Решение треугольников в 9 классе

Суть проблемного обучения и особенностей модульной технологии организации учебного процесса. Методические рекомендации к изучению темы "Решение треугольников в 9 классе". Синус, косинус, тангенс угла, теорема о площади треугольника, решение треугольников.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 24.06.2011
Размер файла 504,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

,

;

;

.

Пусть а - наибольшая

сторона,

a< b+c; a2= c2+ b2 -

-2c·b·cos, .

Способ I

a2=c2+b2 -

-2c·b·cosA,

Способ II

1)Если

>90 и - острые.

2) Если <90, a<b, - острый:

,

.

Способ I

b 2=c2+ a 2 -

-2c·a·cos , .

Способ II

Так как угол - острый

= 180°- (+)

= 180°- (+).

Одно решение

Одно решение

Одно решение

Приложение 2

Математический диктант №1

Вариант I

1. Стороны прямоугольного треугольника равны 3см, 4см и 5см. Найти синус меньшего острого угла этого треугольника.

Ответ: sin=

2. Стороны прямоугольного треугольника равны 26м, 24м и 10м. Найти тангенс большего острого угла этого треугольника.

Ответ:

3. Катет прямоугольного треугольника равен 6 дм, а противолежащий угол равен 30°. Найдите гипотенузу этого треугольника.

Ответ: c=12дм

4. Найти косинус острого угла, если его синус равен ?

Ответ:

5. Найти тангенс острого угла, если его синус равен ?

Ответ:

6. Синус острого угла прямоугольного треугольника равен . Чему равен косинус второго острого угла этого треугольника?

Ответ:

Вариант II

1. Стороны прямоугольного треугольника равны 5см, 12см и 13см. Найти тангенс большего острого угла этого треугольника.

Ответ:

2. Стороны прямоугольного треугольника равны 10дм, 8дм и 6м. Найти косинус меньшего острого угла этого треугольника.

Ответ:

3. Катет прямоугольного треугольника равен 8см, а противолежащий угол равен 45°. Найдите гипотенузу этого треугольника.

Ответ:

4. Найти синус острого угла, если его косинус равен ?

Ответ: sin=

5. Найти тангенс острого угла, если его косинус равен ?

Ответ:

6. Косинус острого угла прямоугольного треугольника равен . Чему равен синус второго острого угла этого треугольника?

Ответ: sin=

Математический диктант №2

Вариант I

1. Найдите площадь треугольника, если его основание равно 7см, а высота равна 4см.

Ответ:

2. Найдите синус угла, если его косинус равен .

Ответ: sin=

3. Начертите треугольник ABC с тупым углом С. Проведите высоту треугольника из вершины В.

Ответ: BH - высота

4. Луч ОС образует с положительной полуосью абсцисс угол 60°. Найдите координаты точки С, если ОС = 6 дм.

Ответ:

5. Определите, каким - остроугольным, прямоугольным или тупоугольным - является треугольник, два угла которого равны 43 и 48.

Ответ: треугольник будет - остроугольным

Вариант II

1. Найдите площадь треугольника, если его основание равно 10 дм, а высота равна 5 дм.

Ответ:

2. Найдите косинус острого угла, если его синус равен .

Ответ:

3. Начертите треугольник СДЕ с тупым углом Е. Проведите высоту треугольника из вершины С.

Ответ: СH - высота

4. Луч ОВ образует с положительной полуосью абсцисс угол 30°. Найдите координаты точки В, если ОВ = 8 дм.

Ответ:

5. Определите, каким - остроугольным, прямоугольным или тупоугольным - является треугольник, два угла которого равны 35° и 56 .

Ответ: треугольник будет - остроугольным

Варианты карточек для устного опроса учащихся, по теме: «Решение треугольников по трем сторонам»

Карточка №1

1

В треугольнике ABC B=45, A=70, BC=10см. Найдите сторону AB?

2

Сформулируйте и докажите теорему синусов?

Карточка №2

1

В треугольнике ABC B=45, AB= 9см, BC=11см. Найдите сторону AC?

2

Сформулируйте и докажите теорему косинусов?

Варианты карточек для самостоятельной работы учащихся

Вариант I

1

Что называется тангенсом угла ? Для какого значения тангенс не определен? Почему?

2

Сформулируйте и докажите теорему синусов?

3

Решите ABC, если B=30, C=105, BC=.

Вариант II

1

Напишите формулы приведения?

2

Сформулируйте и докажите теорему косинусов?

3

Решите BCD, если B=45, D=60, BC=.

Вариант III

1

Что называется синусом угла из промежутка 0°180°?

2

Сформулируйте и докажите теорему о вычислении площади треугольника, по двум сторонам и углу между ними?

3

Решите CDE, если C=60, CD= 8дм, CE= 5дм.

Вариант IV

1

Что называется косинусом угла из промежутка 0°180°?

2

Сформулируйте основные виды задач для решения треугольников? Приведите решение одной из них в общем виде?

3

Решите DEF, если DE= 5м, DF= 8м, EF= 4м.

Примерные тексты самостоятельной работы

(решение задач по готовым чертежам)

Вариант I

Ответ: 6см2

Вариант II

Ответ: 48см2

Примерный текст контрольной работы по теме: «Решение треугольников»

Вариант I

1. В треугольнике ABC . Найдите неизвестные элементы треугольника и радиус описанной около него окружности.

2. В треугольнике PKH, , NF - медиана. Найдите HF и площадь этого треугольника PFH.

3. В треугольнике ABC, AB=BC, , AE- биссектриса, BE=a. Найдите площадь треугольника ABC.

Вариант II

1. В треугольнике ABC . Найдите неизвестные элементы треугольника.

2. В параллелограмме ABCD, E- середина BC, , NF - медиана. Найдите площадь этого параллелограмма и радиус описанной около треугольника ABE окружности.

3. Площадь треугольника PKT равна S, . Найдите сторону PK.

Вариант III

1. В треугольнике ABC . Найдите неизвестные элементы треугольника и радиус описанной около него окружности.

2. В параллелограмме ABCD, AB=4, AD=5, BD=6. Найдите и площадь параллелограмма.

3. В ромбе ABCD, AP- биссектриса треугольника CAD, . Найдите площадь ромба.

Вариант IV

1. В треугольнике PKM, . Найдите неизвестные элементы треугольника.

2. В равнобедренном треугольнике ABC, AB=BC, A=65. Через середину E стороны AB, проведена прямая, пресекающая BC в точке K, KBE=20. Найдите площадь треугольника BEK и радиус окружности, описанной около треугольника ABC, если BK=5.

3. Площадь треугольника равна S и два угла его равны, и . Найдите радиус описанной около треугольника окружности.

Размещено на Allbest.ru


Подобные документы

  • Исследование основных свойств и признаков треугольника, признаки их равенства. Сферы и правила применения треугольников в современном мире кроме математики. Составные части треугольников, их соотношение. Знакомство и использование электронной доски.

    разработка урока [12,9 K], добавлен 20.12.2010

  • Характеристика свойств параллельных прямых и видов треугольников. Формулировка и методы доказывания теоремы о сумме внутренних углов в треугольнике. Отличительные черты видов треугольников по углам и по сторонам. Определение суммы односторонних углов.

    презентация [340,7 K], добавлен 09.11.2010

  • Идея подобия треугольников как эффективный метод решения большого класса задач на доказательство, построение, вычисление. Решение элементарных задач на геометрические преобразования - хороший материал для развития пространственного воображения учащихся.

    дипломная работа [274,6 K], добавлен 18.05.2009

  • Способы выявления учебных проблем при преподавании химии в школе. Основные проблемные ситуации при изучении темы "Предельные однооосновные кислоты". Особенности и этапы осуществления проблемного обучения. Примеры проблемных ситуаций и их решение.

    курсовая работа [151,2 K], добавлен 04.01.2010

  • Принципы технологии академика Монахова. Дидактические принципы организации обучения алгебре и характеристика возрастных особенностей подростков. Методические особенности изучения теоремы Безу: авторская программа, методические рекомендации и банк задач.

    дипломная работа [909,4 K], добавлен 20.10.2011

  • Психолого-педагогический аспект и общие методические рекомендации к изучению темы "Геометрические построения циркулем и линейкой". Планы уроков, методические комментарии, факультативные занятия к изучению простейших задач на построение (в 7 классе).

    дипломная работа [1,1 M], добавлен 03.07.2011

  • Сравнительный анализ школьных учебников по теме: "Треугольники" в 7-9 классах. Содержание и порядок изложения материала. Определение треугольника, признаки равенства, подобия треугольников. Конспекты итоговых уроков по теме "Треугольники" для 7-9 классов.

    курсовая работа [2,0 M], добавлен 12.06.2010

  • Анализ понятийного аппарата темы "Подобные треугольники". Методика изучения темы, ее раскрытие в учебниках различных авторов. Усвоение учащимися признаков подобия треугольников и формирования умения применять их. Этапы решения геометрических задач.

    курсовая работа [300,5 K], добавлен 06.10.2011

  • Основные качества новых современных педагогических технологий. Психологические теории как основа некоторых педагогических технологий. Использование элементов модульной технологии и рейтинговой оценки знаний при дифференциации в обучении математике.

    дипломная работа [60,9 K], добавлен 11.01.2011

  • Одна из стратегических задач системы школьного образования - решение проблемы личностно-ориентированного обучения. Метод учебного проектирования. Процесс обучения строится на основе обучения в сотрудничестве всех участников образовательного процесса.

    статья [19,8 K], добавлен 14.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.