Математическое развитие ребенка в системе дошкольного и начального школьного образования

Теория, практика и методическое обеспечение процесса непрерывного математического развития детей в системе дошкольного и начального школьного образования. Разработка, обоснование концепции и апробация ее прикладного аспекта (методы, средства, формы).

Рубрика Педагогика
Вид автореферат
Язык русский
Дата добавления 08.12.2007
Размер файла 153,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

- Методические материалы, способствующие организации работы педагога в направлении математического развития детей дошкольного, младшего школьного и среднего школьного возраста используются в практике работы воспитателей ДОУ и учителей, в практике работы центров развития, в практике коррекционно-развивающего обучения в ДОУ и начальной школе.

- Апробация результатов исследования осуществлялась в форме подготовки педагогических кадров: при написании дипломных исследований - под руководством автора защищено более 50 дипломных работ как на стационаре, так и на заочном отделениях; при повышении квалификации воспитателей ДОУ и учителей начальных классов - написано более 100 курсовых проектов и дано более 200 открытых занятий и уроков.

- Реализация системы математического развития дошкольников и младших школьников в учебных материалах для дошкольников от 3 до 6 лет и в учебных материалах для младших школьников от 1 до 4 класса и сопровождающих их методических пособиях для педагогов позволила провести массовую проверку эффективности предложенной методической концепции математического развития ребенка младшего возраста. По разработанным материалам работало более 1000 классов. Результаты экспериментального обучения изучались на протяжении 14 лет.

Структура и объем диссертации. Работа состоит из введения, материалы которого представлены выше, шести глав, заключения, списка литературы (229 наименований), списка опубликованных работ автора (80 наименований) и … приложений. Текст диссертации иллюстрирован рисунками, таблицами, диаграммами и графиками.

Основное содержание диссертации.

Первая глава: «Проблема непрерывности в теории и практике дошкольного и начального школьного математического образования ребенка» содержит анализ современного состояния теории и практики дошкольного математического образования с точки зрения соответствия основным положениям развивающего обучения и современным образовательным технологиям обучения математике в начальной школе.

В пункте 1.1. «Проблема целей непрерывного математического образования на дошкольной и начальной ступенях» кратко обсуждается имеющая место смена педагогической и дидактической парадигмы «знаниевого подхода» к постановке целей и задач обучения на развивающую парадигму, обусловленную сменой ориентации образовательной системы на личностно-ориентированные деятельностные подходы к формулировке целей и организации непрерывной преемственной образовательной системы на дошкольном и начальном школьном этапе. Предматематическая подготовка в дошкольный период очень важна не столько с предметной, сколько с психологической точки зрения. В этот период ребенок постепенно адаптируется к новому видению мира и приучается к специфике количественной оценки окружающей действительности. С точки зрения психологии восприятия характеристика «количество» является опосредованной, ее осознание и вычленение происходит тогда, когда ребенок научается видеть отдельные детали «цельного» объекта или отдельные элементы множества как «цельной» группы. Для становления такого видения необходима специальная целенаправленная подготовка (обучение). Для успешного становления адекватного восприятия количественных и пространственных характеристик у ребенка в достаточной мере должна сформироваться операция анализа, позволяющая успешно производить выделение нужной характеристики рассматриваемого явления и абстрагирование от других, несущественных для данного процесса признаков. Операция анализа формируется в неразрывной связи с операцией синтеза, а качество их сформированности в значительной мере зависит от технологии их формирования. При этом выявление сходства и различия форм и количественных характеристик объектов и групп объектов требует от ребенка умения проводить операции абстрагирования от несущественных признаков, сравнения и обобщения выделенных признаков, проведения аналогии с уже известными и освоенными понятиями и действиями и т.п. Таким образом важнейшим итогом предматематематической подготовки ребенка является не только и не столько накопление определенного запаса предметных знаний и умений, сколько умственное развитие ребенка, формирование у него необходимых специфических познавательных и умственных умений, которые являются базовыми для успешного усвоения в дальнейшем математического и любого другого обобщенного содержания.

В пункте 1.2. «Проблема преемственности в системе дошкольного и начального математического образования» кратко анализируется проблема преемственности дошкольного и начального математического образования в с современных личностно-деятельностных позиций.

Правильное понимание процессов преемственности имеет особое значение для анализа закономерностей развития того или иного процесса. С философской точки зрения, преемственность - это не только подготовка к новому, но, что более важно и существенно, сохранение и развитие необходимого и целесообразного старого, связь между новым и старым, как основа поступательного развития процесса.

Для образовательного процесса теоретическая разработка понятия преемственности является важнейшей проблемой, предваряющей собственно построение систем взаимосвязанных образовательных звеньев. Основные задачи, требующие решения на данном этапе, можно охарактеризовать следующим образом:

1. Определение общих и специфических целей образования на каждой из данных ступеней, и на основе поступательной взаимосвязи этих целей определение преемственных целей (сохраняющихся и развивающихся на обоих этапах).

2. Построение на этой основе единой взаимосвязанной и согласованной методической системы образования (целей, задач, содержания, методов, средств, форм организации) с обоснованием преемственных связей этих параметров на разных возрастных этапах.

3. Построение единой содержательной линии в предметных областях, согласующейся с обоснованием методической системы, и исключающей необоснованные содержательные перегрузки образовательных областей на дошкольном этапе, ориентацию на форсированное обучение (натаскивание) предметным знаниями умениям, дублирующее школьные программы, или не являющееся непосредственной пропедевтикой тех понятий и способов действий с объектами, с которыми ребенок столкнется в непосредственном ближайшем будущем при переходе в следующее образовательное звено.

Вторая глава: «Современное состояние теории и практики дошкольного математического образования» содержит анализ современного состояния проблемы математического развития ребенка младшего возраста.

Пункт 2.1. «Современные программы математического образования дошкольников» посвящен содержательному и методическому анализу современных программ математического образования дошкольников. Представленный в этом пункте анализ показал, что процесс создания альтернативных дошкольных программ математического образования во многих случаях не является приносящим пользу математическому развитию детей, поскольку ориентирован в большинстве случаев лишь на содержательную вариативность объема арифметических знаний и значительное расширение списка понятий, неперспективных с точки зрения обучения математике в начальных классах. Отсутствие реально работающих технологий математического развития ребенка дошкольного возраста делает разработку таких программ малопродуктивной, поскольку ее реализация в таком случае в основном зависит от индивидуальных возможностей педагога, а не от самой программы. Анализ показал, что отсутствие разработки методических аспектов современной методики математического развития ребенка дошкольного возраста при одновременном расширении границ арифметического содержания дошкольных программ математического образования приводит к тому, что воспитатели часто используют неподходящие, устаревшие и попросту неверные методические подходы к обучению детей этому материалу, поскольку не имеют методической подготовки к обучению математике на основе развивающих подходов. Это приводит к тому, что дети усваивают множество неадекватных представлений математического характера, и по приходу в школу детей необходимо переучивать, что, естественно, не является простым и легким процессом, связано с потерей времени, а также - потерей интереса детей к математике.

Отсутствие четкого разграничения целей дошкольной математической подготовки с целями школьными, приводит к тому, что в практической деятельности воспитатели и родители часто пытаются механически дублировать эти цели, причем, в связи с методической неподготовленностью к развивающему обучению математике, реально сводят процесс математического образования ребенка к заучиванию минимального объема математических знаний наизусть (состав числа, счет, табличное сложение и вычитание в пределах 10, решение некоторых типовых задач). При этом подобное положение вещей на практике не изменяется уже более полувека, несмотря на появление большого количества альтернативных программ математического образования дошкольников.

В пункте 2.2. «Проблема преемственности в современных программах математического образования дошкольников» анализируются способы и качество решения проблемы преемственности математического развития в современных программах математического образования дошкольников. Анализ показал, что основными путями решения этой проблемы авторы программ полагают содержательную подготовку детей к изучению арифметического материала в начальной школе. Отсутствие общего методологического подхода к проблеме математического развития ребенка дошкольного и младшего школьного возраста, ограничение методологии рамками частной методики формирования элементарных математических представлений и набора предметных знаний и умений в ДОУ приводит к нарушению преемственных связей в математическом развитии ребенка, к довольно низкой результативности дошкольной математической подготовки, а также к ситуации «методической неопределенности» для педагога, поскольку ни одна из альтернативных систем математического образования ребенка в ДОУ сегодня не предлагает педагогу действительно полноценную методическую систему математического развития ребенка. Это привело к тому, что педагоги ДОУ используют на практике методическую систему А.М. Леушиной, разработанную в 50-е годы. Использование этой системы для организации развивающего обучения математике в ДОУ требует на современном этапе значительной ее методической переработки.

Проведенный в главе 2 анализ подводит к мысли, что разработка полноценных программ математического образования дошкольников предполагает создание преемственной методической системы математического развития ребенка дошкольного и младшего школьного возраста, в основе которой лежат взаимосогласованные цели, методы, содержание, средства и формы в контексте развивающего подхода к обучению математике ребенка младшего возраста.

На основе проведенного в 1 и во 2 главах анализа в третьей главе: «Концепция математического развития ребенка младшего возраста» выявляются и формулируются теоретико-методологические основания концепции математического развития ребенка на дошкольном и начальном школьном этапе.

В пункте 3.1. «Математическое развитие ребенка как цель дошкольной и начальной математической подготовки» рассматриваются различные подходы к определению понятия «математическое развитие» ребенка. Проведенный анализ показывает, что понятие «математическое развитие» ребенка дошкольного и младшего школьного возраста, на практике часто ассоциируется с понятием «математические способности», имеющие природный характер. Успешность ребенка в освоении математического содержания во многих случаях связывается педагогами с наличием этих природных способностей у ребенка и отрицанием возможности методически влиять на эти способности. Как следствие, на практике часто наблюдается ориентация педагогов более на природные данные ребенка, чем на поиск и применение методик организации математического развития ребенка, обладающего слабыми природными способностями к математике.

Резюмируется, что понятие «математическое развитие» ребенка дошкольного и младшего школьного возраста не следует полностью ассоциировать с понятием «математические способности», имеющие природный характер. Успешность ребенка в освоении математического содержания во многих случаях связана с наличием этих природных способностей, но организация математического развития ребенка, обладающего слабыми природными способностями к математике, вполне возможна при условии применения соответствующих методик. При этом в одних случаях процесс целенаправленного математического развития ребенка будет приводить к дальнейшему развитию природных математических способностей, в других случаях - к оптимальному развитию необходимых для успешного усвоения математического содержания свойств и качеств мышления, в третьих случаях - к коррекции недостатков познавательного развития ребенка и создании предпосылок для более успешного усвоения математического содержания при дальнейшем обучении.

Обосновывается необходимость и возможность принятия направленности на математическое развитие ребенка как глобальной цели математического образования на дошкольном и начальном школьном этапе образования. Цель математического развития ребенка дошкольного и младшего школьного возраста - это стимуляция и развитие математического стиля мышления (соответствующих возрасту компонентов и качеств этого стиля мышления). В дошкольном возрасте сенситивным компонентом математического мышления является конструктивное мышление, а в младшем школьном возрасте основным компонентом математического мышления, сенситивным этому возрасту, является пространственное мышление.

При этом реализация целенаправленной работы по организации математического развития ребенка дошкольного и младшего школьного возраста требует научной и прикладной разработки технологии математического развития (содержание, методы, средства, формы) и не может рассматриваться как полностью зависящая от уровня подготовки педагога, его опыта и его возможностей в конструировании авторских методик в соответствии с собственными воззрениями в области математического развития ребенка, поскольку, как показывают исследования, большинство педагогов полагают, что организовывать математическое развитие следует только в отношении детей, имеющих математические способности от природы.

В пункте 3.2. «Влияние математического стиля мышления на личностное развитие ребенка» рассматривается влияние математического развития на личностное развитие ребенка. Показано, что целенаправленная работа по организации математического развития ребенка дошкольного и младшего школьного возраста будет способствовать общему повышению уровня развития интеллектуальных (умственных) способностей каждого ребенка, что в свою очередь благоприятно отразится на успешности обучения детей предметному содержанию. Эта работа будет также способствовать личностному развитию ребенка, поскольку такие качества математического стиля мышления как целеустремленность, критичность, широта, гибкость, организованность, логичность и др. являются в то же время личностными характеристиками качеств ума и характера человека.

В пункте 3.3. «Отбор содержания для организации математического развития ребенка младшего возраста (психолого-педагогическое обоснование)» приводится психолого-педагогическое обоснование отбора содержания для организации математического развития ребенка младшего возраста. Базой для построения технологии математического развития следует полагать специфику развития мышления и восприятия ребенка младшего школьного возраста. С этой точки зрения, наполнение содержания математического образования дошкольников геометрическим материалом позволяет на начальных этапах опираться на сенсорные способности (восприятие) ребенка, поскольку адекватные модели практически всех геометрических объектов можно дать ребенку в руки для непосредственного исследования и экспериментирования уже на этапе раннего детства. Пространственные характеристики, форма и размер объектов проще поддаются вещественному и затем графическому моделированию, тогда как количественные характеристики (число) удобнее моделировать знаками и символами. С этой точки зрения, геометрическое содержание более соответствует «детскому способу» вхождения в математику, чем арифметическое.

В четвертой главе: «Методические вопросы процесса математического развития дошкольников и младших школьников» рассматриваются вопросы построения методической системы математического развития ребенка младшего возраста на уровне образовательной технологии.

В пункте 4.1. «Моделирование как образовательная технология математического развития дошкольников и младших школьников» доказано, что в качестве общей методологии математического развития ребенка младшего возраста может быть рассмотрено моделирование. Являясь специфической опосредованной формой мышления, моделирование, будучи сформировано в специальном обучении, выступает впоследствии как универсальная, общая интеллектуальная способность ребенка, а для дошкольника - и как основное средство продуктивной интеллектуальной деятельности. В математике использование этой методологии требует построения сенсорно воспринимаемых ребенком адекватных моделей изучаемых понятий, а также построения системы моделирующих действий ребенка, связанных не только с изучением предлагаемой ему модели, но и позволяющих ребенку самому построить модель этого понятия, и через процесс ее построения осознать основные свойства и отношения изучаемых математических объектов. При таком подходе к формированию начальных математических представлений учитывается не только специфика математики - науки, изучающей количественные и пространственные характеристики реальных объектов и процессов, но и происходит обучение общим способам деятельности с математическими моделями реальной действительности и способам построения этих моделей.

Являясь общим приемом изучения действительности, моделирование позволяет эффективно формировать такие приемы умственной деятельности как классификация, сравнение, анализ и синтез, обобщение, абстрагирование, индуктивные и дедуктивные способы рассуждений, что в свою очередь стимулирует в перспективе интенсивное развитие словесно-логического мышления. Таким образом, можно считать, что данный подход будет обеспечивать формирование и развитие математического мышления ребенка. Данный методический подход к обучению математике на дошкольном этапе является преемственным и способствующим математическому развитию ребенка на дошкольном и начальном школьном этапах обучения, поскольку ориентирован на эффективное достижение тех же целей, что и процесс обучения математике в школе.

В пункте 4.2. «Методические принципы отбора содержания курса «Математическое развитие дошкольников» формулируются методические принципы отбора содержания курса «Математическое развитие дошкольников». Предлагаемый подход к построению методики математического развития ребенка дошкольного возраста позволяет сформулировать основные принципы отбора содержательного материала курса: принцип реализации модельного подхода к обучению, т.е. необходимости представления понятий в виде вещественных и графических моделей, обеспечивающих наглядно-действенный и наглядно-образный характер обучения; принцип системности, обеспечивающий взаимосвязь изучаемых математических понятий; принцип преемственности, обеспечивающий целенаправленный процесс математического образования ребенка по возрастам и подготовку к изучению математики в школе.

Построение программного списка дидактических единиц на основе предлагаемых принципов позволяет построить четко соблюдаемую спиралевидно расширяющуюся систему математических понятий. При таком построении программы соблюдается последовательность в изучении математических понятий и отношений между ними не в смысле линейной последовательности (одно за другим последовательно, что ведет к значительному расширению списка изучаемых понятий по годам обучения), а в смысле расширения последовательности изучаемых связей и отношений между понятиями. Построение программного содержания обучения математике дошкольников на основе сформулированных принципов позволяет также реализовать на этом содержании методическую систему целенаправленного математического развития дошкольников при соблюдении требований преемственности и непрерывности математического образования между дошкольным и начальным звеном: отсутствие «тупиковых» тем, математическая корректность программы, отсутствие перегрузок и неоправданных заимствований из школьной программы, методическая согласованность образовательного процесса, исключающая переучивание ребенка на следующей образовательной ступени.

Сформулированные принципы позволяют разработать содержательную базу процесса математического развития ребенка, обеспечивающую преемственные связи дошкольной и школьной ступеней в системе развивающего образования в едином контексте математического развития ребенка.

В пункте 4.3. «Основные направления математического развития младших школьников» Рассмотрены основные направления математического развития младших школьников. Дан анализ содержания учебников математики типов упражнений в учебниках математики для начальных классов, показывающий, что они не обеспечивают ни содержательно, ни методически процесс развития пространственного мышления ребенка младшего школьного возраста.

Сформулированы методические принципы отбора содержания для организации математического развития младших школьников: принцип реализации модельного подхода к обучению, т.е. необходимости представления понятий в виде вещественных и графических моделей, обеспечивающих наглядно-образный характер обучения; принцип системности, обеспечивающий взаимосвязь изучаемых математических понятий; принцип преемственности, обеспечивающий целенаправленный процесс математического образования ребенка и подготовку к изучению математики в средней школе. Использование единых принципов построения содержания математического развития дошкольников и младших школьников позволяет делает их преемственными, а также позволяет реализовать преемственность обучения математике со средней школой.

Обосновано, что, поскольку преобладающим видом мышления у большей части детей младшего школьного возраста является наглядно-образное мышление, которое является необходимой базой для формирования и развития пространственного мышления, можно считать, что младший школьный возраст является крайне важным периодом для формирования этого вида мышления. Таким образом, основная направленность процесса математического развития ребенка в начальной школе должна быть ориентирована на развитие пространственного мышления. Эта направленность требует организации целенаправленного развития трех типов пространственного оперирования, характерных для пространственного мышления человека. Вторым важным направлением математического развития младших школьников является подготовка к развитию логического понятийного мышления. Возможный вариант осуществления этого развития через систему конструктивных заданий, построенных на геометрическом материале, рассмотрен в главе 5.

Таким образом, проведенный в главах 3 и 4 анализ позволяет выявить и сформулировать теоретико-методологические основания концепции математического развития ребенка на дошкольном и начальном школьном этапе. Охарактеризуем эти основания:

«Концепция математического развития ребенка младшего возраста» представляет собой систему взглядов на психолого-дидактическое обоснование, цели, содержание, способы и средства организации непрерывного целенаправленного преемственного математического развития ребенка на дошкольном и начальном школьном этапе обучения. Она выражает необходимость и возможность методического руководства процессом развития математического мышления и математических способностей ребенка младшего возраста.

Психолого-дидактическим обоснованием концепции является своеобразие возрастного развития познавательных и когнитивных процессов ребенка младшего возраста, обусловленное тем, что в возрасте 3-5 лет ведущим типом мышления ребенка является наглядно - действенный тип, а в возрасте 6 -10 лет - наглядно-образный тип мышления. Возраст 10 -12 лет является переходным к ведущему абстрактному (словесно-логическому) типу мышления. Это обусловливает необходимость использования для организации математического развития ребенка на каждом из обозначенных этапов соответствующего содержания и методологии, максимально соответствующих «детскому способу» вхождения в математику оптимально возрасту ребенка. В исследовании доказано, что главным направлением организации математического развития ребенка дошкольного возраста является целенаправленное развитие конструктивного мышления, а ребенка младшего школьного возраста - развитие пространственного мышления. Эти виды математического мышления сенситивны указанным возрастам, и потому наиболее чувствительны к методическому развивающему воздействию педагога.

Методологическим обоснованием концепции является выбор в качестве ведущего метода обучения детей математическому содержанию метода моделирования, с преимущественным использованием на каждом возрастном этапе того вида моделирования, который более всего соответствует возрастным особенностям развития мышления и других познавательных процессов. В возрасте 3-5 лет - это конструирование (вещественное моделирование), в возрасте 6-10 лет - это сочетание конструирования с графическим моделированием с постепенным перенесением акцента на второе, в возрасте 10-12 лет - это графическое моделирование с элементами конструирования там, где необходимо практическое приложение знаний и умений ребенка в математике, и с элементами логико-символического моделирования (знакового и символьного) в качестве подготовки к переходу ребенка на ведущий словесно-логический (абстрактный) тип мышления в старшем возрасте. Такой подход к выбору ведущего метода обучения обеспечивает эффективное развитие приемов умственной деятельности у ребенка (анализа, синтеза, абстрагирования, обобщения и др.), развитие практико-ориентированной интуиции в применении математических знаний, самостоятельности в учебно-познавательной деятельности и таких качеств математического мышления как гибкость, критичность, активность, целенаправленность и др.

В свою очередь, модель изучаемого математического понятия или отношения играет роль универсального средства изучения свойств математических объектов. При этом наиболее целесообразным содержанием для организации процесса непрерывного математического развития ребенка младшего возраста является геометрический материал, поскольку модель геометрического понятия или отношения можно построить в любом необходимом виде (вещественном, графическом, символьном) в соответствии с целями обучения и возможностями и особенностями восприятия ребенка в каждый из указанных возрастных этапов. Логическая структурная стройность геометрического содержания позволяет выстроить систему необходимых логико-конструктивных заданий для детей всех указанных возрастов с целью организации их математического развития. При этом такая система позволяет адресовать процесс математического развития любому ребенку (как математически способному, так и ребенку без особых исходных возможностей в освоении математики). Опыт практической реализации предлагаемой системы показал ее высокую эффективность при организации математического развития детей с различными природными данными: во всех случаях наблюдалось значительное продвижение ребенка по пути математического развития.

Практический блок концепции, определяющий организационно-методическое обеспечение системы математического развития ребенка младшего возраста рассмотрен в пятой главе: «Методическое обеспечение математического развития дошкольников и младших школьников». В ней представлена целостная образовательная технология математического развития ребенка дошкольного возраста, в соответствии с принятым возрастным делением на группы в детском саду, в виде учебно-методических комплектов, включающих в себя материалы для организации конструктивно-моделирующей деятельности детей на математическом занятии и описания материалов и способов методической деятельности с ними педагога. В этой же главе рассматривается образовательная технология математического развития ребенка младшего школьного возраста на период его обучения в начальных классах в виде учебно-методического комплекта, включающего в себя материалы для организации конструктивно-моделирующей деятельности детей на уроках и описания материалов и способов методической деятельности с ними педагога.

В пункте 5.1. «Развитие конструктивного мышления дошкольника как основа его математического развития» приводится обоснование необходимости развития конструктивного мышления дошкольника как основы его математического развития. Тесная взаимосвязь между конструктивным и пространственным мышлением позволяет обоснованно высказать предположение о том, что в дошкольном возрасте развитие конструктивного мышления есть способ и средство стимуляции и развития пространственного мышления, которое, в свою очередь, является неотъемлемой составляющей математического стиля мышления. Под конструированием будем понимать вещественное моделирование различных объектов, понятий и отношений. Под обучением конструированию имеется в виду формирование общих конструктивных умений и развитие на этой базе конструктивного стиля мышления. Цель обучения конструированию - научить первичным приемам моделирования на самом простом наглядно-действенном уровне, т. е. уровне, соответствующем наглядно-действенному мышлению детей 3-5 лет и образному мышлению детей 6-10 лет.

При таком подходе к процессу формирования пространственного мышления дошкольника появляется возможность формировать базу первоначальных образов понятий (образов памяти) и образов способов действий (образов операций) через доступную ребенку деятельность конструирования с вещественными моделями. Процесс интериоризации этой деятельности как в виде отдельных операций, так и общих способов действий будет способствовать накоплению запаса образов, стимулирующих развитие пространственного мышления ребенка.

Рассматривая конструирование как частный, специфический вид такого общего способа деятельности с математическими понятиями и отношениями, как моделирование, предполагается выстроить формирование конструктивных умений у ребенка в процессе моделирования изучаемых математических понятий и отношений. С другой стороны, возможность воплощения изучаемого понятия или отношения в вещественной модели (макете, конструкции) позволяет сформировать у ребенка адекватное представление об абстрактном объекте на наглядно-действенном уровне и наглядно-образном уровне, что является наиболее соответствующим его возможностям и потребностям. При реализации конструктивного подхода к математическому развитию дошкольников необходимо привести конструктивную деятельность ребенка в соответствие с требованиями к построению учебных моделей понятий и этапами формирования умственных действий. Наиболее удобным математическим содержанием для реализации данной задачи является материал геометрического характера. Этот материал позволяет построение двухэтапного использования конструктивной деятельности ребенка с геометрическими образами (вещественного и графического).

В пункте 5.2. «Система логико-конструктивных заданий на математическом содержании как основа организации деятельности на математическом занятии при работе с детьми дошкольного возраста» рассмотрена методика построения системы логико-конструктивных заданий на математическом содержании как основы организации деятельности на математическом занятии при работе с детьми дошкольного возраста. Показано, что средством организации математического развития дошкольников является система логико-конструктивных заданий на математическом содержании. Суть методики, состоит в том, чтобы через систему специальных заданий и упражнений организовать ситуацию, позволяющую формировать и развивать у ребенка именно логические структуры в процессе знакомства с математическим содержанием. Сочетание такой работы с системой заданий, активно развивающих мелкую моторику, т. е. заданий логико-конструктивного характера, является фактором, активно влияющим на математическое развитие дошкольника.

В пункте 5.3. «Организация математического развития младших школьников» рассматривается методическое обеспечение математического развития младших школьников на примере использования геометрического материала. Решение проблемы организации деятельности учащихся начальных классов в процессе изучения математических объектов видится в разработке системы учебных заданий логико-конструктивного характера, включающих оперирование знаниями для всех этапов обучения в начальной школе (четыре года обучения).

Основным методом, используемым в процессе математического развития младших школьников при формировании геометрических представлений должна являться собственная моделирующая деятельность ребенка с адекватными (целесообразными) моделями изучаемых понятий и отношений. Сама же деятельность ребенка направлена на формирование пространственного мышления посредством моделирования пространственных отношений различных типов. Такая организация деятельности способствует общему математическому развитию ребенка, включающему развитие образного и абстрактно-логического мышления.

В шестой главе: «Организация и результаты экспериментального обучения» содержатся описание и анализ экспериментальной апробации предлагаемой технологии в детском саду и в начальной школе, а также некоторые итоги внедрения результатов данного исследования в процесс повышения квалификации педагогов ДОУ и средней школы и в процесс обучения студентов педагогических специальностей. За прошедший период (1990 - 2003 г.) был накоплен значительный опыт организации математического развития дошкольников и младших школьников. Сравнивать результаты обучения математике в ДОУ в экспериментальных и контрольных группах и в экспериментальных и контрольных классах в начальной школе при применении предлагаемой технологии в различных традиционных и альтернативных вариантах затруднительно, так как требования и критерии могут быть сопоставимы либо на уровне «знаниевого» подхода, либо на уровне качественного описания результатов экспериментального обучения.

Для определения эффективности разработанной методической системы мы применяли сравнение успеваемости учащихся экспериментальных и контрольных классов. Немаловажной была для нас и экспертная оценка учителей начальной школы, которые отмечают возросший интерес к изучению математики учащихся, занимающихся по разработанным материалам, а также повышение качества их знаний, особенно обобщенности и осознанности. Еще более значимыми мы полагали экспертные оценки учителей математики, принимающих экспериментальные классы: многие из них отмечали значительное отличие в уровне математического развития в экспериментальных классах. Большее количество расположенных к математике и хорошо успевающих в ней детей в этих классах отмечалось на протяжении всех лет эксперимента. При этом ни о каком предварительном отборе детей в эти классы речи не шло.

Из числа школ случайным образом были выбраны несколько из тех, которые участвовали в экспериментальном обучении. В первую очередь нас интересовали интегрированные оценки знаний учащихся и их сравнение с оценками учащихся контрольных классов. Контрольные классы, которые не участвовали в экспериментальном обучении, были выбраны в тех же школах. Приведем некоторые результаты контрольных срезов в трех случайно выбранных экспериментальных и трех контрольных классах, из которых экспериментальные классы занимались по программе «Наглядная геометрия» в начальной школе (начальный уровень подготовленности детей во всех классах в 1 классе был практически одинаковым).

Поскольку учитель математики в каждой паре выбранных двух классов одной школы был один и тот же, разница в результативности может быть объяснена только уровнем математической подготовки классов. Безусловно, можно сказать, что такая разница объясняется уровнем профессионального мастерства учителя начальных классов, работавшего с детьми в начальной школе. Именно поэтому мы и отмечали сложность аргументации результатов экспериментальной работы ссылками на количественные показатели оценок знаний детей. В этой связи мы более склонны апеллировать к качественным оценкам учителей математики, принимающих экспериментальные классы. По отношению к приведенной выше таблице можно отметить, что такая картина является характерной для экспериментальных классов. Многолетняя практика реализации курса «Наглядная геометрия» в начальной школе подтверждает его положительную оценку учителями математики. В нашей практике неоднократно наблюдались случаи, когда к данному курсу уже в 5 классе обращались сами предметники - математики, реализуя его в 5-6 классах по материалам для начальной школы.

Более интересным примером является анализ динамики успеваемости контрольных и экспериментальных классов на протяжении некоторого периода после выпуска из начальной школы. Приведем пример такого анализа для трех случайно выбранных пар классов.

Как видно из приведенного графика на конец марта (3 четверть) шестого класса картина достаточно наглядная. Изначально (в 1 классе) пары выбранных для сравнения классов были в целом равными по подготовке. При этом можно отметить, что по сравнению с общешкольными показателями, успеваемость в этих классах была значительно выше. Однако в целом, экспериментальные классы закончили начальную школу с более высокими показателями успеваемости по математике (следует отметить, что характерный «пик» падения успеваемости в IV четверти в 5 классе объясняется особенностями региона: резкой общей ослабленностью детей после «выхода» из полярной ночи и весенним витаминным и кислородным «голоданием», характерным для заполярного региона; однако при этом в экспериментальных классах пик менее резко выражен). При этом можно видеть, что этот более высокий потенциал экспериментальные классы продолжают сохранять в течение всего пятого и шестого классов (учитель математики у каждой пары выбранных классов один и тот же), хотя общеизвестно, что обычно в большинстве случаев выпускники начальной школы в пятом и шестом классе имеют по математике более низкую успеваемость, чем в начальной школе. Таким образом, можно высказать уверенность в том, что рассматриваемый подход, реализованный в период обучения в начальной школе, играет также роль адаптационного для детей, переходящих из начальной школы в среднюю.

Далее в главе рассмотрены результаты работы с детьми дошкольного возраста.

Эксперимент в работе с дошкольниками проводился также в несколько этапов. На первом этапе автор исследования лично проводил систему занятий с дошкольниками на протяжении пяти лет в условиях обычного детского сада и специально созданных групп развития, систематизируя и разрабатывая материал для развивающей работы с дошкольниками от 3 до 6-7 лет. На втором этапе были разработаны методические материалы для воспитателей ДОУ, представлявшие собой методические разработки занятий для детей всех возрастов (от 3 до 6 лет). Эти методические материалы предоставлялись воспитателям через курсы повышения квалификации и различные проблемные семинары с использованием ежегодно издаваемых методических пособий. С 1999-2000 гг. издаются тетради на печатной основе для организации индивидуальной работы с детьми дошкольного возраста, они содержат материал для развития основных компонентов и качеств математического мышления в соответствии с возрастными особенностями дошкольников.

Сравнение экспериментальных данных проводилось различными методами. Одним из основных мы считали экспертную оценку воспитателей, методистов и учителей начальной школы, принимающих этих детей в 1 класс, а также школьных психологов. Все они отмечают, что использование разработанных в ходе исследования материалов делает процесс математического развития ребенка ясным и понятным педагогу, не требует отвлечения на техническую сторону процесса, позволяя сосредоточиться на индивидуализации обучающего процесса. Воспитатели также отмечают интерес детей экспериментальных групп к математике и желание заниматься дополнительно. В свою очередь, школьные учителя отмечают, что у детей экспериментальных групп очень качественная подготовка к изучению школьного курса математики (в том числе и с содержательной стороны), и при этом эти дети практически всегда получают на входном тестировании высший балл по логике. К сожалению, традиция такова, что логическое развитие учителя начальных классов полагают более значимым, чем развитие пространственного мышления, поэтому тестирование на уровень сформированности этого вида мышления на вступительных тестированиях обычно не проводят. Но вот проверку зрительно-моторной координации проводят практически всегда, и ее результаты дают очень высокие показатели у детей экспериментальных групп. В психологии известно, что уровень развития зрительно-моторной координации значимо связан с уровнем развития пространственного мышления, но представляет собой, кроме того, сложный комплекс моторного характера, от уровня развития которого зависит овладение письмом.

Приведем выборочные результаты контрольных срезов математического развития дошкольников, проводившихся в разные годы в произвольно выбранных детских садах. Для этой цели была разработана серия проверочных заданий, которая включала в себя элементы стандартного тестирования на уровень сформированности математических представлений дошкольников (количественные представления, счет), а также специальные задания, направленные на выявление таких показателей математического развития как сформированность приемов умственных действий (анализ, синтез, обобщение); уровень развития внимания, восприятия и памяти в связи с количественной оценкой ситуации; уровень развития восприятия и образной памяти в связи с распознаванием и комбинированием геометрических фигур; умение распознавать и выстраивать логическое следствие по предлагаемой ситуации; конструктивные умения. Содержание системы заданий и пояснения к ней приводятся в главе 6. В 1996-97 гг. тестирование проходили 263 ребенка из различных детских садов. Его результаты следующие.

Тестирование повторялось несколько лет подряд, и данные результатов этих тестирований приводятся в главе. Здесь приведем его данные за последний год (194 ребенка):

Сравнение диагностических карт, приведенное в главе 6, показало, что результаты тестирования от 1996 к 1999 году значительно возросли, а в течение 1999-2003гг. держатся практически на одном уровне с незначительными колебаниями. Мы объясняем это тем, что уровень методического мастерства воспитателей в работе по данной программе существенно повысился; воспитатели хорошо освоили методику и содержание программы и поэтому могут полностью посвятить свою методическую деятельность ребенку, не отвлекаясь на сложности содержательного и методического характера. Кроме того, с 1999 года рассматриваемая работа стала подкрепляться тетрадями на печатной основе, содержащими материал для организации индивидуальной работы с детьми.

Таким образом, мы полагаем, что представленный количественный анализ, несмотря на свою простоту, хорошо показывает, что уровень математического развития детей (в виде характерных компонентов математического стиля мышления) при работе педагога по предлагаемым материалам значительно повышается именно по тем параметрам, которые при любых условиях считаются характеризующими способности ребенка к успешному усвоению математического содержания в начальных классах. Анализ дальнейшей успешности этих детей в школе по математике показывает, что на протяжении начальной школы эти дети успешно справляются с программой. Учителя отмечают хорошую подготовку детей и стабильно высокую успеваемость по математике в процессе обучения в начальной школе. Многие из детей, обучавшихся по этой программе, поступают в гимназические классы, при этом, как правило, отмечаются высокие результаты тестирования этих детей по математике и логике. Даже в тех случаях, когда по своим склонностям или желанию родителей, дети поступают в различные гуманитарные гимназии, математика не является для них проблемным предметом на протяжении всего периода обучения в начальной школе. Если при этом, они попадают в классы, где учитель продолжает работать по разработанной в исследовании программе, то работа над математическим развитием ребенка приобретает непрерывный преемственный характер и часто в этих случаях учителя математики отмечают детей таких классов, называя их «совсем другие дети».

В главе также приведены некоторые результаты работы диссертанта с органами народного образования, с воспитателями детских садов, учителями начальных классов и учителями математики в системе повышения квалификации работников образования.

Приложения содержат некоторые примеры методических материалов, разработанных в ходе экспериментальной работы:

- листы на печатной основе из тетрадей для организации математического развития дошкольников;

- листы на печатной основе из тетрадей для организации математического развития младших школьников.

Основные результаты исследования

В результате проведенного теоретического исследования, педагогических методических экспериментов и опыта внедрения полученных практических разработок, предложены возможные решения поставленных задач:

1. Проведен теоретический анализ проблемы создания системы непрерывного математического образования на дошкольной и начальной ступени на основе современного понимания реализации преемственности между дошкольным и начальным звеньями системы образования. Обоснована необходимость построения этой системы на основе единого методического подхода к пониманию процесса математического развития ребенка. Сформулировано положение о том, что для образовательного процесса теоретическая разработка понятия преемственности является важнейшей проблемой, предваряющей собственно построение систем взаимосвязанных образовательных звеньев. Сформулированы основные задачи, требующие решения на этапе подготовки к созданию концепции непрерывного математического развития ребенка младшего возраста.

2. В исследовании были проанализированы различные взгляды на возможность построения единого методического подхода к построению концепции математического развития ребенка младшего возраста, и в качестве оптимальной базы построения этой концепции выбрана методология моделирования математического содержания средствами, адекватными восприятию ребенка соответствующего возраста. При этом структура мыслительного процесса и специфика его протекания у ребенка дошкольного возраста должна учитываться как при выборе уровня материализации модели, так и при разработке системы моделирующих действий ребенка с ней, что является собственно искомой методикой (технологией) обучения ребенка данному предметному (моделируемому) содержанию.

3. Включение в учебный процесс систематической работы ребенка с адекватными моделями изучаемых понятий, а также построение системы моделирующих действий ребенка, связанных не только с изучением предлагаемой ему модели, но и позволяющих ребенку самому построить модель этого понятия, и через процесс ее построения осознать основные свойства и отношения изучаемых математических объектов, позволяет учитывать не только специфику математики - науки, изучающей количественные и пространственные характеристики реальных объектов и процессов, но и осуществлять обучение ребенка общим способам деятельности с математическими моделями реальной действительности и способам построения этих моделей. Система моделирующих действий ребенка в этом случае направлена как на формирование начальных математических представлений, так и на формирование общей способности к моделированию изучаемых объектов. Во всех этих случаях использование моделей и моделирования играет важнейшую роль внешней материализованной опоры нового умственного действия, по типу которой оно будет строиться у ребенка. Методическая задача заключается в том, чтобы найти материализованную форму этого действия и построить систему моделирующих действий ребенка в соответствии с ее действительным содержанием, что обеспечит интериоризацию (переход во внутренний план) адекватного образа действия или образа понятия.

Предлагаемый подход к изучению математики позволяет эффективно формировать у ребенка такие приемы умственной деятельности как классификация, сравнение, анализ и синтез, обобщение, абстрагирование, индуктивные и дедуктивные способы рассуждений, что в свою очередь стимулирует в перспективе интенсивное развитие словесно-логического мышления. Фактически данный подход как раз и обеспечит формирование и развитие того, что называют математическим стилем мышления.

4. В соответствии с выбранной методологией был проведен анализ содержания математического образования дошкольников и младших школьников с точки зрения его соответствия закономерностям построения моделирующей деятельности при обучении ребенка математике. Данный анализ показал наибольшее соответствие данного методу геометрического содержания. Работа на геометрическом материале (ба-зовыми компонентами которого являются фигуры и тела, расположен-ные на плоскости и в пространстве) позволяет уже на начальных этапах опираться на сенсорные способности ребенка, поскольку адекватные модели практически всех геометрических объектов можно дать ребенку в руки для непосредственного исследования и экспериментирования уже на этапе раннего детства.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.