Экологические аспекты преподавания темы "Р-элементы" на уроках химии и экологии

Характеристика р-элементов периодической системы: алюминия, азота, кислорода, бора, галлия, их распространение в природе. Разработки уроков, практических и лабораторных работ по изучению р-элементов, их получению. Конспект урока по теме "Кислотные дожди".

Рубрика Педагогика
Вид курсовая работа
Язык русский
Дата добавления 04.01.2010
Размер файла 3,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Из двойных силикатов следует отметить: калиевый полевой шпат или ортоклаз K[AlSi3O8] - главная составная часть изверженных пород: гранита, сленита, базальта, кальциевый полевой шпат или анорит Сa[Al2Si2O8], плагиоглаз, далее слюды: биотит, мусковый лепидалит, которые также содержатся в изверженных породах. Силикат алюминия, содержащий фтор - топаз, относится к числу драгоценных камней Al2(OH, F)2[SiO4] [9-11].

При выветривании полевых шпатов образуется каолин (фарфоровая глина), содержащий воду силикат алюминия состава Al2O3 . 2SiO2 . 2H2O.

2.1.2.2 Биохимическая роль

Сульфат алюминия Al2(SO4)3 используется в качестве протравы при крашении, для дубления кожи, в бумажном производстве. Сульфат алюминия применяют для очистки природных вод от коллоидных частиц, загрязняющих воду, которые захватываются гидроксидом алюминия, образующимся при этом гидролизе соли.

Алюминий имеет большое биологическое значение. Низкие концентрации ионов алюминия Al3+ стимулируют некоторые процессы жизнедеятельности растений. Например, прорастание семян. Но более высокие концентрации снижают интенсивность фотосинтеза, нарушают фосфорный обмен, задерживают рост корневой системы. Некоторые производные алюминия применяют в медицине. Например, KAl(SO4)2 служит вяжущим средством. Основной ацетат алюминия AlOH(COOCH3)2 используется для дезинфекции [9-11].

2.1.3 Галлий

2.1.3.1 Распространение в природе

Галлий встречается в природе как спутник цинка во многих обманках, но только в исключительно малых количествах (0,002 % и меньше). В виде следов он встречается почти как постоянный спутник алюминия. В всех сортах технического алюминия его можно открыть спектрально. Самый богатый галлием минерал - германит. В нем содержится 0,6 - 0,7 % галлия [9].

2.1.3.2 Токсикологическая характеристика

Долгое время считалось, что галлий токсичен. Лишь в последнее время это мнение было опровергнуто. Легкоплавкость галлия представляет интерес для стоматологов. Еще в 1930 г. была испытана композиция для пломбирования зубов, в которой ртуть Hg была заменена на галлий. И в настоящее время используются пломбы для пломбирования зубов с использованием галлия [10].

2.2 V-A группа периодической системы

2.2.1 Круговорот азота

Газообразный N2 возникает в результате реакции окисления NHH3, образующегося при извержении вулканов и разложении биологических отходов:

4NH3 + 3O2 2N2 + 6H2O.

Круговорот азота - один из самых сложных, но одновременно самых идеальных круговоротов. Несмотря на то, что азот составляет около 80% атмосферного воздуха, в большинстве случаев он не может быть непосредственно использован растениями, т.к. они не усваивают газообразный азот. Вмешательство живых существ в круговорот азота подчинено строгой иерархии: только определённые категории организмов могут оказывать влияние на отдельные фазы этого цикла. Газообразный азот непрерывно поступает в атмосферу в результате работы некоторых бактерий, тогда как другие бактерии - фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его, преобразуя в нитраты. Неорганическим путём нитраты образуются и в атмосфере в результате электрических разрядов во время гроз.

Самые активные потребители азота - бактерии на корневой системе растений семейства бобовых. Каждому виду этих растений присущи свои особые бактерии, которые превращают азот в нитраты. В процессе биологического цикла нитрат-ионы (NO3-) и ионы аммония (NH4+), поглощаемы растениями из почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д. Далее образуются отходы в виде погибших организмов, являющихся объектами жизнедеятельности других бактерий и грибов, преобразующих их в аммиак. Так возникает новый цикл круговорота. Существуют организмы, способные превращать аммиак в нитриты, нитраты и в газообразный азот. Основные звенья круговорота азота в биосфере представлены схемой на рис. 10.

Рис. 10. Круговорот азота

Биологическая активность организмов дополняется промышленными способами получения азотосодержащих органических и неорганических веществ, многие из которых применяются в качестве удобрений для повышения продуктивности и роста растений.

Антропогенное влияние на круговорот азота определяется следующими процессами:

Сжигание топлива приводит к образованию оксида азота, а затем реакциям:

2NO + O2 2NO2 ,

4NO2 + 2H2O + O2 4HNO3,

способствуя выпадению кислотных дождей;

В результате воздействия некоторых бактерий на удобрения и отходы животноводства образуется закись азота - один из компонентов, создающих парниковый эффект;

Добыча полезных ископаемых, содержащих нитрат-ионы и ионы аммония, для производства минеральных удобрений;

При сборе урожая из почвы выносятся нитрат-ионы и ионы аммония;

Стоки с полей, ферм и из канализаций увеличивают количество нитрат-ионов и ионов аммония в водных экосистемах, что ускоряет рост водорослей и других растений; при разложении последних расходуется кислород, что приводит к гибели рыб. [12]

2.2.2 Соединения азота

Оксид азота(I) относительно инертен, а потому «экологически нейтрален». Однако на человека он оказывает наркотическое действие, начиная от просто веселья (за что он и был прозван «веселящим газом») и, заканчивая глубоким сном, что нашло свое применение в медицине. Интересно, что он безвреден, и для медицинского наркоза применяют смесь оксида азота(I) с кислородом в таком же соотношении, что и соотношение азота и кислорода в воздухе. Наркотическое действие снимается сразу после прекращения вдыхания этого газа.

Два других устойчивых оксида азота легко переходят один в другой, затем в кислоты, а затем в анионы NO2- и NO3-. Таким образом, эти вещества представляют собой естественные минеральные удобрения, если находятся в естественных количествах. В «неестественных» количествах эти газы редко попадают в атмосферу в одиночестве. Как правило, образуется целый «букет» ядовитых соединений, которые действуют комплексно.

Например, всего один завод азотных удобрений выбрасывает в воздух кроме оксидов азота, азотной кислоты, аммиака и пыли от удобрений еще и оксиды серы, соединения фтора, некоторые органические соединения. Ученые выясняют устойчивость различных трав, кустов и деревьев к подобным «букетам». Уже известно, что, к сожалению, ель и сосна неустойчивы и быстро погибают, однако белая акация, канадский тополь, ивы и некоторые другие растения могут существовать в таких условиях, более того, они способствуют удалению из воздуха этих веществ.

Сильное отравление оксидами азота можно получить в основном при авариях на соответствующих производствах. Ответная реакция организма будет разной из-за различия в свойствах этих газов. «Едкий» NО2 в первую очередь действует на слизистые оболочки носоглотки, глаз, вызывает отек легких; NО, как малорастворимое в воде и не едкое вещество, проходит через легкие и попадает в кровь, вызывая нарушения в центральной и периферийной нервных системах. Оба оксида реагируют с гемоглобином крови, результат - гемоглобин перестает переносить кислород.

Экологические свойства азотной кислоты складываются из двух «половинок». Как сильная кислота, она разрушающе действует не только на живые ткани (кожу человека, лист растения), но и на почву, что достаточно актуально - кислотные (из-за присутствия оксидов азота и серы) дожди, увы, не редкость. При попадании кислоты на кожу возникает химический ожог, который болезненнее и заживает значительно дольше, чем термический. Это были основные экологические свойства катиона водорода.

2.2.2.1 Взаимодействие нитрат-иона с фауной и флорой

Нитрат-ион - неотъемлемая часть круговорота азота в природе. В обычных условиях и в разбавленных растворах устойчив, слабо проявляет окислительные свойства, не осаждает катионы металлов, тем самым способствуя транспортировке этих ионов с раствором в почве, растениях и т. п.

Нитрат-ион становится ядовитым только в больших количествах, нарушающих баланс других веществ. Например, при избытке нитратов в растениях уменьшается количество аскорбиновой кислоты. (Стоит напомнить, что живой организм настолько тонко организован, что любое вещество в больших количествах нарушает равновесие и, следовательно, становится ядовитым.)

Растения и бактерии используют нитраты для построения белков и других необходимых органических соединений. Для этого надо перевести нитрат-ион в ион аммония. Эта реакция катализируется ферментами, содержащими ионы металлов (меди, железа, марганца и др.). Из-за гораздо большей ядовитости аммиака и иона аммония в растениях хорошо отработана и обратная реакция перевода иона аммония в нитрат.

Животные не умеют строить все необходимые им органические соединения из неорганических - отсутствуют соответствующие ферменты. Однако микроорганизмы, живущие в желудке и кишечнике, этими ферментами обладают и могут переводить нитрат-ион в нитрит-ион. Именно нитрит-ион и действует как отравитель, переводя железо в гемоглобине из Fe2+ в Fe3+.

Соединение, содержащее Fe3+ и называемое метгемоглобином, слишком прочно связывает кислород воздуха, следовательно, не может отдавать его тканям. В результате организм страдает от недостатка кислорода, при этом происходят нарушения в работе мозга, сердца и других органов.

Обычно нитрит-ион образуется не в желудке, а в кишечнике и не успевает перейти в кровь и произвести все эти разрушения. Поэтому отравления нитратами достаточно редки. Существует, правда, и другая опасность: в нашем организме есть много веществ, в которых атомы водорода аммиака замещены на органические радикалы. Такие соединения называют аминами. При реакции аминов с нитрит-ионами образуются нитрозамины - канцерогенные вещества:

Они действуют на печень, способствуют образованию опухолей в легких и почках. Интересно, что активным замедлителем реакции образования нитрозаминов является давно нам знакомая аскорбиновая кислота [4].

2.3 VI-A группа периодической системы

2.3.1. Кислород

Кислород играет исключительно важную роль в природе. Все живые организмы на Земле используют кислород в процессе дыхания; процессы гниения органических остатков также протекают при участии кислорода: образующиеся при этом СО2, Н2О, N2 и минеральные соли вновь вступают в круговорот веществ в природе.

Все клетки человеческого организма требуют бесперебойной доставки кислорода, который используется в различных обменных реакциях. Кислород доставляется к тканям организма кровью. Кровь насыщается кислородом в легких, где этот газ присоединяется к содержащемуся в крови белку - гемоглобину. Гемоглобин обладает способностью присоединять кислород, превращаясь в оксигемоглобин (HbO2).

Количество кислорода, потребляемого организмом, отражает интенсивность окислительных процессов во всех органах и тканях и характеризует освобождающуюся при этом энергию. Потребление 1 л. кислорода соответствует выделению 19,7-24,7 кДж.

Уменьшение содержания кислорода в воздухе отрицательно сказывается на самочувствии человека: возникают головокружения, тошнота, удушье и т.д. Мозг человека и других млекопитающих не может функционировать без кислородного обмена, поэтому уже через несколько минут после прекращение дыхания наступает смерть.

Кислород составляет около 50 % массы почвы. В свободном состоянии он присутствует в почвенном воздухе, а в связанном состоянии входит в состав минеральных и органических компонентов твердой фазы почвы и почвенного раствора.

Кислород является энергетической основой сложной микробиологической жизни почвы. Почвы, особенно их верхние горизонты, населены множеством организмов, которые в процессе дыхания потребляют кислород и выделяют углекислый газ. Образующаяся при этом энергия используется для биологических синтезов, протекающих в почве, усвоения растениями минеральных солей и воды, перемещения веществ в растениях и т.п.

При недостатке кислорода в почве микробиологическая активность и энергетические ресурсы растений снижаются, а при отсутствии свободного кислорода в воздухе развитие растений прекращается. Недостаток кислорода в почве приводит к снижению ее окислительно-восстановительного потенциала.

При этом развиваются анаэробные процессы с образованием соединений, токсичных для растений, ухудшаются физические свойства почвы и снижается ее плодородие. В условиях хорошей обеспеченности кислородом в почве развиваются аэробные процессы и создаются условия для нормального роста растений и повышения их продуктивности.

Содержание кислорода в поверхностных водоемах определяется поступлением его из воздуха. Максимум содержания растворенного кислорода наблюдается летом, в период интенсивной фотосинтетической деятельности растительных организмов. В зимний период содержание кислорода в воде резко уменьшается из-за трудности реаэрации, т.е. насыщения воды кислородом и в связи с поступлением в водоемы подземных вод, почти не содержащих кислорода.

В придонных слоях поверхностных водоемов кислорода меньше, т.к. он расходуется на окисление данных отношений. Снижение концентрации растворенного кислорода может указывать на загрязнение водоемов органическими соединениями. При этом недостаток кислорода ограничивает способность природных водоемов к самоочищению. Поэтому при замедлении процессов самоочищения, водоемы подвергают искусственной аэрации [13].

В атмосфере происходят естественные и антропогенные изменения энерго- и массообмена. Эти изменения связаны с проблемами энергетики, сокращением фитопокрова планеты и др.

Переходя непосредственно к рассмотрению данных вопросов, остановимся, прежде всего, на проблеме энергетики.

На Земле с того момента, когда первобытные люди открыли способ добывания огня, началась эпоха кислородной энергетики, в основе которой лежит сжигание различных видов углеродного топлива, что требует расхода свободного кислорода и вызывает генерацию СО2. Эпоха этого вида энергетики продолжается и в настоящее время с той разницей, что со временем человечество открывало новые виды топлива, изменяло долевое их участие в выработке энергии и наращивало масштабы мирового потребления.

В середине 70-х годов нашего столетия ежегодное потребление кислорода на сжигание топлива составляет около 14 млрд. т. при одновременном поступлении около 18 млрд.т. СО2. К 2002 г. потребление кислорода на эту акцию может возрасти до 40 млрд. т/год. К этому необходимо добавить расход кислорода на дыхание, разложение органических остатков и др. С учетом всех видов расхода ежегодное потребление кислорода достигнет к 2020 г. 210-230 млрд. т., а вся фитосфера в год продуцирует 240 млрд. т. кислорода. Используя эти данные можно прийти к выводу, что к 2020 г. в атмосфере вместо 21% кислорода останется 8 %.

Таким образом, при таком расходе кислорода неизбежно начнется истощение запасов и деградация установившихся многовековых динамических равновесий в природных геосистемах.

Сокращение количества кислорода в атмосфере связано также с рядом других антропогенных и естественных факторов. Одним из этих факторов является сокращение лесного массива планеты. Древесина - ценное сырье, которое используется в настоящее время почти во всех областях деятельности человека (топливо, бумага, мебель и т.п.). сокращение лесного покрова вызывает ежегодно выделение кислорода.

Сокращение фитомассива происходит за счет вырубки лесов и лесных пожаров. Причем естественное возгорание происходит в одном случае из десяти, остальное количество пожаров вызвано небрежностью человека.

Растения океана выделяют огромное количество кислорода в атмосферу. Продукция кислорода в океане заметно убывает в связи с загрязнением океана, особенно шельфов, где продуцируется основная масса кислорода акваторий.

Расход кислорода идет и в естественных процессах, таких, например, как вулканические извержения.

2.3.2 Круговорот кислорода в природе

Цикл кислорода занимает на Земле около 2000 лет. Основным источником кислорода для современной атмосферы является фотосинтез автотрофных растений. Ежегодно в атмосферу поступает 201016 г кислорода за счет фотосинтеза. Некоторое количество кислорода поступает в атмосферу в результате фотодиссоциации водяного пара. При воздействии на молекулы водяного пара Н2О жесткого ультрафиолетового излучения (=0,175-0,203 мкм) образуется свободный водород, атомы которого в верхних слоях атмосферы могут обладать достаточно большими скоростями движения для преодоления силы тяготения Земли. Потеря некоторой части водорода, образовавшегося при диссоциации молекул воды, приводит к образованию соответствующего количества свободного кислорода. Но его масса не превышает 0,1 % от общей массы О2 в атмосфере. Основным источником поступления О2 в атмосферу является фотосинтезирующая деятельность растений на суше и фитопланктона фотосферы океана.

Расход О2 происходит на дыхание животных и людей, окисление органического вещества гетеротрофных организмов и на деструкцию мертвого органического вещества.

Суммарный приход О2 в атмосферу в результате его биотического круговорота обеспечивает расход О2 на окисление горных пород и ряда газов, поступающих в атмосферу из глубоких слоев Земли. К числу этих газов принадлежат Со, SO2, H2S, H2 и др. Расход кислорода на окисление указанных газов составляет менее ј его прихода, тогда как на окисление горных пород расход более ѕ прихода кислорода.

Кислород участвует в образовании и разрушении озона:

О2 + h O* + O*

О2 + O* + м O3 + м

О3 + O* O2 + O2

Эти процессы одновременно происходят в атмосфере с разной частотой.

Жизнедеятельность живых организмов поддерживается современным соотношением в атмосфере кислорода и углекислого газа. Естественные процессы потребления углекислого газа и кислорода и их поступление в атмосферу сбалансированы.

Еще важным антропогенным воздействием, сокращающим количество кислорода в атмосфере, являются летательные и космические аппараты. Например, космический корабль «Шаттл» за один свой полет сжигает столько кислорода, сколько его выделяют 48 гектаров леса в год. Кислород находится в непрерывном круговороте на нашей планете. Этот процесс является общепланетарным и связывает воедино атмосферу, гидросферу и литосферу [14].

В атмосфере кислород содержится в количестве около 21 % (об.). В гораздо меньших количествах он присутствует в атмосфере в виде озона - О3, образуя озоновый защитный слой, который располагается на высоте 25-35 км и защищает нашу планету от УФ-излучения. На низких высотах (тропосферный озон) он является одним из компонентов фотохимического смога и оказывает вредное воздействие на живые организмы.

2.3.3 Озоновый защитный слой

Озоновый защитный слой определяет верхний предел жизни в биосфере. Он появился вместе с появлением в земной атмосфере кислорода. Озона в атмосфере очень мало, всего 410-7 об.%. Однако, этого количества вполне достаточно, чтобы оградить планету от УФ-излучения. Озон обладает очень сильным поглощением. Он полностью поглощает всю энергию в полосе от 2900 до 2200 А, что совершенно исключает попадание на поверхность Земли губительных для всего живого солнечных лучей короче 2900 А. Кроме того, озон поглощает ИК излучение Земли, препятствуя ее охлаждению.

Озон образуется в атмосфере по уравнению:

2 3 (1)

Атомы кислорода, необходимые для образования озона, получаются за счет фотохимической диссоциации молекул:

О2 + h = 2O < 240 нм

Возможна реакция образования озона:

О2 + O* + м O3 + м (2)

где м - любая частица, служащая для отвода энергии от образующейся молекулы озона.

При высоких температурах, когда содержание атомарного кислорода велико, равновесие реакции (2) сильно сдвинуто влево и образования озона не происходит. При низких температурах, когда равновесие по реакции (2) сдвинуто вправо, парциальное давление атомарного кислорода слишком низкое, что также препятствует образованию озона. Для получения значительных концентраций озона необходимо сочетание двух условий: сравнительно низкой температуры, обеспечивающей достаточный сдвиг равновесия в сторону образования озона, и больших концентраций атомарного кислорода. Выполнение этих условий возможно, когда диссоциация молекул кислорода обеспечивается в результате нетермического воздействия на систему, например за счет облучения [15].

Озон разрушается, поглощая излучение с длиной волны меньше 1130 нм (ИК излучение), но максимум поглощения наблюдается при длине волны короче 320 нм (УФ-излучение), при этом происходит образование молекулярного кислорода и атомарного кислорода:

О3 + h = O2 + О (3)

Реакции (2) и (3) называются нулевым циклом озона.

Значительный вклад в процессы, протекающие с участием оксидов азота, соединений хлора и др. Рассмотрим эти циклы более подробно.

1. Водородный цикл. При поглощении кванта света с длиной волны менее 240 нм молекула воды распадается по уравнению:

Н2О + h = OН + Н

Гидроксидные радикалы образуются и при взаимодействии молекул воды или метана с возбужденным атомом кислорода

О + Н2О 2ОН

О + СН4 ОН + СН3

Образовавшийся в этих процессах гидроксидный радикал вступает в реакцию с О3:

ОН + О3 НО2 + О2

НО2 + О ОН + О2

О3 + О ОН + О2

2. Азотный цикл. Оксид азота при взаимодействии с озоном окисляется до диоксида азота, но при взаимодействии NO2 c атомарным кислородом в невозбужденном состоянии вновь образуется оксид азота:

NO + O3 NO2 + O2

NO2 + O NO + O2

O3 + O 2O2

3. Хлорный цикл. Атом хлора при взаимодействии с молекулой озона образует оксид хлора и молекулу хлора. Оксид хлора способен взаимодействовать с атомарным кислородом, находящимся в невозбужденном состоянии, с образованием атомарного хлора и молекулы кислорода

Cl + O3 ClO +O2

ClO + O Cl + O2

O3 + O 2O2

Атомарный хлор появляется в стратосфере при фотохимическом разложении фреонов, например:

CFCl3 + hv CFCl2 + Cl

В процессах, вызывающих разрушение озона, наблюдается обрыв цепи за счет протекания реакций:

СН4 + ОН СН3 + Н2О

ОН + НО2 Н2О + О2

ОН + NO HNO2

ClO + NO2 ClONO2

Получающиеся вещества при этих реакциях безвредны для озонового слоя [16].

Расчеты показали, что если все содержащиеся в атмосфере молекулы озона равномерно распределить над поверхностью Земли, то толщина образовавшейся оболочки составит лишь около 3 мм.

«Озоновой дырой» называется уменьшение концентрации озона во всех областях атмосферы над определенной территорией. Наиболее большой «озоновой дырой» является дыра над Антарктидой. Она носит сезонный характер и проявляется лишь в весенний период.

«Озоновые дыры» могут разрастаться под влиянием антропогенных газообразных выбросов, которые разрушают озон. В связи с этим в Монреале в 1990 г был подписан первый международный акт, ограничивающий производство веществ, разрушающих озоновый слой. Этот акт был подписан 30 странами. Основные его положения:

производство фреонов прекратить полностью к 2000 г.

производство тетрахлорэтана прекратить полностью к 2000 г.

производство галонов прекратить к 2000 г. (за исключением соединений, для которых не известны альтернативные заменители)

производство 1,1,1-трихлорэтана прекратить полностью к 2005 г.

Монреальский протокол, являющийся первым примером коллективного мирового сотрудничества в решении глобальных проблем, в настоящее время успешно выполняется [16].

2.3.4 Тропосферный озон

Основная часть общего содержания озона - около 90 %, приходится на стратосферу и только 1 % на тропосферу. Глобальная фоновая среднегодовая концентрация озона в приземном слое не превышает 100 мкг/м3.

Озон является одним из самих важных химических компонентов фотохимического смога. Этот тип смога характеризуется тем, что он образуется в результате фотохимических реакций. Фотохимический смог образуется в ясную погоду при низкой влажности воздуха, причем максимальная концентрация вызывающих раздражение органов чувств веществ наблюдается вскоре после полудня. Химически он действует как окислитель (усиливает коррозию металлов, приводит к растрескиванию резины и т.д.). Фотохимический смог вызывает улюдей сильное раздражение слизистой оболочки дыхательных путей и глаз, губит листву на деревьях. В атмосфере наблюдается появление голубоватой дымки или беловатого тумана и связанное с этим ухудшение видимости. Озон является ответственным за ряд свойств смога.

Как показывают экспериментальные данные, увеличение концентрации озона в пробах воздуха, содержащих разбавленные выхлопные газы автомобилей, связано с характерным изменением относительного содержания оксидов азота. Рост концентрации О3 в пробах воздуха начинается после того, как отношение концентраций NO2 и NO достигает максимума. Образование и разрушение озона в тропосфере происходит при протекании следующих реакций:

СН4 + ОН СН3 + Н2О

СН3 + О2 СН3ОО

СН3ОО + NO CH3O + NO2

CH3O + O2 CH2O + HO2

HO2 + NO NO2 + OH

CH2O + OH H2O + CO

HO2 + NO NO2 + OH

NO2 + hv NO + O

O + O2 + M O3 + M*

CH4 + 8O2 + 4M CO2 + 2H2O + 4M* + 4O3

Таким образом, концентрация озона в тропосфере будет возрастать при увеличении скорости конверсии NO в NO2.

Значит, фотохимический смог является следствием выбросов автотранспорта и отрицательно сказывается на жизнедеятельности и здоровье людей и животных [16].

ГЛАВА 3. МЕТОДИЧЕСКИЕ РАЗРАБОТКИ ПО ТЕМЕ «р-ЭЛЕМЕНТЫ»

3.1 Урок на тему «III-А группа периодической системы химических элементов Д. И. Менделеева»

Занятие 1. Характеристика химических элементов III-а группы периодической системы

Алюминий

Основные цели. Формирование основополагающих понятий, умений и навыков. Характеристика химических элементов III-a группы периодической системы. Строение атома, физические и химические свойства, применение и получение алюминия.

Оборудование. Периодическая система химических элементов, рис. 2, 1 б.

Вещества. Алюминий.

ХОД ЗАНЯТИЯ

Основное содержание

Формы обучения

Методы обучения

Средства обучения

1. Актуализация знаний, умений и навыков учащихся.

1) Перечислите химические элементы IIIa группы периодической системы в порядке усиления их металлических свойств.

Рис. 2

2) Электронная формула внешнего энергетического уровня 3s23p1 принадлежит атому:

а) бора; б) алюминия; в) галлия; г) таллия.

3) Перечислите физические и химические свойства и области применения алюминия, используя рис. 21.3

2. Получение алюминия

Рис. 1, б

3. Подведение итогов

Краткое сообщение на тему «Металлы III группы с точки зрения химика-эколога»

Опросить учащихся.

Информация о домашнем задании. § 50 ([3]). Напишите уравнения реакций, при помощи которых можно осуществить превращения веществ:

Самоанализ урока

Занятие 2. Оксиды и гидроксиды алюминия

Основные цели. Формирование основополагающих понятий, умений и навыков. Углубить знания учащихся об амфотерности оксидов и гидроксидов. Аквакомплексы, гидроксокомплексы, химизм производства алюминия электролизом оксида алюминия.

Оборудование. Схема производства алюминия (процесс электролиза), штатив с пробирками, рис. 1, а.

Вещества. Растворы AlCl3, NaOH, H2SO4.

ХОД ЗАНЯТИЯ

Основное содержание

Формы обучения

Методы обучения

Средства обучения

1. Амфотерность оксида алюминия

2. Запись уравнений реакций взаимодействия оксида алюминия с гидроксидом натрия и азотной кислотой

3. Амфотерность гидроксида алюминия. Запись ионных уравнений реакций. Разбор образования аква- и гидроксокомплексов. Сверить запись уравнений реакций с домашним заданием. Коллоидные частицы

Лабораторный опыт 21

4. Разбор химизма образования гидроксида алюминия в производстве алюминия

рис. 3

5. Подведение итогов

Сообщение на тему «Экологические аспекты переработки алюминийсодержащих руд»

Опросить учащихся.

Информация о домашнем задании. § 50; таблица 21.1 ([3]).

Самоанализ урока

Занятие 3. Гидролиз солей алюминия

Основные цели. Формирование основополагающих понятий, умений и навыков. Расширить знания о гидролизе солей. Применение гидролиза солей.

Оборудование. Штатив с пробирками, схема «Гидролиз солей».

Вещества. Растворы сульфата или хлорида алюминия, лакмусовая бумага (лакмус) синяя, фиолетовая.

ХОД ЗАНЯТИЯ

Основное содержание

Формы обучения

Методы обучения

Средства обучения

1. Актуализация знаний, умений и навыков учащихся об амфотерности оксида и гидроксида алюминия

2. Гидролиз солей алюминия:

а) анализ результата опыта;

б) запись ионных уравнений проделанного опыта;

в) вывод

Лабораторный опыт 22(1)

Схема «Гидролиз солей»

3. Выполнение задания. Напишите уравнения реакций, при помощи которых можно осуществить превращения веществ:

4. Подведение итогов

Опросить учащихся

Информация о домашнем задании. § 50 ([3]).

Самоанализ урока.

3.2 Уроки по теме «V-A группа ПС»

3.2.1 Экологические аспекты преподавания темы «Азот. Соединения азота»

Знать: важнейшие свойства и применение азота, аммиака, оксидов азота, азотной кислоты, нитратов; важнейшие минеральные удобрения, условия их рационального хранения и использования; устройство прибора для получения аммиака в лабораторных условиях; качественные реакции на нитрат-ионы и ион аммония; химические реакции, лежащие в основе производства аммиака и азотной кислоты, условия их осуществления; общие научные принципы химического производства.

Уметь: давать характеристику подгруппе элементов; составлять уравнения изученных реакций, рассматривать их с точки зрения окислительно-восстановительных и ионных представлений; определять на практике нитрат-ионы, а также ион аммония; решать комбинированные задачи.

Основные понятия: донорно-акцепторный механизм образования связи, ион аммония, несолеобразующий (безразличный) оксид, селитры, удобрения (туки), азотистый ангидрид, азотный ангидрид, нитриды.

Контрольные вопросы

1. Каково строение атома азота?

2. Каковы возможные валентности и степени окисления азота?

3. Где в природе встречается азот?

4. Как получают азот в лаборатории и в промышленности?

5. Каковы физические свойства азота?

6. Каковы химические свойства азота? Напишите уравнения реакций.

7. Где применяется азот?

8. Каково строение молекулы аммиака? Какой тип химической связи в молекуле NH3?

9. Как образуется донорно-акцепторная связь в ионе аммония?

10. Почему аммиак способен окисляться?

11. Каковы физические свойства аммиака?

12. Как аммиак взаимодействует с водой и кислотами?

13. Какие два способа окисления аммиака вам известны? Приведите уравнения соответствующих реакций.

14. Где применяется аммиак?

15. Почему соли аммония схожи с солями калия?

16. Какова растворимость в воде солей аммония?

17. Как получают аммиак в лаборатории и на производстве? Составьте уравнения реакций получения NH3.

18. Каковы общие свойства солей аммония? Напишите уравнения реакций.

19. Каковы специфические свойства солей аммония? Подтвердите свой ответ уравнениями реакций.

20. Какова качественная реакция на соли аммония? Составьте уравнение реакции.

21. Какие оксиды азота вам известны?

22. Как можно получить монооксид азота? Каковы его физические свойства?

23. Как можно получить диоксид азота? Каковы его физические свойства?

24. Как диоксид азота взаимодействует с водой и щелочами? Напишите уравнения реакций.

25. Каковы физические свойства азотной кислоты?

26. Каково строение молекулы азотной кислоты?

27. Каковы валентность и степень окисления азота в азотной кислоте?

28. Как можно получить азотную кислоту? Приведите уравнение реакции.

29. Почему азотная кислота является сильным окислителем?

30. Как азотная кислота взаимодействует с металлами?

31. Какие газообразные вещества могут выделяться при восстановлении азота в азотной кислоте?

32. Какие металлы не взаимодействуют с концентрированной азотной кислотой? Почему?

33. Как взаимодействуют с разбавленной азотной кислотой медь и серебро? Напишите уравнения реакций.

34. В какой таре можно хранить азотную кислоту?

35. Как разлагается азотная кислота?

36. Как взаимодействуют неметаллы с азотной кислотой? Приведите уравнения реакций.

37. Какие еще соединения азота вам известны?

38. Как называют соли азотной кислоты? Каковы их физические свойства?

39. Какие нитраты являются удобрениями?

40. Какие способы получения нитратов вам известны? Составьте уравнения реакций.

41. Как могут разлагаться нитраты при нагревании? Напишите уравнения реакций разложения KNO3, Cu(NO3)2 и AgNO3.

42. Почему нитраты могут быть окислителями?

43. Как отличить нитраты от других солей?

44. Какие вещества называют удобрениями?

45. Какие виды удобрений вам известны?

46. Перечислите важнейшие удобрения каждой группы.

47. Какие элементы составляют семейство азота?

48. Как изменяются свойства элементов группы Vа и их соединений с увеличением атомного номера? Почему?

Рассмотрим в качестве примера разработки некоторых уроков по теме «Производство азотной кислоты».

3.2.2 Урок по теме «Получение азотной кислоты»

Цель урока: Рассмотреть процесс получения азотной кислоты в лабораторных условиях, изучить и закрепить химизм процесса.

Приборы и материалы: штатив, реторта, воронка, тубус, резиновая пробка, чашка с холодной водой, печь или спиртовка

Реактивы: концентрированная серная кислота, 15-20 г. нитрата натрия.

ХОД УРОКА

Собрать прибор по рисунку 3. В реторту поместить 15-20 г NaNO3 и прилить через воронку, вставленную в тубус столько концентрированной H2SO4, чтобы она покрыла соль. Закрыть тубус стеклянной или резиновой пробкой и опустить конец реторты в сухую колбу, помещенную в чашку с холодной водой. Осторожно нагревать реторту. Когда в приемнике соберется несколько миллилитров кислоты, нагревание прекратить и, дав реторте охладиться, разобрать прибор. Кислоту сохранить для следующих опытов. Объяснить появление у нее окраски..

Остерегаться попадания HNO3 на одежду или на руки: она быстро разрушает ткань, а на руках появляются желтые пятна и ожоги.

Написать уравнение реакции:

H2SO4 + NaNO3 HNO3 + NaHSO4

Вопросы: Почему реакция проводят при несильном нагревании?

Сделайте вывод о проведенной работе.

3.2.5 Практическая работа на тему «Азотная кислота и ее соли»

Цель урока: Научиться применять полученные знания о свойствах азотной кислоты и ее солей на практике.

ХОД УРОКА

I. Организационный момент.

II. Фронтальный опрос:

- Какие реакции называют окислительно-восстановительными?

- Какие химические свойства HNO3 вы знаете?

- Дождевая вода после грозы содержит следы азотной кислоты. Чем это объясняется?

III. Индивидуальный опрос

1-й учащийся - задание №

2-й учащийся - задание №

IV. Самостоятельная работа

На оставшееся время учитель раздает всем карточки с тремя заданиями, два из которых уже разбирались на уроке, а третье задание - творческое, направлено на выявление дополнительных знаний по данной теме.

Например, такая карточка может выглядеть следующим образом:

Карточка № 1

1) Рассчитайте массовую долю азота в следующих веществах:

а) N2O; б) N2O4; в)Cu(NO3)2; г)NH4NO3; д)Fe(NO3)3.

Напишите уравнения реакций, с помощью которых можно осуществить цепь следующих превращений:

NO2 HNO3 Ba(NO3)2 KNO3

Почему молекула NO2 легко димеризуется, а для SO2 подобный процесс не характерен?

V. Домашнее задание:

Задача № 7; 2) Составить кроссворд на тему: «Азотная кислота и ее большое семейство». [3 (c. 55-60), 17-20]

3.3 Уроки по теме «VI-A группа ПС»

3.3.1 Урок-лекция по теме «Кислород»

Цель урока - ознакомить учащихся с элементом кислород, его физическими, химическими свойствами, методами получения, аллотропной модификацией - озон. Определить значение кислорода и озона для живых организмов, промышленности и техники.

ХОД УРОКА

1. Организационный момент - проводим перекличку - 2 минуты

2. Фронтальный опрос - выясняем, что такое химический элемент, строение атома, простое вещество - 5 минут.

3. Объяснение новой темы:

Делим урок на две части

I. (35 мин)

- химический элемент кислород

- строение атома кислорода

- простое вещество - кислород

- строение молекулы - кислорода

- аллотропные состояния кислорода - кислород и озон

- строение молекулы озона

- физические свойства кислорода

- физические свойства озона

- химические свойства кислорода

- химические свойства озона

- получение и применение кислорода

- получение и применение озона

II. (40 мин)

- озоновый слой планеты, его значение для жизни всего живого на планете

- образование и разрушение озонового слоя

- кислород в атмосфере нашей планеты, его значение для живых организмов. Круговорот кислорода

- способ получения кислорода в природе - фотосинтез. Реакции связывания кислорода в природе, выводящие его из круговорота

Домашнее задание - выучить все свойства и методы получения кислорода и озона. Составить таблицу.

Что делал

Что наблюдал

Уравнения реакций

1. налили в пробирку H2O2 и добавили MnO2; вносим тлеющую лучинку

Выделяется газ, в которой воспламеняется тлеющая лучинка

2О2 = 2Н2О + О2

2. нитрат калия вносим в пробирку и нагреваем

Выделяющийся газ воспламеняет тлеющую лучинку

2KNO3 = 2KNO2 + O2

3. перманганат калия вносим в пробирку и нагреваем. Выделяющийся газ улавливаем в стакан

Лучинка, опущенная в стакан, горит, значит, там находится кислород

2KMnO4 = MnO2 + K2MnO4 + O2

3.3.2 Урок № 2. Лабораторная работа 1. «Изучение способов получения кислорода»

Чтобы получить чистый кислород, нужны вещества, богатые этим элементом. К ним относятся нитраты и хлориды, а также пероксиды.

1. Разложение перекиси водорода в присутствии катализатора

Оборудование и реактивы: пробирка, лучинка, пероксид водорода (3 %-ный), оксид марганца (IV).

Ход работы: В пробирку налить 5 мл пероксида (Н2О2) добавить две гранулы MnO2 и поднести лучинку. Мы будем наблюдать ее горение. Значит, выделяется кислород.

2О2 2H2O + O2

Пероксид водорода очень неустойчив и уже на воздухе разлагается с образованием кислорода и воды. Оксид марганца (IV) значительно ускоряет эту реакцию, т.к. является катализатором.

2. Разложение нитратов калия или натрия

Оборудование и реактивы: пробирка, 5 г порошкообразной селитры (KNO3 или NaNO3), чашка с песком, лучинка, горелка.

Ход работы: Укрепим пробирку на штативе и внесем в нее нитрат. Поставим под пробирку чашку с песком, т.к. при этом опыте стекло часто плавится и вытекает горячая масса. Поэтому и горелку при нагревании будем держать сбоку. Когда мы сильно нагреем селитру, она расплавится и из нее выделится О2 (обнаружим его с помощью лучинки):

2KNO3 2KNO2 + O2

В пробирке после выделения О2 останется нитрит.

3. Разложение перманганата калия.

Оборудование и реактивы: пробирка с герметичной пробкой и отводной трубкой, горелка, стакан для сбора кислорода.

Рис. 2. Разложение перманганата калия

Ход работы: собрать прибор как показано на рис. 2, вносим в пробирку 5 г KМnO4 и нагреваем. Кислород улавливаем в специальный стакан и проверяем его на наличие с помощью лучинки.

2KMnO4 MnO2 + K2MnO4 + O2

3.3.3 Урок № 3. Лабораторная работа 2. «Изучение способов получения и химических свойств озона»

1. Одновременно можно провести два следующих опыта:

а) получение озона

б) качественное определение озона

Оборудование и реактивы: пробирка, йодо-крахмальная бумага, H2SO4 (к), KМnO4.

Ход работы. В небольшой сухой стаканчик насыпать очень немного KMnO4 (на конце ложечки) и прилить несколько капель H2SO4 концентрированной. Происходит бурная реакция с выделением озона:

2KMnO4 + H2SO4 K2SO4 + 2HMnO4

2HMnO4 H2O + Mn2O7

Mn2O7 2MnO2 + O3

Озон легко определяем с помощью иодокрахмальной бумаги, которую предварительно смачиваем. Она при пропускании озона окрашивается в синий цвет, т.к. происходит реакция выделения свободного йода

2KI + H2O + O3 2KOH + I2 + O2

свободный йод с крахмалом дает синее окрашивание.

По окончании каждой лабораторной работы ученики должны заполнить рабочую таблицу. [3]

3.3.4 Урок № 4. «Экскурсия в кислородный цех»

Предварительная подготовка

После рассмотрения лабораторного способа получения кислорода с учащимися обсуждают может ли этот способ получения кислорода удовлетворить промышленную потребность в нем. В процессе беседы выясняют, что пероксид водорода и перманганат калия, из которых получают кислород в лабораторных условиях, непригодны для получения его в промышленности, т.к. эти вещества являются дорогостоящими продуктами производства. Следовательно, получать из них кислород в больших количествах экономически невыгодно: его стоимость будет слишком высокой.

В качестве самого дешевого и доступного сырья учащиеся называют воздух. Они знают, что воздух это механическая смесь газов, в основном кислорода и азота. Вместе с преподавателем ученики устанавливают различия в физических свойствах кислорода и азота, обратив внимание на различие температур кипения азота (-196 С) и кислорода (-183 С) при парциальном давлении 10,1 МПа.

Экскурсия

Учащиеся посещают кислородный цех, который включает в себя машинный зал, разделительное отделение, наполнительное отделение, слесарную мастерскую и др.

Экскурсия проводится по следующему плану:

сырье для получения кислорода (воздух), его подготовка (очистка)

производственный процесс получения кислорода

продукция данного производства и ее применение

контроль производства (работа химической лаборатории завода)

Экскурсия начинается с осмотра машинного зала; учащиеся наблюдают работу турбокомпрессоров, подающих воздух, фильтров для его очистки, водяных холодильников, регенераторов, турбодетандеров, теплообменников, ректификационных колонн, конденсаторов, абсорбера для поглощения оксида углерода (IV) и др. оборудования. Ученикам объясняют, что воздух, из которого получают кислород, засасывается турбокомпрессорами из атмосферы и очищается в фильтрах от пыли. Учащиеся наблюдают за работой машиниста-компрессорщика, а экскурсовод рассказывает, что входит в его обязанности. Машинист компрессорных установок обеспечивает пуск, остановку, переключение компрессоров, наблюдает за работой всего вспомогательного оборудования. При этом следует подчеркнуть, что для успешного выполнения работы машинист-компрессорщик должен владеть знаниями основ механики и химии, законов термодинамики и электротехники, он должен уметь читать схемы и чертежи и т.д.

Далее экскурсовод должен рассказать, как переводится воздух в жидкое состояние. Учащимся объясняют, что воздух, как и любой газ, переходит во время сжатия в жидкое состояние только тогда, когда его температура будет ниже критической при данном давлении. Известно, что для воздуха критическая температура равна -141 С при критическом давлении 3,7 МПа. При этих параметрах начинается сжижение воздуха, поэтому воздух подвергают глубокому охлаждению (зона температур -100 С). Сначала турбокомпрессором воздух сжимают (до 20 МПа). При этом он разогревается, вследствие межмолекулярного взаимодействия. Затем дают возможность быстро расшириться, предварительно пропускают через водяной холодильник, а затем делят на четыре потока и направляют в регенераторы для дальнейшего охлаждения. Во время расширения у реальных газов ослабевает взаимное притяжение соседних молекул. На разрушение межмолекулярных связей расходуется внутренняя энергия газа, в результате чего и происходит охлаждение. С этой целью осуществляют дросселирование: сжатый воздух пропускают через специальный вентиль, вследствие этого понижается давление. Но чаще сжатый воздух подают в специальные поршневые детандеры, принцип работы которых такой же, как и у паровой машины. Воздух двигает поршень; при этом на выполнение работы расходуется энергия, и температура воздуха понижается.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.