Методологически-мировоззренческие принципы преподавания физики в контексте мировой культуры

Методологические принципы формирования физических понятий. Техническое конструирование, творчество и профориентация. Последовательность педагогических действий при обучении физике, концепция поэтапного обучения. Методика преподавания физики твердого тела.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 27.10.2010
Размер файла 692,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Как отмечалось выше, исторические обзоры могут быть как вводными, так и обобщающими. Если обзор посвящен проблеме, по которой запас имеющихся у школьников знаний весьма ограничен, и необходимые для понимания эволюции идеи знания весьма будут сообщаться учащимся в ходе последующего изучения курса, то нет смысла забегать вперед и проводить обзор как вводный. Целесообразнее провести его после изучения учащимися необходимого материала и сведения о сути физических открытий, уже известные им, включить в ткань обобщающего исторического повествования.

Главная задача проведения обобщающих обзоров - показать основные этапы эволюции взглядов по той или иной проблеме. При этом необходимо раскрыть механизм научного познания, то есть причины, побуждающие к выдвижению тех или идей, причины смены одной идей другими, методы обоснования новых взглядов, трудности, стоящие на пути утверждения новых идей. Следовательно, надо не только изложить историю, а объяснить ее, ибо именно это последнее и является наиболее поучительным.

Если в процессе предшествующего изучения материал курса учащимся не сообщались сведения об ученых, с именами которых связано формирование той или иной идеи, то это может быть сделано на обобщающих занятиях.

При построении каждого такого обзора открывается возможность познакомить учащихся общим путем научного познания и с методами физического исследования. По сути дела. Каждый обзор строится единообразно, поскольку каждый раз последовательно рассматриваются такие этапы общего пути научного познания. Как накопление фактов, выведение из них следствий и их экспериментальная проверка. В раскрытии этапов научного познания - методологическое значение этих обзоров.

Каждый обзор должен показывать, как происходит постепенное углубление и уточнение знаний по определенной проблеме, а это создает возможность постепенно приучать школьников к мысли о том, что каждое научное знание есть объективная истина, содержания элемент абсолютного и относительного; что знания развиваются, что мир познаваем. Следовательно. Рассмотрение истории развития взглядов позволяет ненавязчиво и естественно познакомить школьников с диалектикой процесса познания. Что играет большую роль в формировании научного мировоззрения.

Методика проведения обобщающих обзоров исторического характера не отличается существенно от методики обычного обобщающего повторения. Как правило, перед обобщающими уроками ученикам дается ряд вопросов, по которым они должны приготовить ответы, опираясь на изученный материал. Так, перед уроком, посвященным развитию взглядов на природу света, учащимся предлагается повторить основные явления физической оптики. На обобщающем уроке изложение учителя сочетается с ответами учащихся на вопросы, которые в ходе урока выдвигает учитель. По ходу изложения полезно организовать составление плана обобщающего обзора, в котором бы фиксировались основные этапы развития взглядов [25].

Для истории физики менее всего подходит процесс заучивания. Здесь важно составить общую картину развития физической науки, добиться понимания отличия основных ученых, наиболее полно выразивших идеи и достижения своего времени.

Важнейшей задачей в преподавании физики является задача сохранения среди учащихся интереса к этому предмету. И здесь большую роль должна сыграть именно история физики.

1.9 Философия физики

Физика как наука появилась лишь благодаря тому, что ее создатели, Галилей, Ньютон, Гук, Гюйгенс, Эйлер, Лаплас, Фарадей, Максвелл и многие другие исследователи, придерживались некоторых изначальных философских принципов и правил делания науки. Принципы и правила, в свою очередь, опирались на строгие логические законы и на веру в познаваемость и механистичность (когда любые явления природы могут быть объяснены движением материи).

Теперь, переболев на протяжении трех столетий всеми болезнями философской мысли, мы видим, что этот путь развития оказался единственно верным.

Что же мы должны отнести к философским принципам, на которых строится физика? Во-первых, это независимость существования природы от нашего сознания; материя самодостаточна и ее законы движения не зависят ни от бога, ни от наблюдателя. Во-вторых, исследования природы должны быть основаны:

· на живом созерцании, наблюдениях;

· на точных, бесспорных фактах;

· на экспериментах;

· на вере в познаваемость природы;

· на вере в то, что кроме движущейся материи в пространстве и во времени ничего нет; все законы природы, все явления природы, все факты связаны с движением материи, причинны, и эти причины следует и можно находить.

Базируясь на такой (материалистической) философии, каждый из известных исследователей (кроме релятивистов, которые отступили от этих принципов) составлял или дополнял правила делания науки. И одними из первых, если не считать древнегреческих ученых и средневековья, были Кант, Гюйгенс и Ньютон.

Так, у Ньютона [18] читаем:

Не должно принимать в природе иных причин сверх тех, которые истинны и достаточны для объяснения явлений.

Одинаковым явлениям предшествуют одинаковые причины.

Гипотез я не измышляю.

и так далее.

Наиболее важные высказывания по этому поводу приведены в работах [1], [28].

Именно на живом созерцании природы, а не измышлением гипотез Ньютоном были обоснованы постулаты об инвариантах пространства, времени и массы.

«Поскольку все явления природы происходят во времени и в пространстве, то любая физическая теория, описывающая эти явления, связана с определением пространства и времени. И в зависимости от того, какое определение положено в основу, наука может пойти по правильному, материалистическому пути, объективно отражая действительность, или она скатится к идеализму, утратит смысл науки и превратится в средство одурманивания человечества» [9]. Вопрос о времени, пространстве и массе является гносеологическим, основополагающим и, следовательно, философским фундаментом физики.

2. Методологические мировоззренческие принципы построения последовательности педагогических действий при обучении физике в контексте мировой культуры

2.1 Физика в контексте мировой культуры

Если мы серьезно намерены формировать гармоническую развитую личность, то в процессе обучения элементы естественнонаучной и гуманитарной составляющих мировой культуры должны образовывать тот цельный образ реальности, который позволит учащимся свободно ориентироваться в окружающем мире. Именно поэтому физику следует рассматривать во всех ее формах и проявлениях, к тому же в причиной зависимости от остальных сторон человеческого бытия. Иными словами, современное преподавание физики в школе должно быть в нужной степени гуманитаризованным. Медлить с этим нежелательно, поскольку «образование с попранным культурным пластом уже принесло и продолжает приносить свои горькие плоды в отставании науки и в ущербности тех, кто ей служит» [10].

Однако чтобы научные знания воспринимались учащимися как разумом, как так и сердцем.

Во-первых, необходимо, гибкое и тактичное воздействие на интеллектуальный и эмоциональный мир ученика (с тем, чтобы ему была ясна польза от усвоения физических знаний и представлений и от сознательного участия в самих занятиях физикой).

Во-вторых, преобразование содержание учебного курса, при котором станет очевидной культурная (значит и личностная) ценность физического образования для учащегося. Такое преобразование достигается с помощью историко-научного и социокультурного подходов в рассмотрении фундаментальных физических понятий, идей, представлений. А для этого учителем должны быть реализованы следующие три главных направления.

1. Систематическое привлечение внимания учащихся к таким вопросам: физика как наука (научные знания, ее методы исследований) и как вид деятельности; красота эксперимента и теоретических построений; соотношение рационального и интуитивного в ходе исследований; связь достижений науки с заблуждениями и ошибками; парадоксы в развитии науки; противостояние науки и антинауки; специфика деятельности ученого; польза, получаемая от науки отдельно взятой личностью и всем человечеством.

2. Рассмотрение на уроках взаимодействия науки с другими сторонами жизни человечества, для чего полезно обращаться к следующему: человек как объект физического познания; наука, философия и религия; наука, идеология и политика государства; достижения, методы и оборудование физики в других науках и технике, в разгадывании таинственных явлений; отображение науки в литературе и искусстве; личность ученого и художника; наука и научная жизнь своего края (или республики в целом).

3. Постоянное обращение к материалу о личностях выдающихся деятелей науки. Квалифицированное раскрытие на уроках их творчества становится трепетным прикосновением к тем поучительным образам терпения, мысли, труда и высочайшего профессионализма, которые пробуждают у учащихся романтику поисков своего назначения в жизни, стремление развивать свои наклонности, свои усилия в проектировании собственной профессиональной деятельности в будущем.

Очевидно, подобный взгляд на учебный предмет, своеобразное разрушение замкнутости физической науки и выход ее на учащегося со всеми его интересами и увлечениями, с повседневным бытом достигается при использовании тщательного отобранного, адаптированного к целям гуманитаризации историко-научного, философского материала. В связи с этим, основываясь на своем опыте работы, выскажем ряд рекомендаций методологического характера.

· При рассмотрении на уроках процесса познания физических явлений очень важно уделять внимание не только успехам науки (тем более что они составляют весьма малую долю деятельности ученого), но и научным ошибкам и заблуждениям. Обращение к ним позволяет формировать у учащегося достаточно объективные представления о том, как «добываются» научные знания в действительности, и какова истинная цена труда ученого. К тому же это позволяет вырабатывать у молодого поколения своеобразный иммунитет против мистики и суеверий и осознавать причины противостояния науки и антинауки [42].

· Философия науки и культурология свидетельствуют о том, что толкование событий в развитии науки вне учета истории культуры приводит к чрезвычайно обедненной, подозрительно прямолинейной и потому не вполне объективной картине человеческих усилий в исследовании природы. Вне показа взаимодействия науки со всеобщей историей, философией и религией, существенно влиявшими на процесс включения научных достижений в жизнь общества и осознание их мировоззренческой и культурной значимости, наши объяснения многих причин победы человеческого разума представляются учащимся несколько схематичными, легковесными и потому надуманными.

И в этой связи следует обращать внимание учащегося на определенную изолированность научных событий от повседневной жизни человеческого общества. Поэтому необходимо отделять факт признания научного открытия учеными от процесса его восприятия элитой общества, а затем обществом в целом. Нередко эти два события разделены значительным временным расстоянием. Если, к примеру, учение Н.Коперника было признано астрономами во второй половине XVIII в., когда широкое распространение получили идеи «духовного гелиоцентризма» (стремление человека работать над своим несовершенным бытием и приближением к духовному центру - Единому, Благу, Логосу и Абсолюту) [14].

· Не менее важно на примерах изучения конкретных учебных тем показать учащимся широкое применение физических знаний, методов в самых разных областях современной деятельности человека, демонстрируя тем самым и одновременно обосновывая значительную культурную ценность физико-математических наук. Особое внимание при этом целесообразно уделять вопросам, имеющим отношение к близким будущим профессиям многих и многих учащихся школ, гимназий и лицеев.

· Существенным моментом в формировании личности ученика становится знакомство с творчеством выдающихся физиков мира. И здесь очень важно раскрывать личность ученого во всем ее богатстве и противоречиях, во взаимодействии со своей эпохой и близким окружением, в столкновениях великого разума и не менее великих страстей. При этом может быть использован такой прием: ученые прошлого отвечают на актуальные для современности вопросы, вовлекаются в дискуссии «в качестве живых собеседников и даже проницательных наставников» [32].

· Все направления гуманитаризации преподавания должны реализовываться в соответствии с изучаемым материалом, не подменяя и не вульгаризируя его. Чтобы «окультуривание» материала приводило к глубокому пониманию фундаментальных идей и осознанию их мировоззренческой ценности, в учебный процесс должны быть внесены определенные изменения. Прежде всего, необходимо осуществлять следующее: дифференцированный подход в изучении курса физики (фундаментальные идеи и представления изучаются основательно, другие вопросы программы рассматриваются достаточно кратко либо только упоминаются с тем, чтобы образовать общую картину мира физических явлений; одновременно используются более экономичные, логически и дидактически оправданные формы в изучении отдельных разделов и подразделов учебного курса); применение на уроках упрощенных математических и экономных демонстрационных форм обоснования изучаемого материала (в отдельных случаях математические преобразования целесообразно заменить качественными соображениями, раскрывающими механизм физического явления); поиски тщательного выверенных форм проведения лабораторных работ, решения задач, организации контроля знаний и умений учащихся.

· Наконец, главное заключается в том, чтобы уже в самом начале изучения курса пересмотреть прежние идеалы в понимании мира физики, десятилетиями переносимые на восприимчивую почву сознания школьника. «В отличие от объективной жизни, замечает ученый и философ Ю.А. Шрейдер, - здесь есть очень ясная шкала ценностей. Но простота этой шкалы легко переходит в жесткую обусловленность сознания, в отгораживание от остального мира, в представление о мире, как о чем-то низшем и плохо устроенном, в потерю человеческой относительности» [39].

2.2 Последовательности педагогических действий при обучении физике

Современное состояние высшего и среднего образования предъявляет новые требования к уровню общеобразовательной методологической подготовки будущих преподавателей, в том числе и преподавателей физики: акцент все более смещается в сторону формирования способа мышления и научного мировоззрения.

Ответить на вызовы времени, можно, используя понятийно-категориальный аппарат эволюционной концепции физической картины мира, характеризующийся таким уровнем обобщения и систематизации физического знания, при котором наиболее полно представляется взаимосвязь физики и философии. Постоянное обращение к мировоззренческим вопросам при построении физической картины мира составляет основу методологии, как системы общих принципов познания и регуляторов практической деятельности, фундаментализации обучения физике.

Необходимость методологического и мировоззренческого представления студентам физических понятий обусловлена тем, что они являют собой форму отражения действительности в сознании человека, обобщенный результат, итог развития познания, являющегося, таким образом, главой движущей силой развития физических знаний.

Однако физические знания являются лишь частью мировой культуры, без учета влияния которой проблематично, а может быть и невозможно, понять ход эволюционного процесса развития физической картины мира. Без учета влияния мировой культуры на эволюцию физических знаний проблематично говорить и о развитии развитой и творчески активной личности [43].

О необходимости рассмотрения физических знаний с обязательным учетом ценностей человеческого бытия с целью более глубокого личностно - заинтересованного их осмысления в разное время высказывались многие из ученых и педагогов, начиная с Б. Паскаля и заканчивая И. Пригожиным. В адаптации научного знания для педагогического процесса, когда становится очевидной культурная ценность науки и научного образования, ученые видели залог успеха в воспитании гармонично развитой личности, способной и готовой к творческой деятельности.

В настоящее время ценностные смыслы науки исследованы вполне достаточно, чтобы быть учтенными и реализованными в физическом образовании [44]. Ясно, что научные знания объективны и эстетически привлекательны, применённые на практике они существенно меняют лицо человеческой цивилизации и всегда требуют от ученых и практиков строгого соблюдения нравственных норм мышления и поведения. Стало быть, и учебный предмет физики, вводящий учащегося в мир научного знания и мышления, изначально обладает определенным гуманитарным потенциалом приобщения учащихся к ценностям культуры.

По мнению Л.В. Тарасова [35] в гуманитарный потенциал физики входит: во-первых, нравственное начал, которое связывается с понятием фактов; во-вторых, мировоззренческое кредо, имеющее место человека в нем; в-третьих, эстетическое начало, влияющее на понимание красоты мира через его единство и гармонию; в-четвертых, гражданская позиция, связанная с воспитанием чувства личной сопричастности ко всему происходящему в мире и личной ответственности за будущее мира; в-пятых, понимание того, что мир развивается по объективным законам.

Философия науки и культурология показывают, что толкование событий в развитии без учета истории культуры приводит к обеднённой, прямолинейной и потому не вполне объективной картине человеческих усилий в исследовании природы. Вне показа взаимодействия науки с всеобщей историей, философией и религией, существенно влиявшими на процесс включения интереса к физическим знаниям, что снижает творческую активность учащихся при обучении.

С учетом всего вышесказанного методологически - мировоззренческие принципы формирования физических понятий, рассматриваемых в контексте мировой культуры, диктуют определенную последовательность и наполненность педагогических действий:

1. Общая характеристика в произведениях искусства общекультурного потенциала времени и возможного места первоначальной заинтересованной встречи с исследуемым явлением. Краткие сведения о жизни и деятельности ученого (ученых). Первоначальное знакомство (с историческим контекстом) с явлением посредством его наблюдения и опытного изучения, в процессе чего выясняются причинно-следственные связи, их свойства и особенности проявления этих свойств;

2.Возможное ассоциативное моделирование процесса совместного исследования с целью выработки формулировки понятия физического явления, в который должна быть отражена его логико-математическая конструкция, т.е. физический смысл;

3.Практическое применение понятия при решении задач, выполнении лабораторных работ и при разработке технических конструкций, способствующих повышению заинтересованности в изучении данного явления и пробуждению самостоятельной творческой инициативы;

4.Перечисление и демонстрация технических идей, продуцированных изученным явлением. Расширение и углубление содержания и объема понятия при проведении теоретических исследований возможных практических применений. Демонстрация общего культурного и социального фона, способствующего внедрению этих практических разработок;

5. Анализ истории развития понятия в связи с историей общества;

6. Выявление роли и значения данного понятия в понятийном аппарате рассматриваемой физической теории;

7. Анализ методологического понятия в свете идей эволюции физической картины мира.

2.3 Концепция поэтапного обучения физике

Рассмотренные мировоззренческие принципы формирования физических понятий, излагаемых в контексте мировой культуры, заставляет учащихся с интересом и заинтересованностью включаться в процесс обучения, превращающегося в путешествие в мир природы, искусства, творчества, когда учащиеся обнаруживают, что физика - это наука, теснейшим образом связанная с жизнью во всех её проявлениях.

Однако практически реализовать вышеизложенную последовательность педагогических действий, удовлетворяющую этим принципам в полном объеме, можно только при насыщении занятий разнообразными техническими устройствами, включающими в себя: традиционное аудио - визуальные технические средства (ТСО), включая компьютеры; лекционные демонстрации с лабораторными работами; технические конструкции, разработанные и изготовленные самими учащимися.

Ниже приводится возможный алгоритм использования технических устройств на разных этапах обучения (1-7), апробированный автором [27].

Повышая общий эмоциональный настрой на занятиях, технические устройства, применяемые в указанной последовательности, способствуют качественному усвоению фактического материала.

2.4 Методика преподавания физики твердого тела

5. Анализ истории развития понятия в связи с историей общества;

6. Выявление роли и значения данного понятия в понятийном аппарате рассматриваемой физической теории;

7. Анализ методологического понятия в свете идей эволюции физической картины мира.

Актуальной задачей нашего времени является воспитание всесторонне творчески развитой личности, способной осознавать глубокие взаимосвязи в окружающем мире и подходить к решению частных задач с введением возможных последствий.

1.При изложении темы должны помнить о сочетание наук и искусств. При этом важна естественность такого сочетания. Последнее достигается, если при изложении материала учитывать множественность проявлений одного и того же явления и пользоваться основными положениями теории познания, то есть вначале встретиться и наблюдать явление, далее изучать его и строить теоретические модели и, наконец, применять.

С учетом выше изложенного целесообразно организовать встречу с изучаемым явлением на проявлениях, отображенных в творениях лучших мастеров искусств. При введении в тему «Твердое тело» можно использовать слайды живописных картин Рериха, Сарьянова и др., скульптур Родена, Щадрина и т. д., использовав ЭВМ и ТСО с помощью которых организуется встреча с изучаемым явлением.

О твердом теле, как об устойчивом состоянии очень хорошо расскажут прекрасные древнегреческие скульптуры, созданные более 2.5 тысяч лет тому назад и с честью выдержавшие испытание временем.

7.Изложение теоретического материала, как правило, сложнее связать с искусством, однако, в данном случае, помогает ведение в историю решения вопроса. Так, вопросы кинематики и динамики твердого тела решались еще во времена древней Греции, эпохи Возрождения и др. и дух этих времен легко ощущается в музыке, в картинах (например, Леонардо да Винчи).

3.Показ применений изученных явлений, отображенных в произведениях искусств, заставляет школьников и студентов не только приобщаться к творчеству, но и более внимательно вглядываться в окружающий мир, замечать его красоту и многообразие.

4.Применение теоретических выводов, зачастую, столь многообразно, что не составляет труда найти живописные произведения, в которых они были бы представлены (знания о строении твердого тела, а так же законы кинематики и динамики твердого тела используются при строительстве храмов, космических сооружений, что отображено в творчестве).

2.Существенную помощь при подобном изложении материала оказывает современные технические средства обучения и электронно-вычислительная техника, без которых невозможно в течение короткого времени совместить искусство и науку.

2.При объяснении изучаемого материала, все используемые учителем-педагогом рисунки расположены на компьютере. Каждое изображение имеет свой номер и расположены в той последовательности, в которой они «появляются» во время изложения темы. При возможности можно показать виды деформаций твердых тел с опорой на программу «Открытая физика 2.5.» после беседы и обсуждения о древних кузнецах-булатах. Пользуясь программой «Физика в картинках» можно показать удивительные картины, которые вызывают восторг у учащихся.

1.Многообразие используемого дидактического материала, которым необходимо оперативно пользоваться требует применения всех видов ТСО, объединенных в единую систему.

5.Одним из средств, усиливающих воспитательное значение физики, является использование исторического материала в преподавании этой темы. При этом можно отметить следующее; знакомство наряду с физическими явлениями с исторической обстановкой, их установления обогащает знания учащихся, делает их более осмысленными, вызывает больший интерес к изучаемому, чем создается почва для понимания данной темы. Представление о красоте науки создает объективную основу для формирования восприятия знаний.

1.Для четкой работы такой системы должен тщательно, разрабатывается сценарий урока, алгоритм работы вспомогательного персонала, обслуживающего ТСО, и подобный конспект по теме для каждого школьника и студента, так как каждый урок фактически превращается в урок - спектакль.

Опыт показывает, что подготовка к таким занятиям длительна (20-30часов) и трудоемка, однако это оправдывается глубиной усвоения темы и широтой взглядов на мир.

Но за счет изложения темы, таким образом, остается резервное время для изучения других тем, воспитывая у школьников и студентов высокую нравственность, способствует формированию эстетических взглядов и вкусов. Как показывает практика, после организационно-психологического момента, необходимо осуществить мотивацию учебной деятельности, от которой зависит весь ход урока.

Реализовать начало урока по теме «твердое тело» можно с задания учащимся выделить из группы слов лишнее: лед, вода, чугун (вода). Таким образом, учитель вводит ребят в новый мир науки, знакомя с новой темой «Твердое тело». При изложении темы должны помнить о сочетание наук и искусств. При этом важна естественность такого сочетания. Последнее достигается, если при изложении материала учитывать множественность проявлений одного и того же явления и пользоваться основными положениями теории познания, то есть вначале встретиться и наблюдать явление. С учетом выше изложенного целесообразно организовать встречу с изучаемым явлением на проявлениях, отображенных в творениях лучших мастеров искусств. При введении в тему «Твердое тело» можно использовать слайды живописных картин Рериха, Сарьянова и др., скульптур Родена, Щадрина и т. д., использовав ЭВМ и ТСО с помощью которых организуется встреча с изучаемым явлением.

О твердом теле, как об устойчивом состоянии очень хорошо расскажут прекрасные древнегреческие скульптуры, созданные более 2.5 тысяч лет тому назад и с честью выдержавшие испытание временем.

К понятию твердого тела могут следующие примеры:

Мы живем на поверхности земли твердого тела - земного шара, в сооружениях, построенных из твердых тел, - домах. Орудия труда, машины также сделаны из твердых тел. Благодаря рисункам в пещерах мы можем узнать о прошлом. Памятники архитектуры, скульптуры также, изготовленные из различных видов твердого тела. Знать свойства твердых тел жизненно необходимо, каждому человеку независимо от вида профессии [26].

Рассказ о твердом теле можно продолжить с организации диалога:

Что вам известно о твердом теле из ранее изученного материала?

Как вы думаете, из чего состоят твердые тела?

Все эти вопросы задавали себе еще наши далекие предки (рис. 2).

Изложение материала учителем ведется с опорой на иллюстрацию (рис.2), которая наглядно позволяет понять, что твердое тело в частности железо в руках кузнеца легко меняет свою форму

X - середина XIII века. На Руси железо было известно еще ранним славянам. Самый старый метод обработки металла - это ковка. Сначала древние люди били колотушками губчатое железо в холодном состоянии, чтобы «выжать из него соки», т.е. удалить примеси. Затем они догадались нагревать металл и придавать ему нужную форму. В X - XI веках благодаря развитию металлургии и других ремесел у славян появились соха и плуг с железным лемехом. Трудоемкость процесса выделила кузнецов из общины и сделала из них первых ремесленников. Письменные источники не сохранили до нас технику ковки и основные технические приемы древнерусских кузнецов. Но исследование старинных кованых изделий позволяет историкам говорить о том, что древнерусским кузнецам были известны все важнейшие технические приемы: сварка, пробивание отверстий, кручение, клепка пластин, наваривание стальных лезвий и закалка стали. Мастера производили сварку железа, нагревая его до температуры 1500 град С, достижение которой определяли по искрам раскаленного добела металла. Зубилом пробивали отверстия в ушках для ушатов, лемехах для сох, мотыгах. Пробойником делали отверстия в ножницах, клещах, ключах, лодочных заклепках, на копьях (для скрепления с древком), на оковках лопат. Необходимо было держать клещами раскаленный кусок железа, что при небольших размерах тогдашних наковален было нелегко, держать и направлять зубило, бить по зубилу молотом. Железные котлы делали из нескольких больших пластин, края которых склепывались железными заклепками. Операция кручения железа применялась для создания винтов из четырехгранных стержней. Приведенный выше ассортимент кузнечных изделий исчерпывает весь крестьянский инвентарь, необходимых для постройки дома, сельского хозяйства, охоты и обороны. Древнерусские кузнецы X-XIII вв. владели всеми основными техническими приемами обработки железа и на целые столетия определили технический уровень деревенских кузниц. Древнерусские топоры претерпели значительное изменение и к X-XIII вв. обрели форму, близкую к современной. При раскопках древнерусских городов оказалось, что почти каждый городской дом был жилищем ремесленника. С начала существования Киевского государства они проявляли высокое мастерство ковки из железа и стали самых различных предметов - от тяжелого лемеха и шлема с узорчатым железным кружевом до тонких игл; стрел и клепаных миниатюрными заклепками кольчужных колец; оружие и бытовой инвентарь из курганов IX-X вв. Помимо кузнечного ремесла они владели слесарным и оружейным делом.

Начиная с IX-X вв. русские мастера для обработки железа применяли напильники. При помощи этого разнообразного инструмента, не отличающегося от оборудования современных кузниц, русские мастера готовили множество различных вещей: сельскохозяйственные орудия; инструменты для ремесленников; бытовые предметы; оружие, доспехи и сбруя. Культура растет, охватывая новые области и изобретая новые технические приемы [22].

Обобщая и систематизируя знания учащихся, учитель задает вопрос, переходя ко второй части поэтапного обучения:

Приведите примеры деформаций растяжения и сдвига?

При объяснении изучаемого материала, все используемые учителем-педагогом рисунки расположены на компьютере. Каждое изображение имеет свой номер и расположены в той последовательности, в которой они «появляются» во время изложения темы. При возможности можно показать виды деформаций твердых тел с опорой на программу «Открытая физика 2.5.» после беседы и обсуждения о древних кузнецах-булатах. В программе «Открытая физика 2.5» приводятся все необходимые изучаемые формулы, что позволяет повысить уровень понимания и запомнить эффективнее материал.

Объясняя тему, учитель должен плавно перейти от исторических знаний к современным научным знаниям. Для этого учитель обращается к графику кривой охлаждения железа. График позволяет проследить все шаги и охарактеризовать фазовые переходы [3].

Все тела преимущественно находятся в кристаллическом состоянии, а значит, имеют кристаллическую решетку. Например, крупинка поваренной соли имеет плоские грани, составляющие друг другу прямые углы.

На этом этапе эффективно задать вопрос следующего характера:

Что вы можете сказать о снежинках?

Например, кусок слюды (рис. 1) легко расслаивается в одном направлении на тонкие пластинки, а также расслаивается в одном направлении кристалл графита.

Рис.1

Следует помнить, что частицы в кристаллах плотно упакованы, так что расстояние между их центрами приблизительно равно размеру частиц. В изображении кристаллических решеток указывается только положение центров частиц.

В кристаллических телах частицы располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры во всем объеме тела. Для наглядного представления таких структур используются пространственные кристаллические решетки, в узлах которых располагаются центры атомов или молекул данного вещества. Чаще всего кристаллическая решетка строится из ионов (положительно и отрицательно заряженных) атомов, которые входят в состав молекулы данного вещества. Например, решетка поваренной соли содержит ионы Na+ и Cl-, не объединенные попарно в молекулы NaCl. Такие кристаллы называются ионными [21].

Кристаллические решетки металлов часто имеют форму шестигранной призмы (цинк, магний), гранецентрированного куба (медь, золото) или объемно центрированного куба (железо).

Кристаллические структуры металлов имеют важную особенность. Положительно заряженные ионы металла, образующие кристаллическую решетку, удерживаются вблизи положений равновесия силами взаимодействия с «газом свободных электронов». Электронный газ образуется за счет одного или нескольких электронов, отданных каждым атомом. Свободные электроны способны блуждать по всему объему кристалла.

Третий этап

Урок, разработанный в контексте мировой культуры, позволяет учителю построить так структуру урока, что домашнее задание служит глубоким пониманием нового материала. Методика проверки может быть самой разнообразной.

Проверка домашнего задания. Опыт в домашних условиях.

Вам понадобятся кусок пластилина, стеариновая свеча и электрокамин. Поставьте пластилин и свечу на равных расстояниях от камина.

По прошествии некоторого времени часть стеарина расплавится (станет жидкостью), а часть - останется в виде твердого кусочка. Пластилин за то же время лишь немного размягчится. Еще через некоторое время весь стеарин расплавится, а пластилин - постепенно "разъедется" по поверхности стола, все более и более размягчаясь.

Учащиеся приходят самостоятельно к выводу, существуют тела, которые при плавлении не размягчаются, а из твердого состояния превращаются сразу в жидкость. Во время плавления таких тел всегда можно отделить жидкость от еще не расплавившейся (твердой) части тела. Эти тела - кристаллические. Существуют также твердые тела, которые при нагревании постепенно размягчаются, становятся все более текучими. Для таких тел невозможно указать температуру, при которой они превращаются в жидкость (плавятся). Примерами аморфных тел могут служить стекло, (рис. 11), различные затвердевшие смолы (янтарь), пластики и т.д.

Следующий этап демонстрация опыта.

В стеклянную воронку бросим кусок смолы или воска и оставим в теплой комнате. По прошествии примерно месяца окажется, что воск принял форму воронки и даже начал вытекать из нее в виде "струи" (учитель показывает заранее полученный результат выполненный им месяц назад). В противоположность кристаллам, которые почти вечно сохраняют собственную форму, аморфные тела даже при невысоких температурах обладают текучестью. Поэтому их можно рассматривать как очень густые и вязкие жидкости [2].

Никак нельзя обойтись без объяснения кристаллизации аморфных тел. Кристаллические тела могут быть монокристаллами, например, сера и поликристаллами.

Поликристаллические тел состоят из многих сросшихся между собой хаотически ориентированных маленьких кристалликов, которые называются кристаллитами. Одиночные кристаллы называют монокристаллами.

Следует объяснить, что с течением времени (несколько месяцев, лет) аморфные вещества самопроизвольно переходят в кристаллическое состояние. Например, сахарные леденцы или свежий мед, оставленные в покое в теплом месте, через несколько месяцев становятся непрозрачными. Говорят, что мед и леденцы "засахарились". Разломив леденец или зачерпнув мед ложкой, мы действительно увидим образовавшиеся кристаллики сахара.

Частицы аморфных тел непрерывно и беспорядочно колеблются. Они чаще, чем частицы кристаллов могут перескакивать с места на место. Этому способствует и то, что частицы аморфных тел расположены неодинаково плотно: между ними имеются пустоты.

Самопроизвольная кристаллизация аморфных тел свидетельствует, что кристаллическое состояние вещества является более устойчивым, чем аморфное. МКТ объясняет это так. Межмолекулярные силы притяжения-отталкивания заставляют частицы аморфного тела перескакивать преимущественно туда, где имеются пустоты. В результате возникает более упорядоченное, чем прежде расположение частиц, то есть образуется поликристалл, например, сахар. Кристаллические тела могут быть монокристаллами и поликристаллами. Поликристаллические тела состоят из многих сросшихся между собой хаотически ориентированных маленьких кристалликов, которые называются кристаллитами. Большие монокристаллы редко встречаются в природе и технике. Чаще всего кристаллические твердые тела, в том числе и те, которые получаются искусственно, являются поликристаллами.

Таким образом, учитель подводит учащихся к механическим свойствам твердого тела в частности железа. Для этого учитель обращается снова к рис. 4, объясняя изменения формы кристалла железа (четвертый этап).

Изучая структуру кристалла железа, ученые установили, что железо - типа очень прочное и нехрупкое, такое железо называют аустенитное. Еще над этим озадачились древние кузнецы. Путем опыта кузнецы со временем получили железо со свойствами аустенитного железа. Чтобы получить такое железо при температуре 20С, ученые предложили метод термообработки. Следующий этап - снять внутреннее напряжение (отпуск) осуществляется с помощью отжига.

Подводя итоги занятия, учитель сообщает, что вокруг нас находится множество твердых тел как природного происхождения, различные сплавы веществ, которые делятся на жаропрочные, с электропроводимостью, выдерживающие огромное давление сторонних тел. Благодаря таким знаниям человечество изобретает множество тел, которые имеют способность не только находиться на поверхности земли, но над ней (самолеты, вертолеты, здания и т.д.).

Не оставляют равнодушными студентов и школьников изделия художественного литья, слайды архитектуры старинных русских городов, ювелирных изделий, космической техники и др. при окончании изучения темы «Твердое тело».

5. Анализ истории развития понятия в связи с историей общества;

6. Выявление роли и значения данного понятия в понятийном аппарате рассматриваемой физической теории;

7. Анализ методологического понятия в свете идей эволюции физической картины мира.

Опыт показывает, что подготовка к таким занятиям длительна (20-30 часов) и трудоемка, однако это оправдывается глубиной усвоения темы и широтой взглядов на мир.

С помощью предложенной концепции поэтапного обучения физики укладываемся в один урок теоретический урок и проведение лабораторной работы - второй урок. Таким образом, остается резервное время для изучения других тем следующего раздела.

Подводя итоги урока, учитель-педагог дает учащимся разработать творческое задание для будущих учеников. При разработке учащиеся не только закрепляют полученные знания, но и развиваются как творческая личность, оказывая большую помощь учителю при разработке методического материала к уроку.

Заключение

Физика как наука имеет не только специальный, но и общечеловеческий, то есть культурный мировой аспект. Курс «Физика в контексте мировой культуры» предполагает осуществление системы мер, направленных на приоритетное развитие общекультурных компонентов в содержании образования и таким образом на формирование зрелой личности образования.

В данной дипломной работы проведен литературный обзор по поставленной проблеме. Согласно исследованиям по вопросам гуманитаризации и гуманизации сделан вывод, что с целью стимулирования творческой активности учащихся при изучения физики, необходимо делать акцент на методологически-мировоззренческие принципы и излагать при этом физику без отрыва от общекультурных ценностей (философии, истории, техники, искусства), указывать на её место в общемировой культуре. Показано также, что на уроках по физике следует подчеркивать показывать решающие влияние на научно-технический прогресс, на то что физика оказывает существенное влияние и на все стороны жизни общества, в частности на человеческую культуру. Однако в данном случае мы имеем в виду не это опосредствованное влияние физики на культуру, а влияние непосредственное, позволяющее говорить о самой физике как о компоненте культуры. Иными словами, речь идет о гуманитаризованном содержании самого предмета физики, которое связано с развитием мышления, формированием мировоззрения, воспитанием чувств. Имеется в виду органическая связь физики с развитием общественного сознания, с воспитанием определенного отношения к окружающему миру.

Во второй главе дипломной работе разработана последовательность педагогических действий, которые необходимо выполнять при обучении физике мировой культуры, а так же приведен нетрадиционный урок по физической теме, реализованный в соответствии предложенной концепцией.

Хотелось бы отметить что курс «Физика в контексте мировой культуры» может быть использован не только как отдельная дисциплина, но служить опорой для построения нетрадиционных уроков в школе и насыщенными лекциями в вузах. Данный курс предусмотрен как для гуманитарного, так и естественнонаучного профилей школы.

Серьезным моментом в освоении научно-культурного материала учениками становится подготовка ими творческих работ по избранной теме.

Опыт исследования и преподавания свидетельствует: сочетание гуманитарного процесса на уроках с усвоением научно-культурных знаний на факультативных занятиях и личным проникновением в существо заинтересовавшего учащегося вопроса при выполнении им творческой работы дает ему немало для понимания физики важного элемента мировой и собственно культуры [13].

Библиографический список

1.Базилевский С.А. лженауке. В: Сб. докладов всесоюзной конференции ФЕНИД-91, т. 1, Гомель, 1991. С. 157-165.

2.Бублейников Ф.Д. Физика и опыт. Просвещение, М.,1970 -325с.

3.Вскобойников В.Г.Общая металлургия: Учебник для вузов. 5-е изд., перераб. и доп. М. Металлургия, 1990.-350с.

4.Глагузова М.А. Развитие творческих способностей учащихся и их интереса к физике//Физика в школе. 1990. №3. С. 23-26.

5.Гуржий В.С. Николаенко В.Н., Чабан В.И. О роли курса «Техническое конструирование и моделирование» в образовании учителя физики. Материалы Международной заочной научно-методической конференции. Инициирование и формирование стратегических векторов развития образования. 2004.

6.Дик Ю.И., Тарасов Л.В Практические аспекты преподавания физики в школе//Физика в школе. 1988. № 2. С. 32.

7.Ефременко В., Макогина Е., Корнилова Е. Методологические принципы формирования физических понятий//Alma mater. 2002. №5. С. 20-21.

8 Железовский Б.Е. Разработка интегрированных курсов - один из путей гуманизации образования. Современные технологии в педагогической практике студентов Саратов Издательство «Научная книга» 2002 С.8.

9.Замятин А.Г. Об экспериментальных основаниях (обоснованиях) теории относительности, изложенных в статье чл.-корр. АН СССР Е.А. Александрова. В: Сб. докладов всесоюзной конференции ФЕНИД-91, т. 1, Гомель, 1991. С. 7-24.

10.Зинченко В.П., Моргунов Е.Б. Человек развивающийся: Очерки

11.Ильин В.А. История физики. М., 2003.-320с.

12.Исследования по психологии научного творчества в США. М. 1969.

13.Колин К. Будущее науки: методология познания и образовательные технологии/Alma mater. 2002. №1.

14.Косарева Л.М. Картины Вселенной в европейской культуре XVI - XVIII вв.//Историко-астрономические исследования. XXII. 1990. М.: Наука. 1990. с.74-109.

15.Кохановский В.П., Золотухина Е.В. и др. Философия для аспирантов. Ростов н/Д: “Феникс”, 2002, с. 300-319.

16.Кравченко Г.В. Принципы и сдержание воспитания достоинства человека//Классный руководитель. 2002. №5 С.125-132.

17.Крупина С.В. Об эмоционально-проблемном объяснении учебного материала//Физика в школе, № 3. 1990. С. 24-26 с. 24

18.Крылова А.Н. И. Ньютон. Математические начала натуральной философии. В собр. соч. А.Н. Крылова, т. 7, М. - Л., 1936.

19.Кудряшов П.С. Курс истории физики. М., 1982. с.7.

20.Кузырева Н.А. Технология формирования творческой личности в процессе обучения физике. ООО «Исток - С» 2005.

21.Кузьмин Б.А. Технология материалов и конструктивные материалы: Учебник для машиностроительных техникумов.2-е изд., перераб. и доп. - М.: Машиностроение, 1989.

22.Н.Лазарев. Эврика-75 13-й год издания Москва «Молодая гвардия» 1975.

23.Левина И., Сушкова Ф. С учетом реалий и новых научных идей//Учитель. 1999. № 1, С. 39-45.

24. Мичков П.П. О культуре мышления//Физика в школе, № 6. 1998. С. 50-58.

25.Мощанский В.Н.Формирование мировоззрения учащихся при изучении физики. М., 1976. С.24-25.

26.Мякишев Г.Я. Физика: Учеб. для 10 кл. сред. шк. - 2-е изд. - М.: Просвещение. 1992.

27.Николаенко В.Н. Формирование всесторонне развитой личности на занятиях по естественным дисциплинам при комплексном использовании ТСО//Тезисы докладов конференции. История, современное состояние и перспективы развития методики преподавания химии. Тобольский госпединститут им. Д.И. Менделеева, г. Тобольск, 1990.

28. Н.К.Носков. Задачи и правила делания науки.

29.Развивать у учеников интерес к знаниям и учению//Физика в школе. 1999. № 2. С. 82-87.

30.Синякин Е.В. Неизвестные факты о великих - как средство пробуждения интереса к физике//Физика в школе. 2001. №4. С. 33-35.

31.Сластенин В.А., Каширин В.П. Психология и педагогика. М.: Изд. центр “Академия”, 2003 С. 265-270.

32.Соловьев Э.Ю. Прошлое толкует нас: (Очерки по истории философии и культуры). М.: Политиздат. 1991 С. 52.

33.Спиридонов О. П. Правильно ли мы преподаем физику?//Физика в школе. 1993. № 3. С. 17.

34.Тарасов Л.В. Гуманитаризация как одно из основных направлений перестройки преподавания физики в школе//Физика в школе. 1988. № 2. С. 31.

35.Тарасов Л.В. Необходимость перестройки преподавания естественных предметов на основе интегративного - гуманитарного подхода//Физика в школе. 1989. №4. С.40-41.

36.Тарасов Л.В. Современная физика в средней школе. С.11

37.Турченко В.Н. Методолические основы российской стратегии развития образования//Педагогика. 2002. №10. С. 97.

38.Шагинян М.//Октябрь. 1959. №5. С. 147.

39.Шрейдер Ю. Наука - источник знаний и суеверий // Новый мир. 1969 №10. С.225.

40. Щербаков Р.Н. Ценностные аспекты обучения и воспитания на уроках физики. М., 1998 С.. 64-65.

41.Щербаков Р.Н. ученые о преподавании физики Физика в школе. 1997. №4. С.18-23.

42.Физика в школе. 1992. №3-4; 1993 №3

43.Щербаков Р.Н. Физика в контексте мировой культуры//Физика в школе. 1998. №1. С.46.

44.Щербаков Р.Н. Ценностные аспекты развития науки//М.,1990.

45.Щербаков Р.Н. Ценностные ориентации физического образования//Педагогика. 2000. №9.

46.Щербаков Р.Н. Физическое образование и культура//Советская педагогика. 1991. №12.

47.Щукина Г.И. Роль деятельности в учебном процессе. М., “Просвещение”, 1986. С. 19-20


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.