Методика применения электронного учебного пособия в изучении темы "Применение первого закона термодинамики к изопроцессам"

Дидактическая концепция электронного школьного учебника. Разработка урока с применением электронного учебного пособия по теме "Применение первого закона термодинамики к изопроцессам". Электронные учебники как средство дистанционного образования.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 16.06.2015
Размер файла 3,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

рабочую программу учебного курса (учебных курсов);

теоретический блок учебного курса;

лабораторный практикум с циклом исследовательских задач;

компьютерные тесты обучающего типа;

прикладное ПО для статистического анализа результатов обучения;

банк данных промежуточных и финишных контрольных тестов;

базу знаний и модель дисциплины.

Компонента «рабочая программа» призвана обеспечить полное и четкое описание целей, задач и методов реализации процесса обучения по данному учебному курсу или циклу учебных курсов [1]. Наличие механизма гиперссылок на другие компоненты желательно, хотя лучшим решением запуска процесса обучения следует считать главную полнофункциональную форму электронного курса.

Требования к содержанию теоретического блока учебного курса определяются в основном требованиями государственного стандарта. В данном компоненте поддерживается полнотекстовая база данных или электронная библиотека для комплекса учебных курсов. Одним из вариантов индивидуальной настройки теоретического блока является возможность генерации (со ссылками на источники) конкретного теоретического блока из авторских теоретических блоков и создание скомпилированного блока. Этот вариант настройки требуется для «домашней» версии процесса обучения, где важно минимизировать затраты на объем памяти и обеспечить высокую скорость реакции системы обучения.

Состав и структура компоненты «лабораторный практикум» определяется типом учебного курса, для которого формируется электронный материал. Для прикладного учебного курса лабораторный практикум имеет, значительную роль в формировании навыков обучаемого в решении практических задач по будущей специальности. Последовательное изложение конкретных демонстрационных задач включает содержательную постановку, этап формализации, выбор вычислительного алгоритма и программную реализацию. Анализ технологии решения демонстрационных задач дает возможность обучаемому выполнить свои исследовательские проекты и задачи по аналогии. Для учебных курсов по фундаментальным теоретическим дисциплинам лабораторный практикум не играет доминирующей роли, как в случае с прикладными учебными курсами, но в то же время он необходим. Например, для учебного курса «Теория вероятностей» раздел комбинаторных вычислений может быть представлен достаточно полно и эффективно в рамках лабораторного практикума.

Компьютерные тесты формируются как обязательная часть обучающей системы и функционируют в двух режимах: режиме контроля уровня знаний обучаемого с помощью оценивания в различных шкалах и режиме обучения, когда пользователю в процессе тестирования предлагаются сервисы для обращения к справочной системе теста и для навигации по другим компонентам обучающей системы.

Компьютерные тесты могут настраиваться для промежуточного контроля в процессе изучения части учебного курса и финишного контроля качества обучения. Качество результатов компьютерного тестирования в значительной степени зависит от таких параметров тестовых заданий, как объем банка тестовых заданий, наличие случайного механизма формирования тестовой выборки из банка заданий, управление сложностью тестовых заданий в фазе тестирования или в повторяющихся испытаниях. Основной особенностью обучающего режима тестирования является эффект от применения тестов, максимально интегрированных с остальными элементами электронного учебного курса (включая модель дисциплины), при целенаправленном процессе самообучения и самоконтроля. Важно, что база знаний по дисциплине не только проецируется на множество тестовых заданий, но и поддерживает обратную связь посредством механизма ссылок.

Прикладное программное обеспечение для статистического анализа результатов обучения включает в себя ряд стандартных процедур формирования статистической отчетности. Кроме того, в прикладной пакет необходимо включить алгоритмы непараметрической статистики, прогнозирования временных рядов и исследовательских алгоритмов по адаптации обучающей системы.

Банк результатов тестирования обучающей системы выступает в роли хранилища информации, которое содержит первичную информацию по результатам обучения, текущие значения параметров настройки системы тестов, обобщенную информацию по классам пользователей, корреляционным зависимостям между знаниями по разным учебным курсам и т.д.

Наличие в рамках обучающей системы совокупности электронных компонентов, рассмотренных выше, предоставляет возможность развития обучающей системы. Постоянный мониторинг состояния обучающей системы с помощью анализа результатов функционирования и оценки критериев качества обучения гарантирует целенаправленную адаптацию параметров обучающей системы к внешним запросам.

Обычная практика построения обучающей системы состоит в том, что компоненты: теоретический блок, блок лабораторных работ, электронные тесты - создаются в виде самостоятельных приложений в рамках инструментальных систем, таких, как Microsoft Office и др. Структурная организация и соответствующие средства навигации внутри каждой компоненты основываются на инструментальных средствах приложения. Для этого используются механизмы форматирования структурных элементов блоков, множества стилей, гиперссылок и библиотеки визуальных объектов управления.

Использование стандартных инструментальных средств описания структурных отношений дает возможность создания навигаторов приложения достаточной мощности и гибкости. К сожалению, инструментарий структурного описания компонента, например в стандарте файлов Word, размещается на различных инструментальных панелях и требуется дополнительная настройка последних. В компонентах обучающей системы, написанных в объектно-ориентированных приложениях (Delphi, Access), проблемы с описанием простых структурных связей между элементами отсутствуют.

Нерешенными задачами при создании обучающих систем на основе разнородных приложений остаются трудности реализации ссылок на другой блок обучающей системы с точностью до структурного элемента. Гиперссылки на уровне имени файла гарантируют навигацию только с головы блока с последующим сервисом навигации внутри блока. При небольшом числе файлов обучающей системы потери скорости при такой организации будут незначительными, но при дальнейшем развитии системы, когда число файлов будет непрерывно возрастать, мы получим неэффективную работу обучающей системы. [10]

2.4 Режимы работы электронного учебника

Можно выделить три основных режима работы электронного учебника:

обучение без проверки;

обучение с проверкой, при котором в конце каждой главы (параграфа) обучаемому предлагается ответить на несколько вопросов, позволяющих определить степень усвоения материала;

тестовый контроль, предназначенный для итогового контроля знаний с выставлением оценки.

В настоящее время к учебникам предъявляются следующие требования: структурированность, удобство в обращении, наглядность изложенного материала. Чтобы удовлетворить вышеперечисленные требования, целесообразно использование гипертекстовой технологии.

Электронный вариант учебника вмещает в себе и средства контроля, так как контроль знаний является одной из основных проблем в обучении. Долгое время в отечественной системе образования контроль знаний, как правило, проводилось в устной форме. На современном этапе применяются различные методы тестирования. Многие, конечно, не разделяют этой позиции, считая, что тесты исключают такие необходимые навыки, как анализирование, сопоставление и т.д. В системах дистанционного обучения применение новых технологии дает возможность качественно по-новому решить проблему. Мы заложили в электронный вариант учебника Таким образом, можно надеяться, что применение новых информационных технологий способствуют повышению эффективности обучения, а также являются незаменимым инструментом при самостоятельной подготовке обучающегося.

Известно, что для активного овладения конкретной предметной областью необходимо не только изучить теорию, но и сформировать практические навыки в решении задач. Для этого нужно научиться строить физические модели изучаемых процессов и явлений, проектировать алгоритмы решения и реализовывать их в виде программ. Для достижения этой цели в состав ЭУ включена серия модельных программ, обеспечивающих графическую иллюстрацию структуры и работы алгоритмов, что позволяет не только повысить степень их понимания, но и способствует развитию у школьника интуиции и образного мышления.

2.5 Электронный учебник как средство дистанционного обучения

Как один из режимов использования ЭУ можно рассмотреть дистанционное обучение.

Дистанционное обучение - комплекс образовательных услуг, предоставляемых широким слоям населения в стране и за рубежом с помощью специализированной информационной образовательной среды, базирующейся на средствах обмена учебной информацией на расстоянии (спутниковое телевидение, радио, компьютерная связь и т.п.). Информационно-образовательная система ДО представляет собой системно-организованную совокупность средств передачи данных, информационных ресурсов, протоколов взаимодействия, аппаратно-программного и организационно-методического обеспечения, ориентированную на удовлетворение образовательных потребностей пользователей. ДО является одной из форм непрерывного образования, которое призвано реализовать права человека на образование и получение информации.

То есть под дистанционным обучением будем понимать любой вид передачи знаний, где обучающий и обучаемый разобщены во времени или пространстве. Если согласиться с этим определением, то "старое доброе" заочное обучение и есть прообраз современного ДО, в котором, однако, отсутствует элемент индивидуализации. Каким же образом можно привнести элементы индивидуализации в компоненты дистанционного обучения?

Поскольку современные компьютеры позволяют с большой эффективностью воспроизводить практически все известные до настоящего времени виды передачи информации, и, что нам представляется наиболее важным, только они могут реализовать адаптивные алгоритмы в обучении и обеспечить преподавателя объективной и оперативной обратной связью о процессе усвоения учебного материала, то становится совершенно очевидным, что принципиальное отличие ДО в сегодняшнем его понимании от традиционного заочного заключается не только в том, что "перо и бумагу" заменяет компьютер, а "голубиную почту" - Интернет. Мультимедийный компьютер - это не только новый интегрированный носитель информации, это - устройство наиболее полно и адекватно отображающее модель "face to face". Кроме этого, только в компьютерах могут быть реализованы информационно-справочные системы на основе гипермедийных ссылок, что также является одной из важнейших составляющих индивидуализации обучения.

Основные принципы дистанционного обучения (ДО): установление интерактивного общения между обучающимся и обучающим без обеспечения их непосредственной встречи и самостоятельное освоение определенного массива знаний и навыков по выбранному курсу и его программе при заданной информационной технологии.

Дистанционное обучение и традиционное существенно различаются. Это: 1) пространственная разделенность обучающего и обучаемого;

2) усиление активной роли учащегося в образовательном процессе: в постановке образовательных целей, выборе форм и темпов обучения;

3) подбор материалов, предназначенных специально для дистанционного изучения.

Главной проблемой развития дистанционного обучения является создание новых методов и технологий обучения, отвечающих телекоммуникационной среде общения. В этой среде ярко проявляется то обстоятельство, что учащиеся не просто пассивные потребители информации, а в процессе обучения они создают собственное понимание предметного содержания обучения.

На смену прежней модели обучения должна прийти новая модель, основанная на следующих положениях: в центре технологии обучения - учащийся; суть технологии - развитие способности к самообучению; учащиеся играют активную роль в обучении; в основе учебной деятельности - сотрудничество.

В связи с этим требуют пересмотра методики обучения, модели деятельности и взаимодействия преподавателей и обучаемых. Считаетя ошибочным мнение многих российских педагогов-практиков, развивающих технологии дистанционного образования, что дистанционный учебный курс можно получить, просто переведя в компьютерную форму учебные материалы традиционного очного обучения.

Успешное создание и использование дистанционных учебных курсов должно начинаться с глубокого анализа целей обучения, дидактических возможностей новых технологий передачи учебной информации, требований к технологиям дистанционного обучения с точки зрения обучения конкретным дисциплинам, корректировки критериев обучённости.

Дидактические особенности курса ДО обусловливают новое понимание и коррекцию целей его внедрения, которые можно обозначить следующим образом:

стимулирование интеллектуальной активности учащихся с помощью определения целей изучения и применения материала, а также вовлечения учащихся в отбор, проработку и организацию материала;

усиление учебной мотивации, что достигается путем четкого определения ценностей и внутренних причин, побуждающих учиться;

развитие способностей и навыков обучения и самообучения, что достигается расширением и углублением учебных технологии и приемов.

К числу дидактических принципов, затрагиваемых компьютерными технологиями передачи информации и общения, в первую очередь следует отнести:

принцип активности;

принцип самостоятельности;

принцип сочетания коллективных и индивидуальных форм учебной работы;

принцип мотивации;

принцип связи теорий с практикой;

принцип эффективности.

В связи с этими принципами средства учебного назначения, которые используются в образовательном процессе ДО, должны обеспечивать возможность:

индивидуализировать подход к ученику и дифференцировать процесс обучения;

контролировать обучаемого с диагностикой ошибок и обратной связью;

обеспечить самоконтроль и самокоррекцию учебно-познавательной деятельности учащегося;

демонстрировать визуальную учебную информацию;

моделировать и имитировать процессы и явления;

проводить лабораторные работы, эксперименты и опыты в условиях виртуальной реальности;

прививать умение в принятии оптимальных решений;

повысить интерес к процессу обучения;

передать культуру познания и др. Хотелось бы подчеркнуть особую важность определения целей курса.

Для построения четкого плана курса необходимо:

определить основные цели, устанавливающие, что учащиеся должны изучить;

конкретизировать поставленные цели, определив, что учащиеся должны уметь делать;

спроектировать деятельность учащегося, которая позволит достичь целей.

Очень важно добиваться того, чтобы поставленные цели помогали определить, что ожидается от учащихся после изучения этого курса. Конкретизация целей позволяет дать представление о том, что учащийся в состоянии будет сделать в конце каждого урока. Фактически необходима постановка целей для о каждого урока курса.

Цели помогают сконцентрироваться на развитии познавательной деятельности учащихся и определить, па какой стадии он находится.

Правильно сформулированные цели позволят учащимся:

настроить мышление на тему обучения;

сфокусировать внимание на наиболее важных проблемах;

тщательно подготовиться к тестам, заданиям и другим средствам оценивания.

Деятельность должна быть спроектирована в соответствии со сформулированными целями.

При Планировании и разработке дистанционных учебных курсов необходимо принимать во внимание, что основные три Компоненты деятельности педагога, а именно изложение учебного материала, практика, обратная связь, сохраняют свое значение и в курсах ДО. Разработанный и реализованный нами подход к дистанционному обучению заключается в следующем:

перед началом дистанционного обучения производится психологическое тестирование учащегося с целью разработки индивидуального подхода к обучению;

учебный материал представлен в структурированном виде, что позволяет учащемуся получить систематизированные знания по каждой теме;

контроль знаний осуществляется с помощью полной и валидной системы тестового контроля по каждой структурной единице и содержанию в целом. Изучение таким образом предметов школьного курса может быть использовано школьниками, имеющими сложности при традиционном обучении, в качестве своеобразного репетитора по конкретным предметам и темам.

Содержание предлагаемого к освоению курса дистанционного обучения педагогически отработано и систематизировано и состоит из комплекса психологических тестов, программы обучения и электронного учебника, который удовлетворяет вышеизложенным принципам.

Первоначально обучающемуся высылаются комплекс психологических тестов и пробный урок. Полученные результаты психологического тестирования обрабатываются и на основе этого строится психологический портрет учащегося, с помощью которого выбираются методы и индивидуальная стратегия обучения.

Программа обучения - один из наиболее важных видов раздаточных материалов для учащихся, обучающихся дистанционно. Учащиеся обращаются к ней для получения точной и ясной информации. Такое руководство включает в себя:

информацию о системе дистанционного обучения, методах ДО;

биографическую информацию о преподавателе;

технологию построения учебного курса;

цели курса;

критерии окончания обучения;

часы телефонных консультаций;

описание экзаменов, проектов, письменных работ;

другие инструкции.

Электронный учебник, содержащий собственно учебные материалы для дистанционного обучения, разделен на независимые темы - модули, каждая из которых дает целостное представление об определенной тематической области, что способствует индивидуализации процесса обучения, т. е. обучающийся может выбрать из вариантов обучения: изучение полного курса по предмету или изучение только конкретных тем. При выборе первого варианта учащемуся по мере освоения материала высылается следующий модуль, и, таким образом, по завершении курса учащийся имеет целостный электронный учебник по данному предмету.

Каждый модуль содержит:

наименование темы;

учебные вопросы и их нормативную трудоемкость;

цели уроков;

методические указания о порядке и последовательности изучения темы модуля;

используемые учебные материалы;

упражнения и тесты для самопроверки, а также ссылки на правильные ответы, чтобы обучающиеся могли проверить свое понимание учебного материала и управлять своим обучением;

упражнения и тесты для итогового контроля.

Курс рассчитан на определенный срок изучения, в зависимости от его трудоемкости. Руководствуясь учебной программой и методическими указаниями, обучающийся составляет персональный план обучения, т. е. расписание своих собственных учебных занятий. Таким образом, обучающийся определит, в какой конкретно день какой учебный вопрос модуля учебной программы он будет изучать, и сможет регулярно отмечать в этом персональном плане результаты своей учебы.

Далее следует этап изучения теоретического материала, изложенного в электронном учебнике.

Выбрав пункт в содержании, необходимо рассмотреть структурную схему параграфа, определить вид каждой структурной единицы и рассмотреть связи между ними внутри параграфа. Учитывая связи между структурными единицами из разных параграфов, необходимо выбрать самые важные структурные единицы и обратить на них особое внимание при изучении.

Если для изучения структурной единицы требуются знания единиц из предыдущих параграфов, необходимо их повторить, после чего Можно перейти к изучению содержания структурной единицы.

После освоения содержания каждой структурной единицы целесообразно вновь вернуться к структурной схеме параграфа, для повторения взаимосвязей и систематизации изученного материала.

На следующем этапе работы с темой-модулем обучаемый может проверить степень усвоенного материала и выявить пробелы в знаниях с помощью предложенных для самопроверки тестов. Если возникают затруднения при ответах на вопросы теста, необходимо вернуться к изучению соответствующих структурных единиц параграфа.

Последним этапом работы с темой-модулем является контрольное тестирование, ответы на вопросы которого передаются учащимся в учебный центр для последующей оценки выполнения задания.

Если количество правильных ответов более 70%, можно считать материал усвоенным, и учащемуся высылаются материалы следующего модуля. Если же правильных ответов меньше 70%, изучение данного модуля необходимо повторить.

Таким образом, построенное дистанционное обучение представляет Педагогическую технологию, целиком построенную на использовании информационных и коммуникационных технологий.

2.6 Анализ содержания электронных учебников по физике

2.6.1 Основные определения, объект и цель работы

Как отмечалось во введении, активное использование информационных технологий - одна из самых характерных черт современного общества. Информационные технологии предоставляют большие возможности повышения эффективности образовательного процесса, и сами по себе являются объектом, который необходимо изучать для активной работы в современном мире [35].

Как отмечает М.П.Лапчик, в первую очередь это выразилось в появлении понятия «компьютерная грамотность». В это понятие, по его мнению, входят 4 основных компоненты:

1. Умение «общаться с ЭВМ» т.е. в первую очередь подготовить компьютер к работе, грамотно работать со стандартным программным обеспечением (далее - ПО). Этот уровень вполне доступен младшим школьникам и дошкольникам.

2. Составление простейших программ компьютера. Несмотря на то, что подготовка программистов не входит в задачи общеобразовательной школы, понимание основных принципов и приемов программирования является компонентой общего образования.

3. Представление об устройстве и основных принципах действия ЭВМ.

4. Представление об областях применения и возможностях ЭВМ, социальных последствиях компьютеризации. Сферы применения и роль компьютеров целесообразно раскрывать на примере использования компьютера для решения различных задач учебных предметов.

Несмотря на то, что навыки программирования в образовании обычного человека являются предметом спора уже несколько лет, эти компоненты можно принять в качестве рабочей модели.

Существует большое количество разработок программных средств, призванных решать самые разные задачи образования. В теоретических и методических работах отмечают такие преимущества использования ЭВМ в обучении, как:

возможности автоматизированного контроля и обратной связи;

возможности иллюстрирования и сопровождения учебных материалов;

хранение и поиск информации;

использование сложных интерактивных моделей и т.д.

Вместе с тем как уже указывалось во введении, практически всегда компьютер выступает в роли вспомогательного технического средства, средства быстрого повторения, игрового момента, т. е. дополнения к учебному процессу. Причем такого дополнения, без которого легко можно обойтись.

Такой подход вполне оправдан в настоящее время, когда компьютеры недостаточно распространены (в том числе в школах) и число их недостаточно для организации нормального учебного процесса с активным использованием средств новых информационных технологий. Кроме этого ощущается недостаток преподавателей-предметников, имеющих надлежащий уровень соответствующей подготовки. [55], [51], [41]

Но на примере других отраслей можно сказать, что через какое-то время компьютеры вполне естественным путём вытеснят из производственного процесса большую часть других средств обработки и хранения информации. В качестве одного из наиболее ярких примеров можно привести тот факт, что многие крупные библиотеки начали копирование.

Процесс вхождения школы в мировое образовательное пространство требует совершенствование, а также серьёзную переориентацию компьютерно-информационной составляющей. Вторая половина ХХ века стала периодом перехода к информационным обществам. Лавинообразный рост объёмов информации, принял характер информационного взрыва во всех сферах человеческой деятельности.

Информационный взрыв породил множество проблем, важнейшей из которых является проблема обучения. Особый интерес представляют вопросы, связанные с автоматизацией обучения, поскольку «ручные методы» без использования технических средств давно исчерпали свои возможности. Наиболее доступной формой автоматизации обучения является применение ЭВМ, то есть использование машинного времени для обучения и обработки результатов контрольного опроса знаний учащихся. Всё большее использование компьютеров позволяет автоматизировать, а тем самым упростить ту сложную процедуру, которую используют и учителя при создании методических пособий. Тем самым, представление различного рода «электронных учебников», методических пособий на компьютере имеет ряд важных преимуществ. Во-первых, это автоматизация как самого процесса создания таковых, так и хранения данных в любой необходимой форме. Во-вторых, это работа с практически неограниченным объёмом данных. Создание компьютерных технологий в обучении соседствует с изданием учебных пособий новой генерации, отвечающих потребностям личности обучаемого. Учебные издания новой генерации призваны обеспечить единство учебного процесса и современных, инновационных научных исследований, т.е. целесообразность использования новых информационных технологий в учебном процессе и, в частности, различного рода так называемых «электронных учебников». Эффект от применения средств компьютерной техники в обучении может быть достигнут лишь тогда, когда специалист предметной области не ограничивается в средствах представлениях информации, коммуникаций и работы с базами данных и знаний.

Сегодня недостаточно разработаны критерии оценки компьютерных программ по физике и практическая методика применения электронных учебников в обучении физике. Поэтому цель нашей работы:

Проанализировать компьютерные программы, используемые в обучении физики, с точки зрения их эффективности в обучении и простоты работы с ними.

Разработать методический подход к применению электронных учебников при обучении физике.

Методические аспекты использования ППС обучающе-контролирующего типа на уроках физики и их сочетание с традиционной технологией.

2.6.2 Методические приёмы их использования в обучении физике

Компьютеры в школе - программное обеспечение и методическая поддержка.

Инструментальное использование компьютера в учебной деятельности по различным школьным предметам успешно реализуется в «модели двух учителей», когда учитель технологии-информатики работает вместе с учителем предметником, помогая и ему, и ученикам работе в конкретной программной среде.

Но как же выбрать такие программные продукты? На рынке существует большое количество компьютерных программ, в аннотации которых есть слова «учебный», «образовательный» и т. п., ряд из них имеет рекомендации Министерства общего и профессионального образования РФ. Это вызывает большее доверие к ним, но не гарантирует адекватности учебной программе и стилю преподавания конкретного учителя. Приводимые в различных каталогах данные чаще всего не отражают наличие и содержание методических материалов. Что касается опыта использования этих программ (кроме 2--3 наиболее распространенных наименований), то он является разрозненным и трудно обобщаемым.

В течение многих лет занимаясь проблемой использования компьютеров в дошкольном и среднем образовании, ИНТ придерживался подхода, при котором каждый программный продукт должен быть поддержан методическими и справочными пособиями и учебными семинарами. Поэтому в состав программно-методических комплексов, издаваемых ИНТом, кроме дискет и компакт-дисков входит учебно-методическая литература. Авторами этих материалов являются, как правило, сотрудники института, опытные специалисты -- профессионалы в своих областях, а также учителя-экспериментаторы, применяющие новые технологии в своей практике. Примером такого достаточно полного учебно-методического комплекта является «Алгоритмика»

В каталоге образовательного программного обеспечения для IBM-совместимых компьютеров и компьютеров Macintosh, найдете не только собственные разработки ИНТа, но и наиболее полезные и методически поддержанные, с нашей точки зрения, продукты ряда российских и зарубежных фирм.

На сервере ИНТа (www.school.edu.ru/int) открыты странички, на которых размещаются аннотации и демоверсии программ, тематика и даты проводимых учебных семинаров, а также открыт почтовый ящик (intsoft.@int.glasnet.ru), куда можно направить вопросы или информацию об использовании программ в своем классе. Если этот опыт удачный, можно направить информацию на сайт ИНТа в конференцию «Учительские находки», а также выступить на заседании клуба учителей Технология. Это поможет собрать и обобщить весь накопленный опыт, а также организовать одновременный эксперимент по внедрению и тестированию новых программных средств.

Все включенные в каталог продукты можно приобрести в ИНТе или заказать по почте с предварительной оплатой. Особо отметим, что образовательные учреждения могут приобрести в ИНТе продукты по льготным ценам, причем скидки могут быть весьма существенны.. Поставки программных продуктов сопровождаются ознакомительными и учебными семинарами, которые проводятся как на базе ИНТа и МИПКРО, так и в образовательных учреждениях Москвы и других российских городов и регионов.

Живая Физика (Interactive Physics)

Knowledge Revolution, русская адаптация ИНТ

Компьютерная проектная среда, ориентированная на изучение движения в гравитационном, электростатическом, магнитном или в любых других полях, а также движения, вызванного всевозможными видами взаимодействия объектов. Работа программы основана на численном интегрировании уравнений движения.

В ней легко и быстро «создаются» схемы экспериментов, модели физических объектов, силовые поля. Способы представления результатов (мультипликация, график, таблица, диаграмма, вектор) задаются самим пользователем в удобном редакторе среды. Программа позволяет «оживить» эксперименты и иллюстрации К задачам курса физики, разработать новый методический материал, помогает ученикам лучше понять теорию, решить задачу, осмыслить лабораторную работу. Она может использоваться для сопровождения как школьного, так вузовского курса физики. Методическое сопровождение программы содержит несколько десятков готовых физических задач и моделей экспериментальных установок.

Категория пользователя: VI--XI классы.

Платформа: Windows, Mac OS.

Носитель: дискеты.

В Комплект входит:

Живая Физика: Справочное пособие. М.: ИНТ, 1995, 1997. 158 с. Содержит все необходимые пользователю сведения об установке и инструментарии программы, о способах разработки и проведения экспериментов, а также о вычислительном методе, лежащем в основе работы программы.

Дополнительные модули:

Комплекты компьютерных экспериментов и учебных пособий -- цельная методическая система, предусматривающая как демонстрации и лабораторные работы, так и самостоятельное проектное творчество. Они особенно важны на первых порах знакомства учителя с программой, помогая быстрее её освоить и вводить в учебный процесс не эпизодически, а как продуманную систему.

Бронфман В. В., Дунин С. М. Живая Физика в VII классе. М.: ИНТ, 1998. 44 с. дискета. Предлагаемый комплект содержит компьютерные эксперименты в среде Живая физика; самостоятельные задания для учащихся; компьютерные иллюстрации; ориентировочный список «проектов». Рекомендуется для работы в компьютерном классе или в кабинете физики, оборудованном компьютером с большим дисплеем или с проектором.

Бронфман В. В., Шапиро М. А. Начала кинематики. IX класс. М.: ИНТ, 1996. 23 с. дискета. Комплект предназначен для поддержки изучения темы «Общие сведения о движении» в курсе физики IX класса.

Бронфман В. В., Дунин С. М., Шапиро М. А. Колебания. М.: ИНТ, 1997. 63 с. дискета. Комплект состоит из 91 учебного компьютерного эксперимента и методического руководства. Предназначен для использования при изучении колебаний в курсе физики средней школы, обеспечивает практически каждый шаг изучения темы не только в рамках базового курса, но и на кружковых и факультативных занятиях. Описаны особенности использования комплекта в классах с одним компьютером, т. е. в режиме демонстраций.

Бронфман В. В., Шапиро М. А. Электростатика. М.: ИНТ, 1997. 17 с.+ дискета. Комплект предназначен для использования при изучении электростатики в средней школе. Не являясь последовательной поддержкой курса, он поможет учителю заинтересовать этой темой детей, лучше объяснить некоторые сложные для понимания вопросы, организовать исследования, которые невозможно провести в условиях обычной школьной лаборатории.

Изучаем движение (Measurement in Motion)

Learning in Motion Inc., русская адаптация ИНТ

Компьютерная среда для изучения движений реальных объектов, записанных обыкновенной видеокамерой. Это новый инструмент для подготовки и проведения учебных исследований по физике, биологии и другим предметам естественнонаучного цикла. Программа позволяет измерить характеристики движения в кадрах фильма и проанализировать результаты, широко используя графики и таблицы.

Категория пользователя: для V класса и старше. Платформа: Mac OS.

Носитель: дискеты, компакт-диск.

В комплект входит:

Изучаем движение: Справочное пособие. М.: ИНТ, 1998.27 с. Пособие относится непосредственно к программе и описывает подробно инструментарий и методику работы.

Компакт-диск, содержащий около 50 фильмов и упражнений (на английском языке).

Репетитор Физика 1C

Мультимедийный электронный учебник для школьного курса физики, содержащий демонстрацию физических явлений методами компьютерной анимации, компьютерное моделирование физических закономерностей, видеоматериалы, демонстрирующие реальные физические опыты, набор тестов и задач для самоконтроля, справочные таблицы и формулы.

Категория пользователя: старшеклассники и абитуриенты.

Платформа: Windows.

Носитель: компакт-диск.

Физика для школьников и абитуриентов

Компьютерное пособие для поступающих в вузы. Может быть использовано для индивидуальной подготовки, для проведения групповых занятий в компьютерных классах гимназий, школ, лицеев, а также подготовки к вступительным экзаменам в вуз. Категория пользователя: старшеклассники и абитуриенты.

Платформа: Windows.

Носитель: компакт-диск.

Серия электронных учебников фирмы «Физикон»

Физика в картинках, Физика на Вашем PC

Содержат справочные сведения по физике, сопровождаемые изображениями интерактивных экспериментов, а также справочник формул, таблицы физических величин, калькулятор. В программу включены вопросы и задачи, предусмотрена возможность ввода ответов и их проверки.

Категория пользователя: VI--XI классы.

Платформа: MS-DOS.

Носитель: дискеты («Физика в картинках»), компакт-диск («Физика на Вашем PC»).

Открытая физика I, Открытая физика II

Новое поколение программы «Физика на Вашем PC», в котором используется интерфейс Netscape. Содержит сборник компьютерных экспериментов по всем разделам школьного курса физики. Для каждого эксперимента представлены компьютерная анимация, графики, численные результаты, пояснение физики наблюдаемого явления, видеозаписи лабораторных экспериментов, вопросы и задачи. Категория пользователя:

VI--XI классы.

Платформа: Windows.

Носитель: компакт-диск.

2.6.3 Выдержки из примера применения пособия

Рассмотрим применение электронного учебника 1С: РЕПЕТИТОР ФИЗИКА (Версия 1.5)

Предлагаемое изложение школьного курса физики является первой в России попыткой создания учебного пособия, использующего уникальные возможности современного мультимедийного ПК и охватывающего все разделы физики 9--11 классов.

При подготовке этого пособия учебный материал был специально подобран в соответствии с программой по физике для общеобразовательных школ. В основу настоящего пособия были положены самые распространенные в России учебники по физике: И. К. Кикоин, А.К. Кикоин. Физика-9. Изд. 3-е. М.: Просвещение, 1994. Г. Я. Мякишев, Б.Б. Буховцев. Физика-10, 11. Изд. 3-е. М.: Просвещение, 1994.

Для удобства пользователя названия тем, вошедших в данное пособие, практически совпадают с соответствующими параграфами указанных учебников. И проработка этого пособия очень похожа на повторение всего школьного курса физики на уровне требований общеобразовательной школы. Однако в некоторых вопросах материал все же выходит за рамки базовых требований, а некоторые вопросы, обсуждаемые в цитированных учебниках, в пособии опущены. Некоторое смещение акцентов в изложении материала по сравнению с базовым курсом связано с желанием авторов представить материал максимально сжато, но без потери основных идей.

На повторение одной темы достаточно отвести один день. Таким образом, полное повторение всего школьного курса физики возможно за два месяца работы с пособием. Работа с настоящим пособием (“живая” работа за компьютером, решение тестов и задач) также предполагает работу с учебниками.

Структура пособия такова. Пользователь может начать работу над одним из шестидесяти конкретных вопросов по пяти основным разделам школьной физики: механика, молекулярная физика, электричество и магнетизм, электромагнитные волны и оптика, теория относительности и квантовая физика.

В каждом вопросе пользователь найдет:

Текст с формулами, содержащий объяснение темы (иногда минимально необходимое, для более сложных вопросов -- развернутое).

Рисунки и графики, относящиеся к теме и включающие элементы анимации, а также обязательный элемент взаимодействия с пользователем, позволяющий во многих случаях менять параметры в формулах для физических закономерностей и немедленно отслеживать результат этих изменений на экране.

Биографические сведения о некоторых ученых, внесших важный вклад в развитие физики.

Тесты на усвоение материала темы (при желании предоставляется возможность увидеть полное правильное решение первого теста; второй тест дает только правильный ответ).

Задачи по теме (первая задача приводится с полным решением, для второй - дается только ответ).

Возможность вызова в любой момент справок, касающихся системы единиц, фундаментальных физических постоянных, таблиц численных значений ряда физических величин.

Возможность вызова “шпаргалки”, содержащей основные формулы физики.

Возможность вызова справочника основных формул школьного курса математики.

Возможность вызова калькулятора.

Контрольные тесты и задачи по каждому из разделов курса физики, разделенные на три уровня сложности. Часть задач реально давалась при поступлении в московские вузы (МАДИ, Физфак МГУ).

Кроме того, в пособие включены видеофрагменты реальных экспериментов.

При изложении вопросов не придерживались строгой последовательности и использовалось там, где это казалось оправданным, сведения из курса, например, 11-го класса при обсуждении темы, которая формально проводится в 9-м классе. Это же касается задач и тестов: в ряде случаев их формулировки содержат сведения, относящиеся к последующим разделам курса. При изложении вопросов механики, молекулярной физики и электромагнетизма широко использовали математические приемы (в частности, дифференцирование и интегрирование), которые проходятся в последнем классе. Подчеркнем, что предлагаемое пособие не предназначено для последовательного изучения физики школьниками 9-го и 10-го классов. Пользователь -- это школьник 11-го класса, выпускник профтехучилища или любой другой человек, который желает за сравнительно короткий срок эффективно повторить весь школьный курс физики на уровне, позволяющем достойно сдать выпускные экзамены и выдержать приемный экзамен по физике в большинство технических вузов страны.

При изложении отдельных тем допущены следующие серьезные отклонения от содержания базового учебника. Включен вопрос “Теорема Гаусса” в раздел электростатики, вопрос “Геометрическая оптика. Линзы” в раздел оптики. Полностью переработан и существенно расширен материал, касающийся теории относительности и квантовой теории. Это связано убеждением, что именно вопросы физики ХХ в. наиболее слабо отражены в действующих учебниках и требуют иных подходов в изложении. В то же время опустили (по крайней мере, в данной версии пособия) обсуждение вопросов электропроводности металлов и полупроводников, так как, излагать их следует с привлечением минимальных сведений из квантовой механики или на том “филологическом” уровне, который принят в стандартном учебнике и который вполне может быть освоен при чтении этого учебника.

При составлении текста биографий ученых авторы использовали сборник Г. М. Голина и С. Р. Филоновича “Классики физической науки”, а также книгу Ю. А. Храмова “Физики”. Помощь в составлении таблиц оказали “Справочник по элементарной физике” Н. И. Кошкина и М. Г. Ширкевича и “Энциклопедия элементарной физики” С. В. Громова.

В составлении пособия принимали участие:

А. В. Берков, канд. физ.-мат. наук, доцент кафедры теоретической физики МИФИ--общий план пособия, структура вопросов, составление текстов вопросов, составление биографических справок и приложений.

В. А. Грибов, канд. физ.-мат. наук, доцент кафедры квантовой статистики и теории поля Физического ф-та МГУ -- составление тестов и задач.

Е.С. Объедков, Заслуженный учитель России, канд. педагогических наук, лауреат премии мэрии Москвы, учитель физики школы-комплекса № 548 "Царицыно" - постановка и проведение демонстрационных экспериментов.

Задачи находятся в конце каждой темы (первая задача приводится с полным решением, для второй - дается только ответ);

- в тех задачах, которые предусматривают получение численного ответа, предусмотрен контроль правильности ответа с заданной в условии точностью (при получении численного ответа следует иметь в виду, что величина ускорения свободного падения была принята равной 9,81 м/с2, а величина скорости света была принята равной 3·108 м/c);

- тесты собраны в конце каждого раздела (для первого теста по данной теме приводится решение, для второго - только ответ).

Пользователь может получить краткую справку о том или ином физическом термине в Глоссарии и при желании немедленно попасть в раздел, где этот термин обсуждается.

В пособии создана разветвленная система вложенных гиперссылок, позволяющая вести поиск в отдельной статье, во всем материале и поиск внутри статей, на которые указывают гиперссылки.

В процессе работы над пособием пользователь может также:

- делать закладки на темах, к которым он предполагает вернуться. В принципе, система закладок позволяет построить последовательность вопросов, которые требуют вторичного изучения;

- воспользоваться "Историей перемещений", где указаны последние 64 раздела (включая тесты и задачи, биографии и справочные материалы), к которым обращался пользователь во время данного сеанса работы с пособием;

- посмотреть дневник работы, где запоминаются все сведения о работе пользователя над пособием (общее время работы с программой, время, потраченное на изучение каждого вопроса, и т. п.). В дневник заносятся сведения о правильно решенных тестах и задачах (для которых имеется возможность ввести ответ), при этом фиксируется только решение, достигнутое с первой попытки в данном сеансе работы с пособием;

- воспользоваться Альбомом, в котором собраны все слайды данного пособия (включающие иллюстрации, анимации, видеоопыты, интерактивные иллюстрации, задачи и тесты). По желанию, можно просматривать альбом подряд, возвращаясь в тот раздел, где данная иллюстрация использована, или рассматривать слайды, собранные по темам.

Отдельный раздел пособия "Подготовка в вуз" включает обязательный минимум образования по физике для базовой школы, действующую программу по физике для поступающих на Физфак МГУ со ссылками на разделы пособия, список федерального комплекта учебников и рекомендуемой литературы, а также контрольные тесты и задачи, предлагавшиеся на вступительных экзаменах МГУ и МАДИ, со ссылками на соответствующие разделы пособия.

Можно привести пример урока в 8 классе по теме «Закон Ома для участка цепи».

Сажаем детей по парно за компьютеры, объясняем как работает данная программа. Затем дети самостоятельно знакомятся с теорией.

Затем с помощью интерактивных анимаций, где можно изменять различные параметры, дети используют этот закон в различных соединениях.

В завершение теоретического курса видеоролик с лабораторной работой «Зависимость силы тока от напряжения»

Для проверки напоследок предлагается решить две задачи. Ели дети их решают без проблем, то тему они усвоили хорошо.

2.6.4 Варианты построения уроков с использованием электронного учебника

Электронный учебник используется при изучении нового материала и его закреплении (20 мин. работы за компьютером). Учащихся сначала опрашивают по традиционной методике или с помощью печатных текстов. При переходе к изучению нового материала ученики парами садятся у компьютера, включают его и начинают работать со структурной формулой и структурными единицами параграфа под руководством и по плану учителя.

Электронная модель учебника может использоваться на этапе закрепления материала. На данном уроке новый материал изучается обычным способом, а при закреплении все учащиеся 5-7 мин. под руководством учителя соотносят полученные знания с формулой параграфа.

В рамках комбинированного урока с помощью электронного учебника осуществляется повторение и обобщение изученного материала (15-17мин.). Такой вариант предпочтительнее для уроков итогового повторения, когда по ходу урока требуется «пролистать» содержание нескольких параграфов, выявить родословную понятий, повторить наиболее важные факты и события, определить причинно-следственные связи. На таком уровне учащиеся должны иметь возможность поработать сначала сообща (по ходу объяснения учителя), затем в парах (по заданию учителя), наконец, индивидуально (по очереди).

Отдельные уроки могут быть посвящены самостоятельному изучению нового материала и составлению по его итогам своей структурной формулы параграфа. Такая работа проводится в группах учащихся (3-4 человека). В заключении урока (10 мин.) учащиеся обращаются к электронной формуле параграфа, сравнивая её со своим вариантом. Тем самым происходит приобщение учащихся к исследовательской работе на уроке, начиная с младшего школьного возраста.

ЭУ используется как средство контроля усвоения учащимися понятий. Тогда в состав электронного учебника входит система мониторинга. Результаты тестирования учащихся по каждому предмету фиксируются и обрабатываются компьютером. Данные мониторинга могут использоваться учеником, учителем, методическими службами и администрацией. Процент правильно решённых задач даёт ученику представление о том, как он усвоил учебный материал, при этом он может посмотреть, какие структурные единицы им усвоены не в полной мере, и впоследствии дорабатывать этот материал. Таким образом, ученик в какой-то мере может управлять процессом учения.

Учитель, в свою очередь на основе полученной информации также имеет возможность управлять процессом обучения. Результаты класса по содержанию в целом позволяют учителю увидеть необходимость организации повторения по этой или иной структурной единице для достижения максимального уровня обученности. Рассматривая результаты отдельных учащихся по структурным единицам, можно сделать аналогичные выводы по каждому отдельному учащемуся и принять соответствующие методические решения в плане индивидуальной работы. Наконец, можно проследить динамику обучения ученика по предмету. Стабильно высокие результаты некоторых учеников даёт учителю возможность выстроить для них индивидуальную предметную траекторию.

Методическим объединениям и кафедрам учителей чаще интересны результаты мониторинга по содержанию. Они получают полную информацию об усвоении каждой структурной единицы учениками всей параллели. На основе таких данных выявляется материал, который вызвал затруднения у учащихся, что позволяет на заседаниях кафедр и в рамках творческих групп разрабатывать методические рекомендации по преодолению этих трудностей. Администрации школы система педагогического мониторинга позволяет отслеживать уровень знаний учеников по предметам, видеть его динамику, активизировать методическую работу педагогов по конкретным проблемам содержания образования, контролировать оптимальность учебного плана и на основе данных педагогического мониторинга осуществлять его корректировку.

Информационная технология открывает для учащихся возможность лучше осознать характер самого объекта, активно включиться в процесс его познания, самостоятельно изменяя как его параметры, так и условия функционирования. В связи с этим, информационная технология не только может оказать положительное влияние на понимание школьниками строения и сущности функционирования объекта, но, что более важно, и на их умственное развитие. Использование информационной технологии позволяет оперативно и объективно выявлять уровень освоения материала учащимися, что весьма существенно в процессе обучения.

Учёными было рассмотрено применение электронной техники для составления контрольных работ, моделирования физических процессов и явлений, компьютеризации физического эксперимента, решения задач и проведения количественных расчетов, разработки учащимися алгоритмов и программ действий на базе компьютеров, осуществления самоконтроля и стандартизированного контроля знаний.

Проблема темпа усвоения учащимися материала с помощью компьютера (проблема возможной индивидуализации обучения при классно-урочной системе). В результате использования обучающих ППС происходит индивидуализация процесса обучения. Каждый ученик усваивает материал по своему плану, т.е. в соответствии со своими индивидуальными способностями восприятия. В результате такого обучения уже через 1-2 урока (занятия) учащиеся будут находиться на разных стадиях (уровнях) изучения нового материала. Это приведет к тому, что учитель не сможет продолжать обучение школьников по традиционной классно-урочной системе. Основная задача такого рода обучения состоит в том, чтобы ученики находились на одной стадии перед изучением нового материала и при этом все отведенное время для работы у них было занято. По-видимому, это может быть достигнуто при сочетании различных технологии обучения, причем обучающие ППС должны содержать несколько уровней сложности. В этом случае ученик, который быстро усваивает предлагаемую ему информацию, может просмотреть более сложные разделы данной темы, а также поработать над закреплением изучаемого материала. Слабый же ученик к этому моменту усвоит тот минимальный объем информации, который необходим для изучения последующего материала. При таком подходе к решению проблемы у преподавателя появляется возможность реализовать дифференцированное, а также разноуровневые обучение в условиях традиционного школьного преподавания.

При сопоставлении вариантов будем исходить из того, что обучение осуществляется преимущественно по дедуктивной схеме, т.е. путем дифференциации некоторой «относительно примитивной, но целостной основы». На этапе введения знаний учащийся переходит от полного отсутствия знаний до подлежащей изучению теме к овладению ими в первом приближении. С учётом упомянутой схемы этот переход должен осуществляться таким образом, чтобы у учащегося сложился общий, не дифференцированный каркас требуемого знания, некоторое общее представление о теме. Основная форма усвоения - вербальная, часто в виде учебных правил, решение задач играет преимущественно вспомогательную иллюстративную роль. Этап проходит при максимальной помощи со стороны учителя.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.