными как проекции пространственных на определенные плоскости. Динамичность образа геометрического объекта проявляется в способности не только его видоизменять, но и видеть в статическом изображении движение, перемещение объектов, способ их соединения, получения. Все эти преобразования выполняются уже в «мысленном пространстве», в то время как графические изображения остаются объективно неизменными.
7. Целенаправленность пространственного мышления характеризуется стремлением осуществлять разумный выбор действий при решении задач, постоянно ориентируясь на поставленную цель, в стремлении отыскать кратчайший путь ее решения. Наличие этого качества важно при поиске плана решения задачи, при извлечении дополнительной информации из наглядности.
Опираясь на исследования педагогов, психологов и методистов, собственный опыт преподавания стереометрии, нами выделены и обобщены критерии сформированности пространственного воображения школьников 10-11-х классов:
1. Владение мыслительными операциями: анализ, синтез, сравнение, обобщение, абстрагирование и т.д.
2. Сформированность следующих умений:
ь сопоставлять различные изображения образа геометрической конфигурации (оперировать различной наглядностью);
ь анализировать образ геометрической конфигурации;
ь синтезировать образ геометрической конфигурации;
ь вычленять форму образа геометрического объекта;
ь определять взаимное расположение данного образа геометрического объекта относительно других образов;
ь определять взаимное расположение отдельных элементов образа геометрического объекта;
ь конструировать образы новых геометрических конфигураций и воспроизводить их с помощью модели, рисунка, чертежа или словесного описания.
На основе разработанных нами критериев и показателей сформированности пространственного воображения школьников с использованием информационных технологий, анализа педагогической, психологической и методической литературы, собственного опыта, возможностей использования информационных технологий, нами разработана дидактическая модель формирования пространственного воображения учащихся при изучении школьного курса стереометрии с использованием информационных технологий (рис. 1).
Задания среза можно представить следующим образом.
1. Какие из предложенных на рисунке фигур являются разверткой правильной 6-тиугольной призмы? (Ответ а))
2. В кубе ABCDEFGH точки M, N и K расположены на ребрах EF, CG, AD соответственно так, что EM = MF, CN : NG = 1 : 2, AK : KD = 1 : 3. Построить сечение куба плоскостью MNK.
3. Установите вид параллелепипеда, если а) все грани равны; б) все грани равновелики; в) все его диагонали равны; г) два диагональных сечения перпендикулярны основанию; д) две его смежные грани - квадраты; е) перпендикулярное сечение к каждому ребру является прямоугольником.
4. В основании наклонной призмы правильный пятиугольник. Сколько граней у данной призмы? (5) Какими геометрическими фигурами являются ее грани? (параллелограммами) Могут ли среди боковых граней быть прямоугольники? (да) Изобразите данную призму.
5. Докажите, что центры граней куба являются вершинами октаэдра, а центры граней октаэдра являются вершинами куба.
6. Площади двух боковых граней наклонной треугольной призмы равны 40 и 30 см2. Угол между этими гранями прямой. Найдите площадь боковой поверхности призмы.
7. Дан прямоугольный параллелепипед ABCDA1B1C1D1 (AB = BC) как провести на его поверхности кратчайшую линию, соединяющую вершины В и D1 (ответ может быть получен при помощи развертки двух смежных граней)?
Констатирующий срез показал, что не все рассматриваемые умения сформированы на данном этапе у школьников.
· с первым заданием справились 21 человек, что составляет 75%, частично справились 15%, не справились 10%;
· со вторым заданием справились 38% учащихся, 18% частично справились, а 44% не справились с заданием;
· с третьим заданием 55% полностью справились, 20% справились частично, 25% не справились;
· с четвертым заданием 40% справились, 21% справились частично, 39% не справились;
· с пятым заданием 43% справились, 27% справились частично, 30% не справились;
· с шестым заданием 48% справились, 27% справились частично, 25% не справились;
· с седьмым заданием 56% справились, 27% справились частично, 17% не справились (рис. 2).
Под термином «умение сформировано полностью» в данном случае понимается выполнение задания с обоснованием и пояснением ответа, а также хода решения. Под «умение сформировано частично» понимается выполнение задания с нечетким пояснением, либо с пропуском некоторых промежуточных рассуждений в ходе решения. Под «умение не сформировано» понимается невыполнение задания. Чаще всего ошибки возникали в заданиях второго, третьего и седьмого типов из-за определенной неподготовленности к решению такого типа заданий, а также из-за недостаточных теоретических знаний.
Для сравнения результатов констатирующего среза в качестве контрольной группы была взята параллельная группа ТП - 1. После проведенного аналогичного среза были получены следующие результаты.
· с первым заданием справились 20 человек, что составляет 72%, частично справились 16%, не справились 12%;
· со вторым заданием полностью справились 40% учащихся, 18% справились частично, а 42% не справились с заданием;
· с третьим заданием 57% полностью справились, 23% справились частично, 20% не справились;
· с четвертым заданием 47% справились, 15% справились частично, 38% не справились;
· с пятым заданием 40% справились, 27% справились частично, 33% не справились;
· с шестым заданием 45% справились, 30% справились частично, 25% не справились;
· с седьмым заданием 60% справились, 23% справились частично, 17% не справились (рис. 3).
Как показывают полученные данные и в контрольной группе, и в экспериментальной результаты оказались практически одинаковыми. Но также результаты показали, что большинство ошибок было связано с недостаточной сформированностью пространственного воображения.
Таким образом, в данном параграфе представлена организация проведения разработанной методики, констатирующий срез, его результаты. Далее, более подробно остановимся на анализе каждого занятия проведенных уроков и выделим основные затруднения школьников. Этому посвящен следующий параграф.
2.2 Формирующий эксперимент
На втором этапе эксперимента - формирующем - уточнялась гипотеза исследования, рассматривались основные положения курса геометрии в рамках компьютерного обучений; были разработаны входной и выходной контроли для определения уровня знаний, умений и навыков в начале и конце изучаемых тем с целью оценки степени усвоения знаний в процессе обучения и выяснения причин возникающих трудностей.
Данный этап был направлен на формирование и развитие пространственного воображения школьников с использованием информационных технологий.
Эксперимент по формированию пространственного воображения обучения стереометрии с использованием информационных технологий было решено провести на первом курсе Соликамского горно-химического техникума на примере разделов «Цилиндр», «Конус», «Сфера. Шар».
Обучение происходило по разработанной нами методике.
Одним из основных условий формирования пространственных представлений в процессе обучения стереометрии является использование упражнений, ориентированных на формирование и развитие комплекса умений, составляющих содержание пространственных представлений и характеризующих их сформированность. Но не все упражнения можно считать такими, а лишь те, которые требуют оперирования ранее созданными пространственными представлениями, в которых происходит включение пространственных представлений в новые связи, помещение их в новые условия, определяемые условием задачи. В ходе пространственных представлений обучаемый определяет порядок действий, пытается в уме выполнить некоторые из знакомых ему операций, рассмотреть возможные варианты решения задачи, прогнозировать результат. Каждый геометрический образ имеет определенную структуру, позволяющую зрительно выделить и проанализировать его логический «фундамент».
Нами выделены основные типы упражнений, ориентированные на формирование и развитие пространственных представлений при обучении геометрии:
- упражнения на исследование свойств геометрических объектов (узнавание);
- упражнения на изображение геометрических конфигураций (воспроизведение);
- упражнения на преобразование образов геометрических конфигураций (оперирование);
- упражнения на конструирование новых образов геометрических конфигураций.
Разработка данной типологии основана на видах деятельности, составляющих содержание процесса формирования и развития пространственных представлений при обучении (узнавание, воспроизведение, оперирование и конструирование пространственных представлений). Необходимо отметить, что в каждой из этих групп должны присутствовать упражнения, решение которых требует использования средств наглядности (моделей, рисунков, чертежей и т.п.) и упражнения, заданные словесным описанием и решаемые в воображении.
I. Упражнения на исследование свойств геометрических объектов
Суть этой группы упражнений состоит в следующем: пространственный объект задается с помощью модели, рисунка, чертежа или словесного описания. Требуется исследовать его свойства - выделить форму, определить размеры или взаимное расположение его элементов и т.п.
а). Задачи-вопросы на распознавание объекта по изображению или словесному описанию. Их основная цель - определить, принадлежит ли данный объект объему указанного понятия. Распознавание пространственных объектов осуществляется с опорой на ранее сформированные пространственные представления и знания о них.
Пример 1. Существует ли четырехугольная пирамида, все ребра которой равны между собой?
Пример 2. Могут ли все боковые грани шестиугольной пирамиды быть равносторонними треугольниками?
Пример 3. Установите вид параллелепипеда, если а) все грани равны; б) все грани равновелики; в) все его диагонали равны; г) два диагональных сечения перпендикулярны основанию; д) две его смежные грани - квадраты; е) перпендикулярное сечение к каждому ребру является прямоугольником?
б). Задачи на выделение требуемых фигур из состава чертежа.
Пример. ABCDEKMO - изображение куба. Выпишите все изображенные на рисунке пирамиды и призмы, указывая вид фигуры.
в). Задачи на сопоставление различных видов изображений данного пространственного объекта (модели, развертки, чертежа, рисунка, проекции и т.п.).
Пример. Какие из предложенных на рисунке конфигураций являются развертками данного куба?
г). Задачи на определение взаимного расположения объектов и их элементов.
Пример 1. Вершины А и В параллелограмма лежат в плоскости в, а его вершина С не принадлежит этой плоскости. Как могут быть расположены относительно в стороны AD и CD параллелограмма?
Пример 2. Прямая р не имеет общих точек с линией пересечения плоскостей и . При этом р принадлежит. Как она может быть расположена относительно плоскости ?
Задания на распознавание объекта на основе сопоставления его различных изображений предполагает мысленное сопоставление разнотипных изображений объекта (рисунка и чертежа, развертки и модели и т.п.). Задание способствует формированию и развитию умения создавать пространственный образ на основе восприятия различных изображений.
В процессе выполнения заданий на распознавание пространственных объектов по их словесному описанию, необходимо мысленно представить описываемый объект и его элементы, удерживая его в памяти, проводить анализ и синтез пространственного образа, в некоторых случаях осуществлять глазомерную оценку линейных и угловых величин.
Таким образом, задания данного типа служат для развития умения распознавать пространственные образы, что характеризует уровень их создания, но в процессе создания часто приходится и оперировать образами, мысленно изменяя их пространственное положение, структуру, переходя от одного вида наглядности к другому. Эти действия способствуют активному развитию пространственных представлений.
II. Упражнения на изображение геометрических объектов
Задания этого типа предполагают изображение пространственного объекта, заданного своей проекцией или словесным описанием, с помощью рисунка, чертежа, а также построение проекций данных геометрических фигур по их наглядному изображению и т.п.
К таким заданиям можно отнести следующие виды задач.
а). Задачи на изображение пространственной фигуры, заданной словесным описанием.
Пример 1. В пирамиде с основанием в виде правильного треугольника одно из боковых ребер перпендикулярно плоскости основания. Что представляют собой грани такой пирамиды? Каким образом проходит высота пирамиды? Изобразите данную пирамиду?
Пример 2. В основании наклонной призмы правильный пятиугольник. Сколько граней у данной призмы? Какими геометрическими фигурами являются ее грани? Могут ли среди боковых граней быть прямоугольники? Изобразите данную призму.
б). Задачи, в которых требуется достроить фигуру или восстановить чертеж.
Пример. 1. Достройте изображение фигуры до куба:
Пример 2. Достройте изображение фигуры до треугольной пирамиды:
Пример 3. Достройте изображение фигуры до произвольного многогранника:
Пример 4. Достройте изображение многогранников по заданным вершинам: треугольная пирамида; треугольная призма;
в). Задачи на построение и использование разверток пространственных фигур.
Пример 1. Нарисуйте разные развертки: а) правильного тетраэдра, б) куба.
Пример 2. Дан прямоугольный параллелепипед ABCDA1B1C1D1 (AB = BC) как провести на его поверхности кратчайшую линию, соединяющую вершины В и D1 (ответ может быть получен при помощи развертки двух смежных граней)?
Пример 3. Постройте развертку наклонной треугольной призмы.
г). Задачи, в которых по наглядному изображению или словесному описанию пространственного объекта требуется построить ее проекции.
Пример 1. Какая фигура может быть проекцией: а) отрезка, б) треугольника на данную плоскость (рассмотреть различные направления проектирования)?
Пример 2. Какое наименьшее число сторон может иметь параллельная проекция на плоскость выпуклого многогранника, имеющего n граней?
Пример 3. Многогранник имеет n вершин. Показать, что существует его параллельная проекция на плоскость, имеющая: не менее четырех вершин, не более n - 1 вершины.
д). Задачи, в которых по заданной проекции пространственного объекта необходимо восстановить его наглядное изображение.
Пример. Нарисуйте многогранник, заданный проекциями на три попарно перпендикулярные плоскости:
Развитие и совершенствование умений решать геометрические задачи обуславливает графическая культура учащихся, их умения выполнять рисунки, способность и навыки к визуализации задачи. Развитию конструктивных умений и навыков активно способствует приведенная группа задач. Кроме того, все они направлены на развитие пространственных представлений и воображения. Ведь в процессе решения таких задач, прежде чем изобразить пространственный объект с помощью рисунка или чертежа, необходимо отчетливо представить его, мысленно выполнить определенные конструктивные операции с его элементами. Задачи, выполняемые без применения чертежных инструментов, развивают глазомер, точность движений, что также является характеристикой развитых пространственных представлений.
Большую роль для развития умений оперировать созданным пространственным образом играют задачи на построение и использование разверток пространственных фигур. В процессе построения развертки необходимо мысленно развернуть геометрическую фигуру, сопоставить полученный результат с наглядным изображением (или существующим представлением), осуществлять анализ и синтез пространственного образа, удерживая его в памяти, изменять пространственное положение и структуру образа. В результате этих действий получен новый образ - развертка.
III. Упражнения на выполнение геометрических преобразований на плоскости и в пространстве
Этот тип включает упражнения на различные геометрические преобразования исходных образов пространственных фигур, которые выполняются как в пределах плоскости, так и в пространстве. К ним можно отнести следующие задачи.
а). Задачи на отыскание множеств точек - образов при определенном геометрическом преобразовании точки.
Постройте произвольный прямоугольник и его образ при симметрии с центром в точке пересечения его диагоналей. Какая фигура является пересечением (объединением) данного прямоугольника и его образа?
б). Задачи на установление числа осей (плоскостей, центров) симметрии.
Пример 1. Найти множество осей симметрии у двух данных точек М и Р на плоскости и в пространстве.
Пример 2. Сколько плоскостей симметрии имеет а) куб, б) цилиндр?
Пример 3. Приведите пример фигуры, имеющей более одного центра симметрии.
в). Задачи на построение осей (центров, плоскостей) симметрии или фигур имеющих оси (центры, плоскости) симметрии.
Пример 1. Начертите два угла, таких, что один из них может быть получен из другого с помощью центральной симметрии.
Пример 2. Отметьте три точки А, В, С. Дополните это множество четвертой точкой D так, чтобы фигура Ф = {A, B, C, D} имела а) центр симметрии; б) ось симметрии. Рассмотрите все возможные случаи.
Пример 3. Будет ли фигура, являющаяся объединением полосы и прямой, не принадлежащей ей, иметь центр симметрии? Рассмотрите все возможные случаи.
г). Задачи на создание новых образов пространственных объектов путем геометрических преобразований исходных.
Пример. В прямоугольнике ABCD мысленно проведите прямую АК (К - середина стороны ВС), представьте, что прямоугольник разрезан по ней и треугольник АВК повернут вокруг точки К так, что ВК и КС совместились. В какую фигуру превратиться прямоугольник?
IV. Упражнения на конструирование и моделирование новых образов геометрических объектов
Задания данной группы предполагают выполнение мысленного или графического реконструирования и моделирования образ пространственных объектов.
Пример. Нарисуйте фигуру, получающуюся в пересечении двух равных цилиндров, оси которых пересекаются под прямым углом?
В процессе решения таких задач осуществляется конструирование качественно новых пространственных образов и новых отношений между ними, формируются и совершенствуются умения мысленно преобразовывать исходный образ по форме, величине, пространственному положению, то есть, их решение требует активного оперирования пространственными образами и высокого уровня развития пространственных представлений и воображения.
Совокупность данных упражнений можно рассматривать как одно из средств развития пространственных представлений учащихся в процессе изучения геометрии.
Методику формирования пространственного образа геометрического объекта при помощи информационных технологий рассмотрим на примере изучения тел вращения.
Первые два занятия были посвящены изучению темы «Цилиндр». Эти уроки проводились в соответствии с программой, но на каждом уроке использовалась презентация по данной теме. На них были изучены основные понятия и определения, связанные с цилиндром, выведены формулы для вычисления площадей боковой и полной поверхностей цилиндра; рассмотрены типовые и более сложные задачи по изучаемой теме. [см. Приложение 1]
Далее в течение четырех уроков изучалась тема «Конус». Обучение происходило по той же схеме, что и тема «Цилиндр», а так же здесь был изучен усеченный конус и все определения и формулы, связанные с ним. Были решены задачи, как простейшие, так и более сложные. [ см. Приложение 2]
После чего изучалась тема «Сфера. Шар» (4 часа). [ см. Приложение 3]
В процессе изучения тем «Цилиндр», «Конус» и «Сфера. Шар» нам удалось охватить весь объем теоретической информации. Нами были рассмотрены и отработаны задания на отработку основных умений и навыков, которые являются основными в процессе формирования пространственного воображения. При решении упражнений возникшие затруднения сразу устранялись по мере их возникновения и решались подобные задания на закрепление пройденного материала. Они были достаточно интересны и разнообразны по своему содержанию, отличались новизной формулировок, а также тем, что необходимо было логически мыслить при поиске ответа на поставленный вопрос. На каждом занятие были использованы информационные технологии. Занятия дали положительный результат по формированию умений:
ь сопоставлять различные изображения образа геометрической конфигурации (оперировать различной наглядностью);
ь анализировать образ геометрической конфигурации;
ь синтезировать образ геометрической конфигурации;
ь вычленять форму образа геометрического объекта;
ь определять взаимное расположение данного образа геометрического объекта относительно других образов;
ь определять взаимное расположение отдельных элементов образа геометрического объекта;
ь конструировать образы новых геометрических конфигураций и воспроизводить их с помощью модели, рисунка, чертежа или словесного описания.
Для сравнения результатов констатирующего среза по формированию пространственного воображения был проведен контрольный срез. Ему посвящен следующий параграф.
2.3 Контрольный срез
Для выявления уровня сформированности вышеперечисленных умений с учащимися был проведен контрольный срез и сопоставлен с констатирующим срезом. Контрольный срез также проводился в двух группах. Цель контрольного среза - проверить уровень сформированности пространственного воображения учащихся по сравнению с констатирующим срезом. Кроме того, по результатам решения заданий контрольного среза можно было судить об уровнях сформированности умений работать пространственными фигурами. Все задания объединяла общая цель - сформировать пространственное воображение учащихся с использованием информационных технологий при изучении стереометрии. В срезе содержалось семь заданий, направленных на выявление уровня сформированности пространственного воображения школьников 10 - 11-х классов. Рассмотрим задания одного из вариантов.
1. Какие из предложенных на рисунке фигур являются разверткой цилиндра? (Ответ а), б))
2. На поверхности шара даны три точки, кратчайшее расстояние между которыми равно 6см. Определить площадь сечения, проходящего через эти три точки.
3. Диагонали ромба 15 см и 20 см. Шаровая поверхность касается всех его сторон. Радиус шара 10 см. Найдите расстояние от центра шара до плоскости ромба.
4. Какая фигура образуется при вращении вокруг оси (достроить). Вычислите полную поверхность тела вращения, которое получается в результате вращения вокруг его стороны АС, если АС = 8см, ВС = 5см.
5. В конусе даны радиус основания R и высота H. В него вписана правильная треугольная призма, у которой боковые грани - квадраты. Найдите ребро призмы.
6. Образующая конуса, равная 12 см, наклонена к плоскости основания под углом . Найдите площадь основания конуса, если . ()
7. Образующая конуса наклонена к плоскости основания под углом . В основание конуса вписан треугольник, у которого одна сторона равна а, а противолежащий угол равен . Найдите площадь полной поверхности конуса.
Контрольный срез показал, что не все вышеуказанные умения оказались сформированы у школьников.
· с первым заданием справились 95% учащихся, частично справились 5%, не справились 0%;
· со вторым заданием справились 68% учащихся, 22% частично справились, а 10% не справились с заданием;
· с третьим заданием 65% полностью справились, 30% справились частично, 5% не справились;
· с четвертым заданием 74% справились, 23% справились частично, 3% не справились;
· с пятым заданием 63% справились, 27% справились частично, 10% не справились;
· с шестым заданием 58% справились, 27% справились частично, 15% не справились;
· с седьмым заданием 66% справились, 27% справились частично, 7% не справились (рис. 4).
По сравнению с констатирующим срезом ошибок наблюдалось гораздо меньше.
В контрольном классе при проведении аналогичного контрольного среза результаты получились следующие:
· с первым заданием справились 75% учащихся, частично справились 18%, не справились 7%;
· со вторым заданием справились 48% учащихся, 35% частично справились, а 17% не справились с заданием;
· с третьим заданием 55% полностью справились, 20% справились частично, 25% не справились;
· с четвертым заданием 50% справились, 21% справились частично, 29% не справились;
· с пятым заданием 50% справились, 28% справились частично, 22% не справились;
· с шестым заданием 48% справились, 37% справились частично, 15% не справились;
· с седьмым заданием 56% справились, 27% справились частично, 17% не справились (рис. 5).
Таким образом, в экспериментальной группе результаты улучшились, благодаря тому, что процесс обучения шел по разработанной методики с использованием информационных технологий.
Назовем те умения, которые оказались сформированы лучше остальных: сопоставлять различные изображения образа геометрической конфигурации (оперировать различной наглядностью); анализировать образ геометрической конфигурации; вычленять форму образа геометрического объекта; конструировать образы новых геометрических конфигураций и воспроизводить их с помощью модели, рисунка, чертежа или словесного описания. Самым сложным оказалось проводить с учащимися работу по формированию умения синтезировать образ геометрической конфигурации; умения определять взаимное расположение данного образа геометрического объекта относительно других образов; умения определять взаимное расположение отдельных элементов образа геометрического объекта. Причина того, что эти умения оказались сформированы хуже связана, прежде всего, с тем, что сами задания на эти умения достаточно сложны, а также сказывается недостаточный уровень сформированности логического мышления и пространственного воображения у учащихся 10 - 11 классов, который необходимо целенаправленно развивать, подбирая соответствующие задания и упражнения, приучая школьников рассуждать самостоятельно.
Таким образом, можно сделать вывод о том, что с помощью нашей методики вышеперечисленные умения в большей степени сформированы. На основе проведенных срезов и анализа занятий была сделана количественная и качественная оценка результатов проведенного апробирования.
Выводы по второй главе:
1. Для проверки эффективности разработанной методики использования информационных технологий как средства формирования пространственного воображения школьников при изучении курса стереометрии была проведена работа по ее апробированию, состоящая из трех этапов: констатирующего среза, формирующего эксперимента, контрольного среза
2. В процессе констатирующего среза была проведена самостоятельная работа, результаты которой позволили сравнить уровень сформированости пространственного воображения учащихся контрольной и экспериментальной группы.
3. Результаты контрольного среза показали, что использование информационных технологий на различных этапах урока позволяет повысить уровень сформированности пространственного воображения учащихся.
4. Анализ результатов констатирующего и контрольного срезов позволяет сделать вывод об эффективности разработанной методики использования информационных технологий как средства формирования пространственного воображения школьников при изучении курса стереометрии.
ЗАКЛЮЧЕНИЕ
Настоящее исследование посвящено решению актуальной проблемы теории и методики обучения математике - развитие пространственного мышления учащихся в процессе изучения геометрии. Основным средством для решения этой проблем был выбран компьютер, который позволил выделить новый вид учебной наглядности - компьютерная анимация, реализующаяся посредством пакета стандартных программ PowerPoint.
В соответствии с поставленными целями перед данной выпускной квалификационной работой и результатами, полученными в ходе исследования, можно сделать следующие выводы:
Анализ научно-методической литературы, посвященной вопросам формирования и развития пространственных представлений, позволил выделить основные психические и физиологические основы восприятия человеком объектов окружающего мира. В результате была выработана общая схема восприятия, которая легла в основу разработанной методики формирования пространственных представлений.
Была выявлена возможность применения компьютерной анимации в процессе формирования пространственных представлений. Компьютерная анимация заполнила некоторый пробел в процессе формирования пространственного образа геометрического объекта, она позволила осуществить плавный переход от натуральной вещественной модели к условно-графическому изображению - чертежу, что в значительной степени повышает уровень объективности пространственных представлений обучаемого.
Была разработана соответствующая методика формирования пространственного образа геометрического объекта при помощи компьютерной анимации и дидактическая модель формирования пространственного воображения школьников при изучении курса стереометрии с использованием информационных технологий. По результатам опытной работы можно сделать вывод о положительном влиянии разработанной методики на формирование пространственных представлений учащихся. Систематизация результатов научно - методических исследований позволила выявить условия формирования пространственных представлений обучаемых: использование различных видов деятельности, в первую очередь деятельности по решению специально подобранных упражнений, ориентированных на развитие пространственных представлений обучаемых; взаимосвязь формирования пространственных представлений с развитием логического мышления и речи учащихся; использование рациональной системы средств наглядности. Как показала практика преподавания, учет и использование этих условий и приемов успешно способствует работе по развитию пространственных представлений обучаемых. Опытная работа по применению разработанной методики показала ее эффективность. Опытная работа доказала, что целенаправленное и рациональное внедрение в практику новой учебной наглядности - компьютерной анимации ведет к повышению уровня развития пространственных представлений учащихся.
Сделанные выводы дают основание полагать, что справедливость гипотезы исследования экспериментально подтверждена, все поставленные задачи исследования решены и цель достигнута.
СПИСОК ЛИТЕРАТУРЫ
1. Азевич А.И. Несколько компьютерных программ [Текст] / А.И. Азевич // «Математика в школе» - 2002г. №10, - с. 41.
2. Арнхейм, Р. Визуальное мышление [Текст] / Р. Арнхейм // Хрестоматия по общей психологии. - М.: Изд-во МГУ, 1981. - с. 216.
3. Богомолов Н.В., Самойленко П.И. Математика: учеб. для ссузов [Текст] / Н.В. Богомолов - М.: Дрофа, 2005. - 395с.
4. Богомолов Н.В., Самойленко П.И. Сборник задач по математике: учеб. пособие для ссузов [Текст] / Н.В. Богомолов - М.: Дрофа, 2005. - 204с.
5. Богомолов Н.В., Самойленко П.И. Сборник дидактических заданий по математике: учеб. пособие для ссузов [Текст] / Н.В. Богомолов - М.: Дрофа, 2005. - 236с.
6. Брунер Дж. О понимании детьми принципа сохранения количества жидкого вещества // Исследование развития познавательной деятельности / Под ред. Дж. Брунера. - М.: Педагогика, 1971. - 250с.
7. Верещагина Н.Н. Преподавание математики в классе с компьютерной поддержкой [Текст] / Н.Н. Верещагина. - http:/centen fio.ru/
8. Величковский, Б.М. Психология восприятия [Текст] / Б.М. Величковский, В.П. Зинченко, А.Р. Лурия. - М., 1973. - 215с.
9. Виленкин Н.Я. Математика [текст] / Н.Я.Виленкин, А.М.Пышкало, В.Б.Рождественнская, Л.П.Лаврова - М.: Просвещение, 1997.-315с.
10. Возрастные и индивидуальные особенности образного мышления учащихся [Текст] / Под ред. И.С. Якиманской. - М.: Педагогика, 1989.- с.142.
11. Выготский Л.С. Психология искусства [Текст] / Л.С. Выготский - М.: Искусство, 1987. - 198с.
12. Выготский Л.С. Педагогическая психология [Текст] / Л.С. Выготский. - М.: Педагогика-пресс, 1996. - 98с.
13. Гальперин П.Я., Эльконин Д.Б. К анализу теории Ж. Пиаже о развитии детского мышления: Послесловие [Текст] / Флейвелл Дж. Х. Генетическая психология Жана Пиаже. М.: Просвещение, 1967. - 621с.
14. Гельман В.Я. Решение математических задач средствами Excel: Практикум [Текст] / В.Я. Гельман. - Питер, 2003г. - с. 78.
15. Геометрия: учеб. для 10-11 кл. сред. шк. [Текст] / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Просвещение, 1994. - 207с.
16. Грайс Д. Графические средства персонального компьютера [Текст] / Д. Грайс. М.: Мир, 1989. - 123с.
17. Дубровский В. Н. Стереометрия с компьютером [Текст] / В.Н. Дубровский // «Компьютерные инструменты в образовании» - 2003. № 6, с. 34.
18. Дубровский В.Н. и др. Интерактивные стереочертежи к учебнику А.В. Погорелова / В.Н. Дубровский - www.mto.ru/katal/index.html.
19. Залогова Л. А. Практикум по компьютерной графике [Текст] / Л.А. Залогова. М.: Лаборатория Базовых Знаний, 2001. - 178с.
20. Зазнобина Л. С. Медиаобразование в современной российской школе [Текст] / Л.С. Зазнобина. Магистр. - 1995. - с. 17- 29.
21. Запорожец, А.В. Избранные психологические труды [Текст] / А.В. Запорожец. - М., 1986. -316 с.
22. Зинченко В.П. Исследование визуального мышления [Текст] / В.П. Зинченко // «Вопросы психологии» - 1973. №2., с. 56-73.
23. Зубрилин А. А., Пауткина О. И. Некоторые пути формирования пространственных представлений и пространственного воображения на уроках математики и информатики в средней школе [Текст] / А. А. Зубрилин, О. И. Пауткина // «Педагогическая информатика» - 2002. № 3, с. 34-45.
24. Кабанова - Меллер Е.Н. Анализ развития пространственного мышления школьников [Текст] / Е.Н. Кабанова - Меллер // «Советская педагогика» - 1956. №4, с. 28-38.
25. Каплунович И.Я. Развитие пространственного мышления школьников в процессе обучения математике [Текст] / И.Я. Каплунович. - Новгород, 1996. -243с.
Подобные документы
Понятие пространственного мышления и психолого-педагогические основы его формирования у учащихся общеобразовательных школ. Функции пространственного мышления и роль в его развитии математики, методика формирования при изучении векторного пространства.
курсовая работа [65,1 K], добавлен 22.05.2009Понятие пространственного мышления. Роль векторного пространства в формировании пространственного мышления учащихся основной школы. Методические аспекты развития пространственного мышления при изучении элементов геометрии и построении модели к задачам.
курсовая работа [481,6 K], добавлен 22.05.2009Формирование пространственного мышления. Психолого-педагогические проблемы развития пространственного мышления на уроках черчения в 8 классах. Использование пространственного мышления в черчении и технологии. Основы прямоугольного проецирования.
курсовая работа [1,3 M], добавлен 30.10.2008Особенности формирования воображения у младших школьников с ОНР. Связь творческой деятельности детей с формированием воображения. Организация, методы и содержание коррекционной работы по развитию воображения у младших школьников с ОНР 2-3 уровня.
дипломная работа [218,6 K], добавлен 15.11.2010Развитие пространственного воображения у детей как основы формирования навыков анализа, синтеза, логики и мышления. Особенности пространственного восприятия ребенка. Формирование пространственных представлений и практических ориентировок у дошкольников.
презентация [121,5 K], добавлен 10.08.2016Особенности детей младшего школьного возраста. Особенности и основные приемы развития пространственного мышления младших школьников в начальной школе при изучении геометрического материала. Диагностика уровня развития пространственного мышления.
курсовая работа [627,0 K], добавлен 25.10.2011Психологические основы развития пространственного мышления. Восприятие как свойство личности. Модель формирования пространственного образа. Методика применения компьютерной анимации на уроках геометрии.
дипломная работа [292,4 K], добавлен 08.08.2007Воссоздающее воображение и его значение в процессе учебной деятельности. Развитие воображения у учащихся 8 класса на уроках информатики. Компьютерная анимация Macromedia Flаsh MX как средство развития воображения школьников, определение его уровня.
дипломная работа [1,5 M], добавлен 19.07.2009Проблема пространственного мышления в психолого-педагогической литературе. Уровни развития пространственного мышления у младших школьников. Роль геометрического материала, интегрированных уроков по математике и конструирования в его формировании.
дипломная работа [209,1 K], добавлен 20.01.2013Сказка как вид литературного жанра и ее влияние на развитие воображения у учащихся начальной школы. Психолого-педагогическая характеристика процесса развития воображения у младших школьников. Разработка методики развития творческого воображения у детей.
курсовая работа [50,0 K], добавлен 01.11.2014