Использование разнообразных форм уроков при изучении темы "Квадратные уравнения" в 8 классе

Уравнение как общематематическое понятие. Направления изучения линии уравнений в школьном курсе алгебры. Методика изучения квадратных уравнений. Характеристика форм уроков. Разработка и практическое использование различных форм уроков математики.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 29.01.2011
Размер файла 4,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

D = ………

Так как D > 0, то данное квадратное уравнение имеет … корня. Эти корни находятся по формулам: => =…….

4.2 Проверка и составление алгоритма решения полного квадратного уравнения.

Составляется алгоритм решения уравнения вида ах2 + bx + c = 0.

1. Вычислить дискриминант D по формуле D = b2 - 4ас.

2. Если D < 0, то квадратное уравнение ах2 + bx + c = 0 не имеет корней.

3. Если D = 0, то квадратное уравнение имеет два корня, которые находятся по формуле

4. Если D > 0, то квадратное уравнение ах2 + bx + c = 0 имеет два корня:

; .

5. Закрепление.

5.1 Выполнение задания № 533 (устно)

5.2 Выполнение задания №534 (самостоятельно по вариантам) - ответы на обратной стороне доски.

1 вариант - а, г, е.

2 вариант - б, з, е.

6. Итог урока.

Какие уравнения называются полными? И как они решаются?

7. Домашнее задание: учить теорию, № 535, 536 (а-в).

Урок - "Математическая эстафета" по теме " Решение полных квадратных уравнений"

Цели урока: закрепить умение решать полные квадратные уравнения; рассмотреть различные задания, решающиеся с помощью квадратного уравнения; проверить умение учащихся решать полные и неполные квадратные уравнения.

Тип урока: закрепление.

Оборудование: 3 таблицы с заданиями.

1. Организационный момент (выбирают жюри, учащиеся объединяются в две команды)

2. Сообщение темы и цели урока.

Сегодня у нас необычный урок, мы с вами проведем математическую эстафету.

3. Работа по теме урока.

Наша эстафета состоит из 3-х этапов. На каждом этапе вы получаете одинаковое количество заданий. Задания будут усложняться. Решив уравнения одной сложности, получаете задания другой сложности, т.е. переходите на 2 этап. Победит та команда, которая первой пройдет все этапы.

Итак, начнем.

3.1 I этап. Задания 1-ой сложности. Решаете вместе, чтобы было быстрее. Ответы записать в таблицу и сдать на проверку жюри. За каждое правильное решение команда получает по 1 балл.

Уровень 1

Примеры

Ответы

3.2.2 этап - задания 2-ой сложности с ответами. За каждое правильное решение команда получает - 2 балла (жюри проверяет решение). На этом этапе ответы даны, нужно решить данные уравнения и получить правильный ответ.

2 уровень

Ответы

(х+8) (х-9) =-52

(-4;

5)

(х+1) (х+2) = (2х-1) (2х-10)

(;

8)

(1; - 2)

()

Нет корней

3 этап - на 3 этапе учащиеся решают не командой, а работают индивидуально (в тетрадях). Кто первым справится с заданием, тот ученик выносит ответы на доску. Класс оценивает этого ученика, после того, как большинство учащихся справится с заданием.

(х-1) (х-2) = (3х+1) (х-2)

3. Итог урока. Жюри проводит итог, объявляет результаты. Команды, которая набрала большее количество баллов, получают отметку "5", другая команда получает отметку "4".

4. Домашнее задание: учитель раздает карточки с заданиями.

Тест по теме "Полные квадратные уравнения"

Тип урока: урок - контроля.

Цель урока: проверить знания по теме "Полные квадратные уравнения", развивать самостоятельность, внимание, навыка самооценки, воспитывать интерес к предмету.

Ход урока:

1. Орг. момент.

2. Сообщение темы и уели урока.

Проверим, как вы усвоили тему "Полные квадратные уравнения".

3. Работа по теме урока.

Тест решаете до конца урока и сдаете на проверку.

Тест по теме "Полные квадратные уравнения"

Вариант 1.

1. Полное квадратное уравнение - это уравнение вида:

А) , где а; Б) ах +bx+0=0;

В) , где а; Г) , где а.

2. Если в квадратном уравнении D = 0, то уравнение имеет:

А) 1 корень Б) 3 корня

В) не имеет корней Г) 2 корня

3. Какой из предложенных многочленов является квадратным трехчленом?

А. Б.

В. Г.

4. Какое из чисел - 2, - 1, 3, 5 являются корнем уравнения

?

А. - 1 Б. - 2 В.3 Г.5

5. Чему равна сумма корней уравнения ?

А. Б. - В. Г.

6. Какое из предложенных квадратных уравнений не имеет корней?

А. Б.

В. Г.

7. Чему равна сумма квадратов корней уравнения

?

А.4 Б.18 В.16 Г.6

8. Какое из чисел 9, - 1, 6, является корнем уравнения .

А) 9 Б) В) - 1 Г) 6

9. При каких значениях параметра квадратное уравнение имеет только один корень?

А. Нет таких значений Б.

В. Г.

10. Если в полном квадратном уравнении D<0, то уравнение имеет:

А) один корень Б) два корня

В) не имеет корней Г) четыре корня

Вариант 2.

1. Полное квадратное уравнение - это уравнение вида:

А) , где а , b; Б) ах +bx+0=0;

В) , где а; Г) , где а.

2. Если в квадратном уравнении D > 0, то уравнение имеет:

А) 1 корень Б) 3 корня

В) не имеет корней Г) 2 корня

3. Какой из предложенных многочленов является квадратным трехчленом?

А. Б.

В. Г.

4. Какое из чисел - 2, - 1, 3, 5 являются корнем уравнения?

А. - 2 Б. - 1 В.3 Г.5

5. Чему равна сумма корней уравнения ?

А. Б. - В. Г.

6. Какое из предложенных квадратных уравнений не имеет корней?

А. Б.

В. Г.

7. Чему равна сумма квадратов корней уравнения

?

А.4 Б.18 В.9 Г.1

8. Какое из чисел 9, - 1, 6, является корнем уравнения

.

А) 9 Б) В) - 1 Г) 6

9. При каких значениях параметра квадратное уравнение имеет только один корень?

А. Нет таких значений Б.

В. Г.

10. Если в полном квадратном уравнении D<0, то уравнение имеет:

А) один корень Б) два корня

В) не имеет корней Г) четыре корня

Критерии оценок:

"5" - 9-10 б.

"4"-7-8 б.

"3" - 5-6 б.

4. Подведение итогов.

5. Домашнее задание: решить тест противоположного варианта.

Анализ уроков по теме "Полные квадратные уравнения"

Так как на втором этапе внимание уделяется на решение полных квадратных уравнений, автором были разработаны и апробированы различные по форме уроки по данной теме.

При изучении нового материала был использован урок - программирование. Урок изучения нового материала начинается с организационного момента. Все учащиеся были хорошо подготовлены к уроку. При изучении темы была связь предыдущего материала с новым. На данном уроке каждый ученик получил карточку с текстом, где учащиеся сами должны были заполнить текст, найти пути решения полных квадратных уравнений. Данный урок был полезным для учащихся, каждый из них старался находить различные пути решения, все учащиеся были вовлечены в работу. Данный урок смог заинтересовать учащихся, что способствовало лучшему усвоению темы.

Для закрепления темы по решению полных квадратных уравнений была проведена "Математическая эстафета", с целью: закрепить умение решать полные квадратные уравнения, также решать различные задания, решающиеся с помощью квадратного уравнения. Урок начался с организационного момента. Класс делился на две команды, выбрали капитанов. Учащиеся двух команд на каждом этапе получали одинаковое количество заданий. Решив уравнения одной сложности, команда получала задание другой сложности. В игру включались все учащиеся. Всем данный урок очень понравился, так как такой урок проводился впервые. Они были заинтересованы и задания выполняли без затруднений и подсказок учителя. Победила та команда, которая первой прошла все этапы. В конце урока жюри подводила итоги. Ученики той команды, которая набрала большее количество баллов, получили отметку "5". Команда, которая набрала меньшее количество - отметка "4".

Также по теме "Полные квадратные уравнения" автором был разработан тест, который состоял из 10 вопросов. Тест решали 12 человек. И получились следующие результаты:

Отметка

Количество человек

%

"5"

9

75

"4"

3

25

"3"

-

-

Таким образом, тест показал высокий уровень знаний теоретического и практического материала учащихся. Проведенные автором уроки повлияли на успеваемость положительно. Учащиеся знают алгоритм решения полного квадратного уравнения, умеют находить дискриминант и корни квадратного уравнения. Было видно, что ученики поняли тему. Задания выполняли быстро без ошибок, объясняя каждый момент решения (Приложение 4).

2.3 Разработка уроков по теме "Приведенные квадратные уравнении

Урок - презентация по теме "Приведенные квадратные уравнения

Тип урока: изучение новой темы.

Цели: повторить понятие квадратного уравнения; ввести понятие приведенного квадратного уравнения; формировать умение распознавать квадратные уравнения и приводить к ним.

Ход урока:

Организационный момент.

Актуализация знаний.

2.1. Устный счет.

4,8: 2

2,4

3 - 0,4

2,6

1,4 + 4,9

6,3

+ 0,8

3,2

: 0,13

20

: 3

2,1

: 0,4

8

: 0,1

200

+ 5,9

8

0,2

1,8

: 0,2

1000

: 20

0,4

2.2. Устный опрос.

Какие уравнения называются квадратными? (Квадратное уравнение , a - старший коэффициент; b - второй коэффициент; c - свободный коэффициент (свободный член уравнения)).

Чему равен дискриминант квадратного уравнения?

Как найти корни полного квадратного уравнения?

Какие уравнения называются неполными?

Сколько корней имеет полное квадратное уравнение, если

а) D = 0; D < 0

б) D > 0

Сообщение темы и цели урока.

Объяснение нового материала.

Далее учитель объясняет новую тему.

Приведенное квадратное уравнение получается из квадратного уравнения по схеме:

(Ученики делают записи в тетрадь)

Например, приведенными квадратными уравнениями являются уравнения:

Таким образом, приведенное квадратное уравнение можно рассматривать как частный случай полного квадратного уравнения , где а = 1, b = p, c = q. Дискриминант уравнения равен: D = b

Обычно в случае приведенного уравнения вместо дискриминанта D рассматривается выражение . При этом формулу корней приведенного уравнения записывают так: .

5. Закрепление.

5.1 Решите уравнение:

1) (учитель решает у доски, учащиеся в тетрадях).

2) (1 ученик у доски, остальные в тетрадях).

3) ; (самостоятельно).

6. Итог урока.

Какие уравнения называются неполными, полными, приведенными?

Приведите примеры неполных, полных, приведенных квадратных уравнений.

Чем они отличаются?

7. Домашнее задание: теория, решить уравнения:

Урок - практикум по теме "Решение квадратных и приведенных квадратных уравнений"

Цели урока: отработка общих умений и навыков при решении квадратных уравнений; развитие внимания, навыков самоконтроля и самооценки.

Оборудование: карточки для самостоятельной работы, портрет ученого.

Ход урока:

1. Организационный момент (1 мин)

2. Сообщение темы и цели - повторим, то, что необходимо знать при решении квадратных уравнений; проверим свои умения решать квадратные уравнения в самостоятельной работе.

3. Разминка (6 мин)

3.1 Игра "Заполни квадрат". (Упражнение на развитие памяти и внимания). За 10 секунд запомнить, что записано в клетках квадрата, и записать в свой квадрат.

А

Р

У

Е

Н

В

Е

И

Н

Расшифруйте слово. Зашифровано слово "УРАВНЕНИЕ"

3.2 Историческая справка. Простые уравнения люди научились решать более трех тысяч лет назад в Древнем Египте, Вавилоне и только 4000 лет назад научились решать квадратные уравнения. Одним из тех, кто внес большой вклад в развитие математики, был французский математик Виет. Имя этого математика нам скоро встретится.

4. Повторение (фронтальный опрос 6 мин)

4.1 Вычислите:

а) - 4*1* (-4), - 4*2*5, - 5*6*4;

б) (-10) 2, 3 2, (-7) 2

Это нужно уметь при нахождении дискриминанта D.

4.2 Игра "Срочная радиограмма". Класс делится на две команды: девочки - мальчики. В двух конвертах - отдельные слова. Задача: составить одно математическое предложение из имеющихся слов. Трудность состоит в том, что одного слова не хватает.

"Если ДИСКРИМИНАНТ больше нуля, то уравнение имеет два различных корня";

"Если квадратное уравнение записано в СТАНДАРТНОМ виде, то можно находить дискриминант".

5. Тестовые вопросы (5 мин)

На доске 8 квадратных уравнений. Эти задания на слух, повторяются только два раза. Залог успеха - огромное внимание.

1. 2х2 - 8х +4 = 0; 5.5х2+ 6х = 0;

2. 3х2 + 4х - 1 = 0;

3. 6. х2 - 8х + 12 = 0;

4. 4х2 - 8 = 0; 7.3х2 = 0;

5. х2 - 10х + 100 = 0; 8.14 - 2х2 + х = 0

а) Выпишите номера полных квадратов уравнений.

б) Выпишите коэффициенты а, b, c в уравнении 8.

в) Выпишите номер неполного квадратного уравнения, имеющего один корень.

г) Выпишите коэффициенты a, b, c в уравнении 5.

д) Найдите дискриминант в уравнении 6.

е) Найдите дискриминант в уравнении 4 и сделайте вывод о количестве корней.

Проверяем, оцениваем себя сами:

нет ошибок - "5"

1 - 2 ошибки - "4"

3 - 4 ошибки - "3"

6. Игра " Следствие ведут знатоки " (10 мин)

Прежде чем доверить расследование серьезного дела, необходимо пройти проверку.

а) Сможете ли вы отыскать ошибку в решении уравнения?

- х2 + 6х + 16 = 0,х2 - 6х + 16 = 0,a = 1, b = - 6, c = - 16.

D = b2 - 4ac = ( - 6) 2 - 4 * 1 * ( - 16) = 36 +64 = 100

Ошибку ищем по этапам, с самого начала. Ошибка: - 16, отсюда дискриминант равен 38.

7. Самостоятельная работа (12 мин)

Выполнив самостоятельную работу, узнаете, можете ли вы решать квадратные уравнения без ошибок.

Первые два уравнения можно проверить (решения на оборотной стороне доски).

1. х2 + 2х - 25 = 0.

2. 9х2 - 6х + 1 = 0.

3. 3х2 + 8х - 3 = 0.

8. Подведение итогов урока.

Обобщающий урок по теме "Квадратные уравнения" в форме игры "Звездный час"

Цели урока:

· закрепить практические и теоретические знания и умения учащихся при выполнении заданий по теме "Квадратные уравнения";

· развивать самостоятельность, активность, внимание;

· воспитывать интерес к предмету.

Оборудование: звездочки, таблицы с цифрами.

Ход урока:

1. Организация класса

а) Приветствие

б) Проверка готовности рабочих мест

2. Сообщение темы и цели урока

Сегодня у нас особенный урок, мы проведем с вами "Звездный час" по теме "Квадратные уравнения", тем самым еще раз проверим свои знания и умения.

3. Закрепление материала

3.1 Знакомство с правилами игры.

Итак, представим, что мы с вами в студии. Вы игроки, а я ведущая. У вас у каждого на партах лежат таблички с цифрами от 1 до 5.

1

2

3

4

5

Итак, послушайте условия игры.

Я буду задавать всем вопросы, а соответственно поднимать табличку с тем номером, который соответствует правильному ответу. А так же у каждого из вас лежат на партах листочки. За каждый правильный ответ, когда я вам скажу, вы будете на нем чертить звездочку. А в конце игры мы их подсчитаем и оценим работу каждого из вас.

3.2 Проведение игры.

Итак, начинаем игру. Сейчас мы будем работать с вами по 1 таблице

Таблица №1

1

2

3

4

5

Д =

Итак, сверху вы видите номера ответов, а под ними соответствующие ответы. Я задаю вопрос, вы 5 секунд, думаете и поднимаете таблички с правильными ответами.

1. Какой вид имеет квадратное уравнение.

2. Назовите формулы корней квадратного уравнения.

3. Назовите неполное квадратное уравнение.

4. Назовите, чему равен дискриминант квадратного уравнения.

Хорошо с этим заданием вы справились хорошо, почти все учащиеся поднимали таблички с правильными ответами. А кто ошибался, он еще раз увидел правильные формулы и надеюсь, так же доучит материал.

А теперь мы все переходим во второй тур. Во втором туре мы выясним знание правил по данной теме. Работать будем со второй таблицей.

Таблица №2

1

2

3

4

5

Теорема обратная теореме Виета

Квадратное уравнение

Теорема Виета

Неполное квадратное уравнение

Приводимое квадратное уравнение

Я буду говорить вам правило, а вы поднимайте соответствующую карточку.

1) Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Верно, следующий вопрос, слушайте и поднимайте таблички.

2) Если в квадратном уравнении хотя бы один из коэффициентов в или с равен нулю, то такое уравнение называется….

Верно, приведите пример квадратного уравнения.

3) Уравнение вида , где х переменная, а, в, с - некоторые числа, причем, а 0 называется….

Верно, приведите пример квадратного уравнения

4) Если для чисел x1, x2, p, q справедливы формулы

x1 + x2 = - p,

x1 x2 = q,

то x1 и x2 - корни уравнения х2 + px + q = 0.

Верно, скажите, сколько корней имеет неполное квадратное уравнение каждого вида.

Молодцы.

5) Как называются полные квадратные уравнения, у которых все три коэффициента отличны от нуля и в которых первый коэффициент равен 1.

Хорошо и с этим заданием вы справились.

4. III тур. Самостоятельная работа.

Вам в этом туре необходимо решить квадратные уравнения, которые написаны на доске. (7 мин)

1. х2 - 2х - 10 = 0.

4. 9х2 + 12х + 4 = 0.

5. 3х2 - х +10 = 0.

6. х2 - 3х - 4 = 0.

Вы самостоятельно решаете эти уравнения в тетради, а потом мы проверим (диктую ответы, дети сами проверяют).

Хорошо давайте проверим.

Итак, ребята, если вы правильно решили все 4 уравнения, то получите 4 звездочки; если 3, то 3 звездочки; если 2, то 2 звездочки; если 1, то 1 звездочку.

5. Подведение итогов

Итак, вот и подходит к концу наша игра. В ходе игры мы повторили теоретический и практический материал, и теперь мы можем подвести итог игры. Подсчитайте свои звездочки.

Кто набрал от 20 до 25 звезд, получают "5"

Кто набрал от 20 до 15 звезд, получают "4"

Кто набрал 15 звезд и меньше, получают "3"

Контрольная работа по теме "Квадратные уравнения"

Цели урока: проверить знания и умения решения учеников по теме "Квадратные уравнения".

Оборудование: карточки с заданиями.

Ход урока:

1. Организационный момент

2. Сообщение темы и цели урока.

3. Работа по теме урока.

Вариант I

1. Имеет ли корни уравнение:

а) ;

б) ?

2. Решите уравнение:

а) ;

б) ;

в) ;

г) ;

3. Сократите дробь .

4. Один из корней уравнения равен 5. Найдите другой корень и коэффициент .

5. Площадь квадрата на 8см2 меньше площади прямоугольника. Сторона квадрата в три раза меньше одной стороны прямоугольника и на 2 см больше второй его стороны. Найдите длину стороны квадрата.

6. Поезд должен был пройти 840 км в определенное время. На половине пути он был задержан на 30 мин из-за технической неисправности. Чтобы прибыть во время, ему пришлось увеличить скорость на 2 км/ч. Сколько времени поезд находился в пути?

Вариант II

1. Имеет ли корни уравнение:

а) ;

б) ?

2. Решите уравнение:

а) ;

б) ;

в) ;

г) ;

3. Сократите дробь

.

4. Один из корней уравнения равен 12. Найдите другой корень и коэффициент .

5. Периметр прямоугольника равен 32 см, а его площадь равна 60см2. Найдите длину меньшей стороны прямоугольника.

6. Из города А в город В выехали велосипедист и мотоциклист. Скорость велосипедиста на 10 км/ч меньше скорости мотоциклиста, поэтому он затратил на весь путь на 6 ч больше. С какой скоростью ехал мотоциклист, если расстояние между городами 120 км?

4. Подведение итогов.

Анализ уроков по теме "Приведенные квадратные уравнения"

При проведении уроков по теме "Приведенные квадратные уравнения" были использованы: при изучении новой темы - урок - презентация, т.е. на уроке использовался мультимедийный проектор. Урок начался с повторения ранее изученного материала. Ученики были активны и заинтересованы, т.к. такие уроки проводятся в школе очень редко. При закреплении и повторении был разработан урок - практикум, с использованием игровых моментов. Здесь даже пассивные, несмелые дети активно включались в работу, применяя на практике свои знания и умения. Особенно учащимся нравились задания, в которых надо исправить ошибки. В ходе игры выяснилось, что ученики хорошо различают квадратные уравнения. При выполнении практического задания трудностей не возникло.

Также автором разработан и проведен обобщающий урок по всей теме в форме игры "Звездный час", целью которого являются: закрепить практические и теоретические знания и умения, учащихся при выполнении заданий по теме "Квадратные уравнения"; развивать самостоятельность, активность и внимание. И можно сделать вывод о том, что учащиеся теорию знают хорошо и умеют ее применять на практике.

В конце изучения темы "Квадратные уравнения" была проведена комплексная контрольная работа. После проверки контрольной работы получились следующие результаты:

Оценка

Количество человек

%

"5"

4

33

"4"

5

42

"3"

3

25

Контрольная работа показала средний уровень знаний по данной теме (Приложение 5).

Сравнив результаты трех этапов, можно увидеть, что на первом и третьем этапах преобладающей отметкой является "5", результаты показали высокий уровень знаний. А на третьем этапе уровень знаний хуже, чем в предыдущих этапах. Этому повлияло то, что контрольная работа была комплексная, где включались решения квадратных уравнений различных видов. По результатам контрольной работы видно, что учащиеся умеют:

· решать неполные квадратные уравнения;

· решать полные квадратные уравнения;

· умеют использовать формулы для решения квадратных уравнений;

· решать приведенные квадратные уравнения;

· умеют находить ошибки в решенных уравнениях и исправлять их;

· делать проверку.

Также контрольная работа выявила недочеты в работе по определенным моментам, и определил пути их устранения. В связи с этим рекомендуется провести определенную работу по отработке и коррекции знаний учащихся, и обратить внимание на некоторые ее моменты, а именно:

· закрепить умения в решении задач;

· устранить пробелы в знаниях по теме "Сложение и вычитание отрицательных чисел";

· развивать вычислительные навыки.

Таким образом, проведенный в 8 классе комплекс уроков показал, что использование разных форм уроков способствует лучшему усвоению решения квадратных уравнений разного вида.

Заключение

Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. На изучение темы "Квадратные уравнения" по программе дается всего 16 ч. В процессе выполнения данной работы были созданы конспекты уроков с использованием разнообразных форм уроков именно по теме "Квадратные уравнения".

При применении их в образовательный процесс были достигнуты достаточно высокие результаты обучения. Ученики 8 класса показали достаточно высокие результаты при выполнении самостоятельных и контрольных работ. На уроках учащиеся были заинтересованными и активными.

Задачи, которые были поставлены в начале работы, решены: изучена методическая литература по данной теме; созданы и апробированы на практике конспекты уроков, проанализированы результаты применения его на практике, цель достигнута.

Гипотеза, которая была поставлена в начале работы, нашла своё подтверждение, то есть автором в данной работе было доказано, что при использовании разнообразных форм уроков при изучении темы "Квадратные уравнения", повысится успеваемость учащихся и поэтому существует необходимость применения на уроках алгебры.

При выполнении данной работы понадобились не только те знания, которые имеются у самого автора, но и необходимая работа с дополнительной литературой, составление конспектов уроков.

Данную выпускную квалификационную работу можно использовать в педагогической деятельности, она может стать методическим пособием для студентов Кунгурского педагогического училища, как при подготовке докладов, сообщений на эту тему, так и при проведении пробных уроков или преддипломной практики. А также ею могут воспользоваться учителя математики, преподающие в средней школе, которые стремятся вызвать интерес к урокам математики.

Литература

1. Алимов, Ш.А. Алгебра: Учеб. для 8 кл. общеобразоват. учреждений / Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др. - 10-е изд. - М.: Просвещение, 2003.

2. Бантова, М.А. Методика преподавания математики в начальных классах/ Бантова М.А., Бельтюкова А.М. и др. Ё Учеб. пособие для учащихся школьных отд-ний пед. училищ. Изд.2-е. - М.: Просвещение, 1998.

3. Башмаков, М.И. Алгебра: учеб. для 8 кл. общеобразоват. учреждений/ М.И. Башмаков. - М.: Просвещение, 2004.

4. Бекаревич, А.Б. Уравнения в школьном курсе математики/ А.Б. Бекаревич. - М., 1968.

5. Бурмистрова, Т.А. Программы общеобразовательных учреждений/ Т.А. Бурмистрова. - М.: Просвещение, 1994.

6. Глейзер, Г.И. История математики в школе VII - VIII классы/ Г.И. Глейзер. - М., 1997.

7. Зильзерберг, Н.И. Урок математики: Подготовка и проведение/ Н.И. Зильзерберг. - М., 2002.

8. Иванова, Т.А. Как подготовить уроки - практикумы/ Т.А. Иванова/ Математика в школе. - 2001.

9. Колягин, Ю.М. Методика преподавания математике в средней школе/ Ю.М. Колягин. - М.: Просвещение, 2001.

10. Кузнецова, Г.М. Программы для общеобразоват. Школ, гимназий, лицеев: Математика 5-11 кл. / Г.М. Кузнецова. - М.: Дрофа, 2002.

11. Лягущенко, Е.И. Методика обучения математике в 5 кл. / Е.И. Лягущенко. - Минск, 2001.

12. Маркушевич, Л.А. Уравнения и неравенства в заключительном повторении курса алгебры средней школы / Л.А. Маркушевич, Р.С. Черкасов. / Математика в школе. - 2004. - №1.

13. Мордкович, А.Г. Алгебра 8 кл.: Учеб. для общеобразоват. учреждений/ А.Г. Мордкович. - М.: Мнемозина, 2003.

14. Мордкович, А.Г. Алгебра.8 кл.: Метод. пособие для учителя/ А.Г. Мордкович. - М.: Мнемозина, 1999.

15. Мишин, В.И. Методика преподавания математики в средней школе/ В.И. Мишин. - М., 2201.

16. Никольский, С.М. Алгебра: Учеб. для 8 кл. общеобразоват. учреждений / С.М. Никольский, М.К. Потапов и др. - 2-е изд. - М.: Просвещение, 2003.

17. Оганесян, В.А. Методика преподавания математики в средней школе/ В.А. Оганесян. - М.: Просвещение, 2000.

18. Сабинина, Л.В. Методика в понятиях и терминах. Ч.1. /Л.В. Сабинина. - М.: Просвещение, 1998.

19. Саранцев, Г.И. Методика обучения математике в средней в школе/ Г.И. Саранцев. - М., 2002.

20. Стефанова, Н.Л. Методика и технология обучения математике. Курс лекций: пособие для вузов/ Н.Л. Стефанова. - М.: Дрофа, 2005.

21. Столяр, А.А. Общая методика преподавания математики/ А.А. Столяр. - М., 1999.

22. Темербекова, А.А. Методика преподавания математики: Учеб. пособие для студ. высш. Учеб. Заведений/ А.А. Темербекова. - М.: Гуманит. изд. центр ВЛАДОС, 2003.

23. Шаталова, С. Способы решения квадратных уравнений / С. Шаталова // Математика в школе. - 2004. - №42.


Подобные документы

  • Понятие квадратного трехчлена и квадратичной функции, их место в школьном курсе алгебры. Определение порядка раскрытия темы по решению квадратных уравнений и неравенств на уроках математики. Разработка методики по изучению квадратного трехчлена в школе.

    дипломная работа [1,6 M], добавлен 18.07.2013

  • Понятие линии второго порядка в аналитической геометрии, содержание темы в элементарной математике. Примеры фрагментов уроков алгебры в 7-9 классах. Анализ содержания темы "Линии второго порядка" в учебниках по алгебре. Вывод уравнения окружности.

    дипломная работа [770,8 K], добавлен 25.04.2012

  • Анализ школьных учебников по алгебре и началам анализа. Методика изучения иррациональных уравнений и неравенств на уроках математики. Основные понятия и наиболее важные приемы преобразования уравнений. Основы и методы решения иррациональных неравенств.

    дипломная работа [793,9 K], добавлен 28.05.2008

  • Цель изучения уравнений в курсе математики в коррекционно-развивающих классах, методика обучения их решению на основании свойств равенств. Виды уравнений, решаемых в начальном классе, их связь с изученным материалом. Образцы записи и проверки решения.

    курсовая работа [91,8 K], добавлен 23.05.2014

  • Строение и функции побега. Образовательные, развивающие и воспитательные задачи, решаемые при изучении темы "Побег" в школьном курсе биологии. Методические разработки уроков по теме "Побег", составление банка контрольных заданий по изучаемой теме.

    курсовая работа [728,6 K], добавлен 15.06.2010

  • Психолого-педагогические основы изучения тригонометрического материала в школе. Разработка системы упражнений по теме "Тригонометрические уравнения". Методические рекомендации по решению задач, проведению уроков, контрольных и проверочных работ.

    дипломная работа [371,9 K], добавлен 16.03.2012

  • Теоретические основы проверки знаний, умений и навыков на уроках математики. Методы контроля знаний, умений и навыков учащихся. Методика проведения зачетных уроков. Экспериментальная работа по изучению влияния уроков-зачетов по математике в 8 классе.

    дипломная работа [406,9 K], добавлен 24.06.2008

  • Психолого-педагогические основы изучения вопросов культуры в школьном курсе истории. Методические приемы изучения культуры в школе. Вопросы культуры в курсе истории Древнего мира: практический аспект. Фрагменты уроков по изучению культуры в пятом классе.

    курсовая работа [44,6 K], добавлен 30.03.2011

  • Методика обучения понятию неравенства и решению неравенств в начальной школе. Содержание и роль линии уравнений и неравенств в школьном курсе математики. Классификация преобразований неравенств и их систем. Общая последовательность изучения материала.

    курсовая работа [320,8 K], добавлен 08.04.2009

  • Виды и функции корней, типы корневых систем. Содержание темы "Корень" в школьном курсе биологии, структура ознакомительного урока, полученные учащимися знания и навыки. Методические разработки уроков по темам, игровые задания и дидактические карточки.

    курсовая работа [697,7 K], добавлен 15.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.