Использование методов научного познания при изучении темы "Четырехугольники"
Эмпирические, логические и математические методы научного познания в обучении математике. Сущность анализа и синтеза. Обобщение, абстрагирование и конкретизация. Методические аспекты изучения темы "Четырехугольники" в школьном курсе математики.
Рубрика | Педагогика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 24.06.2009 |
Размер файла | 157,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Математическое моделирование находит применение при решении многих сюжетных задач. Уже уравнение, составленное по условию задачи, является ее алгебраической моделью. Моделированию, особенно алгебраическому и аналитическому, следует уделить в школе должное внимание, так как математические модели используются для решения (или хотя бы облегчения решения) сюжетных задач. Кроме того, при построении модели используется такие операции мышления, как анализ через синтез, сравнение, классификация, обобщение, которые являются операциями мышления, и способствует его развитию. Составление математической модели задачи, перевод задачи на язык математики исподволь готовит учащихся к моделированию реальных процессов и явлений в их будущей деятельности.
При решении сюжетных задач особенно часто используются их алгебраические и аналитические модели. Такой моделью может быть функция, описывающая явление или процесс, уравнение, система уравнений, неравенство, система неравенств, система уравнений и неравенств и др. При составлении модели задача, таким образом, переводится на язык алгебры или математического анализа.
Вывод: Итак, мы рассмотрели в первой главе методы научного познания и их применение в обучении математики. В связи с этим можно сделать следующий вывод:
Методы научного познания нашли свое применение в обучении математике. Их можно использовать на протяжении всего процесса обучения математики. Учителю нужно уметь применять их на различных этапах обучения математики, для того чтобы способствовать логическому мышлению учащихся.
Глава II. Методические аспекты изучения темы «Четырехугольники» в школьном курсе математики основной школы
2.1 Анализ учебников по теме «Четырехугольники» в школьном курсе математики основной школы
К 12-13 годам, когда ученик приступает к изучению геометрии, непосредственный интерес к ее освоению уже практически утрачен, еще по-настоящему не проявившись. Ни один предмет не начинают изучать в школе с таким запозданием (по отношению к психологически благоприятному периоду), как геометрию. Наглядно-образное мышление и воображение наиболее полно развиваются на стыке старшего дошкольного и младшего школьного возраста.
Наглядная геометрия предполагает изучение свойств геометрических форм только на отдельных геометрических предметах путем непосредственного их восприятия и представления. При этом учитель не прибегает к общим отвлеченным понятиям этих форм. Для обоснования справедливости находимых свойств может широко использоваться индуктивный метод.
Впервые, в школьном курсе математики, с четырехугольниками школьники встречаются в начальной школе. Если обучение идет по учебникам Л.Г. Петерсона, то это второй класс. Если по учебникам М.И. Моро, то это третий класс. Изучение четырехугольников, а именно прямоугольника и квадрата, идет поверхностно. В основном изучается периметр и площадь, так как при решении задач на нахождение площади и периметра отрабатывается умение применять операции сложения, вычитания, умножения и деления. А это одно из основных умений, которые должны выработаться в начальной школе.
В 5 и 6 классах школьники также встречаются с четырехугольниками. Как и в начальной школе, изучение идет поверхностно. К прямоугольнику и квадрату добавляются параллелограмм и трапеция.
Более подробно тема «Четырехугольники» изучается в курсе геометрии в восьмом классе. Рассмотрим, как предлагается изучение данной темы разными авторскими коллективами в учебниках геометрии, рекомендованных Министерством образования РФ.
2.1.1 «Геометрия, 7-11», авт. А. В. Погорелов
Тема «Четырехугольники» изучается в восьмом классе. Этой теме в учебнике посвящен шестой параграф.
В первом пункте параграфа (п. 50) дается определение четырехугольника и предлагается задача на усвоение определения. Рассказывается, какие стороны и вершины называются соседними и противоположными. Дают определение диагоналей и периметра четырехугольника
В следующих пунктах (п.п. 51 - 56) дается определение параллелограмма, прямоугольника, ромба и квадрата. Определение прямоугольника и ромба даются на основе параллелограмма. Доказывается признак параллелограмма. Доказываются свойства параллелограмма, прямоугольника и ромба. Рассматривается по одной задаче на каждое свойство параллелограмма. Для ромба и прямоугольника предлагаются задачи на использование определения. Определение квадрата дается на основе прямоугольника. Так же говорится, что квадрат является ромбом, так как стороны квадрата равны. На основе этого делается вывод, что квадрат обладает свойствами прямоугольника и ромба. Приводится пример использования определения при решении задачи.
Так же в данном параграфе изучается теорема Фалеса (п. 57) и средняя линия треугольника (п. 58). После приведения доказательства теоремы Фалеса автор делает замечание, что в качестве сторон угла можно взять любые две прямые. Предлагается задача разделить отрезок на n равных частей. При изучении средней линии треугольника дается определение и доказательство теоремы о средней линии треугольника.
В следующем пункте (п. 59) рассматривается еще один вид четырехугольника - трапеция. Вводятся определения трапеции и средней линии трапеции. Доказывается теорема о средней линии трапеции.
В последних пунктах параграфа (п.п. 60 - 61) доказывается теорема о пропорциональных отрезках и рассказывается, как построить четвертый пропорциональный отрезок.
Таким образом, изучение четырехугольников идет по следующей схеме:
2.1.2 «Геометрия, 7-9», авт. Л. С. Атанасян
Тема «четырехугольники» изучается в начале восьмого класса. На её изучение отводится целая глава. Первый параграф данной главы посвящен многоугольникам. Дается определение многоугольника (п. 39), а также что называют вершинами и сторонами многоугольника. Говорится, что называется n-угольником. Приводятся примеры фигур, которые являются многоугольниками и тех, которые не являются многоугольниками. Дается определение соседних вершин и диагоналей многоугольника. В конце данного пункта говорит о том, что любой многоугольник разделяет плоскость на две части (внутренняя и внешняя область многоугольника).
В следующем пункте первого параграфа (п. 40) автор рассказывает о выпуклых многоугольниках. Приводит пример выпуклого и невыпуклого многоугольника. Рассматривая выпуклый n-угольником A1A2A3…An-1AnA1 автор говорит, что углы AnA1A2, A1A2A3, …, An-1AnA1 называются углами этого многоугольника и показывает чему равняется сумма углов выпуклого n-угольника.
Последний пункт данного параграфа (п. 41) посвящен четырехугольнику. Автор не дает определения четырехугольника, он просто говорит, что четырехугольник имеет четыре вершины, четыре стороны и две диагонали. Дает определение противоположных сторон и вершин. Приводит пример выпуклого и невыпуклого четырехугольника. На основании суммы углов выпуклого n-угольника делается вывод, что сумма углов выпуклого четырехугольника равна 360?.
Второй параграф посвящен параллелограмму и трапеции. При изучении параллелограмма (п. 42) дается его определение, и доказываются его свойства. Л. С. Атанасян предлагает другой способ доказательства свойств параллелограмма по сравнению с учебником [14]. Данные доказательства являются меньшими по объему и легче усваиваются учениками.
В следующем пункте параграфа (п. 43) рассказывается о признаках параллелограмма. В отличие от А. В. Погорелова Л. С. Атанасян рассматривает три признака параллелограмма. Это позволяет быстрее решать задачи на доказательство.
Последний пункт параграфа (п. 44) отводится трапеции. В этом пункте дается определение трапеции и рассматриваются виды трапеции. В этом учебнике также предлагается для изучения теорема Фалеса, но в явном виде она не выделена отдельным пунктом (по сравнению с учебником [14]).
Третий параграф посвящен прямоугольнику, ромбу и квадрату. Определение прямоугольника и ромба даются на основе параллелограмма (аналогично с учебником [14]). Так как прямоугольник и ромб являются параллелограммом, то они обладают всеми свойствами параллелограмма (этот факт не оговаривается в учебнике [14]). Также в учебнике рассматривается особые свойства прямоугольника и ромба. Определение и свойство квадрата рассматриваются подобно, что и в учебнике [14], добавляются особые свойства квадрата.
В конце параграфа отдельным пунктом (п. 47) выделена осевая и центральная симметрия. В конце главы предлагаются задачи на отработку ЗУН.
Изучение четырехугольников в учебнике Л. С. Атанасяна идет по следующей схеме:
2.1.3 «Геометрия, 8-9», авт. А. Д. Александров
Тема «Четырехугольники» изучается в восьмом классе в главе «Площади многоугольных фигур».
В первом параграфе рассказывается о многоугольниках и многоугольных фигурах. В первом пункте данного параграфа дается определение ломанной, рассматриваются различные особенности ломанной (замкнутая, пересекающая сама себя, косающая сама себя, простая ).
Следующие два пункта рассказывают о многоугольниках. Дается определение многоугольника, его сторон, вершин, диагоналей. Рассматривают выпуклые и невыпуклые многоугольники. Автор отмечает, что из всех многоугольников самые важные - выпуклые. Далее на примерах показывают, что любой треугольник является выпуклым многоугольником, а для четырехугольника это уже не всегда так. Также рассматривают свойства выпуклого многоугольника. Автор указывает наглядно очевидные свойства.
В пункте 1.4, который называется «Четырехугольники», автор рассказывает, что у четырехугольника 4 вершины, 4 угла, 4 стороны. Как принято обозначать четырехугольник. Рассказывает, какие стороны называются смежными, какие противоположными. Какие вершины являются соседними и противоположными. Также рассказывает про диагонали четырехугольника и автор напоминает, что сумма углов любого четырехугольника равна 3600.
Пункт 1.5 посвящен многоугольным фигурам. Дается определение многоугольной фигуры. Приводится пример многоугольных фигур составленных из многоугольников, не имеющих общих точек и имеющие только отдельные общие точки на границе. Также рассматриваются не пересекающиеся многоугольные фигуры, и дается определение составленной фигуры из многоугольных фигур.
Второй параграф посвящен площади многоугольных фигур. Дается определение площади многоугольной фигуры. Отмечается, что фигуры, имеющие равные площади называются равновеликими.
Далее переходят к измерению площади. Измерение площади определяется как сравнение площади данной фигуры с площадью фигуры принятой за единицу измерения. В конце параграфа рассматривается площадь прямоугольника, приводится доказательство, что величина a*b удовлетворяет любому прямоугольнику.
В третьем параграфе рассказывается о площади треугольника и трапеции. Трапеция определяется как четырехугольник, у которого одна пара параллельных сторон. Эти стороны называются основанием, а две другие боковыми. Дается определение равнобедренной (или равнобокой) трапеции. В конце параграфа доказывается теорема о средней линии трапеции. Автор отмечает, что треугольник можно считать вырожденной трапецией, когда одно из оснований становится точкой.
Последний параграф данной главы называется «Параллелограмм и его площадь». В первом пункте данного параграфа дается определение параллелограмма. Свойства параллелограмма рассматриваются в виде теоремы.
В пункте 4.2 доказывается теорема о признаках параллелограмма. Далее дается определение высоты параллелограмма и доказывается теорема о площади параллелограмма. Следующий пункт посвящен частным видам параллелограмма.
Первым частным видом параллелограмма является прямоугольник. Говорится, что прямоугольник является параллелограммом и доказывается важное свойство прямоугольника (в прямоугольнике диагонали равны) и признак прямоугольника (параллелограмм диагонали которого равны, является прямоугольником).
Вторым частым видом параллелограмма является ромб. Ромб определяется как четырехугольник, все стороны которого равны. Отмечается, что ромб является параллелограммом по признаку последнего (четырехугольник, имеющий две пары равных противоположных сторон является параллелограммом). Приводится доказательство свойства ромба и предлагается самостоятельно доказать два признака ромба.
Последний частный вид параллелограмма - квадрат. Здесь говорится, что квадрат является прямоугольником и ромбом одновременно, следовательно, его диагонали взаимно перпендикулярны и равны.
В последнем пункте данного параграфа речь идет о характерных свойствах фигур. Дается определение характерного свойства. Приводится пример характерных свойств параллелограмма, прямоугольника и ромба.
В конце каждого параграфа и главы приводятся вопросы и задачи для проверки ЗУН учащихся.
Изучение четырехугольников идет по следующей теме:
2.1.4 «Геометрия, 7-9», авт. И. М. Смирнова, В. А. Смирнов
Тема «Четырехугольники» изучается в восьмом классе в главе «Параллельность».
В первом параграфе рассматриваются параллельные прямые. Дается определение параллельных прямых, секущей. Определяются соответственные, внутренние накрест лежащие и внутренние односторонние углы. Доказывается признак параллельности двух прямых, и рассматриваются три следствия данной теоремы. Также доказывается теорема о равенстве внутренних накрест лежащих углов.
Следующий параграф посвящен сумме углов многоугольника. Сначала доказывается, что сумма углов треугольника равна 1800, а затем переходят к доказательству общего случая.
В третьем параграфе рассматривают параллелограмм. Дается определение параллелограмма, доказывается три его свойства. Рассмотрен пример на применение свойств параллелограмма. На признаки параллелограмма отводится четвертый параграф, в котором доказываются первый и второй признаки параллелограмма. Приведено два примера на применение данных признаков.
В пятом параграфе рассмотрены прямоугольник, ромб и квадрат. Прямоугольник и ромб определяются через параллелограмм. Авторы отмечают, что прямоугольник является частным случаем параллелограмма. Поэтому он обладает всеми свойствами параллелограмма и приводят доказательство признака прямоугольника (если в параллелограмме диагонали равны, то это прямоугольник).
Ромб также является параллелограммом, следовательно, он обладает всеми его свойствами. Приводится доказательство признака ромба (если в параллелограмме диагонали перпендикулярны, то это ромб).
Квадрат определяется через прямоугольник. Авторы отмечают, что квадрат также является ромбом, у которого все углы прямые. На основании этого следует, что квадрат обладает всеми свойствами прямоугольника и ромба.
Перед изучением трапеции авторы рассматривают теорему о средней линии треугольника. Дают определение средней линии треугольника и приводят доказательство теоремы. Этот шаг оправдан, так как при доказательстве теоремы о средней линии трапеции используется теорема о средней линии треугольника. Определение трапеции такое же, как и в других учебниках (см. [1], [2], [14]). Трапецией называется четырехугольник, у которого две стороны параллельны. Дается определение равнобокой, прямоугольной трапеций, средней линии трапеции. Приводится доказательство теоремы о средней линии трапеции и рассматривается следствие из данной теоремы.
В конце главы приводится доказательство теоремы Фалеса, которая является обобщением теорем о средней линии треугольника и трапеции. В конце каждого параграфа и главы приводятся вопросы и задачи для проверки ЗУН учащихся.
Изучение четырехугольников в учебнике И. В. Смирнова, В. А. Смирнов идет по следующей схеме:
2.1.5 «Геометрия, 7-9», авт. И. Ф. Шарыгин
Тема «Четырехугольники» изучается в главе «Подобие».
Первый параграф данной главы посвящен теме «Параллелограмм, прямоугольник, ромб, квадрат».
Свойства и признаки параллелограмма объединены в одну теорему, доказательство которой здесь же приводится. Автор отмечает, что из определения прямоугольника следует параллельность его противоположных сторон, то есть прямоугольник является частным случаем параллелограмма. Приводится доказательство теоремы о свойствах прямоугольника.
Свойства и признаки ромба также объединены в одну теорему, доказательство которой здесь же приводится. Автор отмечает, что квадрат обладает всеми свойствами прямоугольника и ромба, так как он является и прямоугольником, и ромбом. Еще один вид четырехугольника, а именно трапеция, изучается после теоремы Фалеса и теоремы о средней линии треугольника. Трапеция определяется как четырехугольник, у которого две стороны параллельны, а две другие не параллельны. Определены термины основания, боковые стороны трапеции. Доказана теорема о средней линии трапеции.
Таким образом, изучение четырехугольников идет по следующей схеме:
Проведенный анализ позволяет сделать следующие выводы:
· в каждом учебнике свой порядок изучения частных видов четырехугольников
· в каждом учебнике представлен большой объем упражнений для закрепления основных знаний, умений и навыков по данной теме.
2.2 Методика изучения темы «Четырехугольники»
2.2.1 Введение понятия «Четырехугольник»
Понятие четырехугольник вводится в зависимости от того, как и когда введено понятие многоугольника:
- в учебнике Л.С. Атанасяна четырехугольник вводится как частный вид многоугольника;
- в учебнике А.В. Погорелова понятие многоугольника вводится значительно позже, поэтому дается определение, аналогичное определению треугольника: «Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не лежат на одной прямой, а соединяющие их отрезки не должны пересекаться».
В теме «Четырехугольники» рассматриваются выпуклые и невыпуклые четырехугольники. Для более наглядного представления полезно составить следующую схему:
Основанием для классификации выпуклых четырехугольников является наличие параллельных сторон: в случае одной пары параллельных сторон из класса четырехугольников выделяется множество трапеций, в случае двух пар параллельных сторон - множество параллелограммов.
Структурно - логическая схема основных классов геометрических фигур, составляющих её, имеет вид:
При классификации всех четырехугольников за основание классификации принимается сначала взаимное расположение противоположных сторон - не параллельность или параллельность их, вследствие чего множество всех выпуклых четырехугольников разбивается на три класса:
ь четырехугольники, не имеющие параллельных сторон;
ь трапеции (одна пара параллельных сторон);
ь параллелограммы (две пары параллельных сторон).
За основание классификации параллелограммов принимается равенство или неравенство смежных сторон (собственно параллелограммы и ромбы), а также отсутствие или наличие прямого угла (собственно параллелограммы и прямоугольники).
В основу классификации ромбов кладется отсутствие или наличие прямого угла (собственно ромбы и квадраты).
При классификации прямоугольников за основание принимается равенство или неравенство смежных сторон (собственно прямоугольники и квадраты).
Классификация трапеции проводится сначала по длине боковых сторон (равнобокая и неравнобокая трапеции); затем неравнобокие трапеции в свою очередь разбиваются на прямоугольные и непрямоугольные.
Описанный процесс составления классификации четырехугольников, в частности выпуклых четырехугольников, в основу которого положена последовательная целенаправленная деформация каждой вновь полученной фигуры (получить сначала параллельные, а потом и равные стороны, затем прямые углы), позволяет отчетливо выяснить генетический характер образования каждого частного вида выпуклых четырехугольников. Из четырехугольника с непараллельными сторонами получаются трапеции и параллелограммы, из параллелограммов - прямоугольники и ромбы, из ромбов и прямоугольников - квадраты.
Выяснение этого генезиса - происхождения одной фигуры из другой - помогает более отчетливому восприятию самих геометрических образов, выяснению связей между ними, а в силу этого позволяет распространять свойство одной более общей фигуры, например параллелограмма, на частные виды ее, на прямоугольник, ромб и квадрат. Представим это на схеме. Такую схему полезно использовать при обучении школьников.
2.2.2 Частные виды четырехугольников
Во всех действующих в настоящее время пособиях (см. [1], [2], [14], [18]) осуществляется одинаковый подход во введении частных параллелограммов: прямоугольников, ромбов и квадратов. Частные виды четырехугольников рассматриваются в соответствии с условной единой методической схемой:
ь дается определение (через ранее изученный вид четырехугольников);
ь указываются элементы;
ь формулируются и доказываются свойства и признаки;
ь рассматривается задача на построение этого четырехугольника.
Квадрат в одних учебниках вводится как четырехугольник, который одновременно является прямоугольником и ромбом. В других - квадрат определяется как частный вид прямоугольника. В большинстве учебников трапеция рассматривается после параллелограмма и его частных видов. Тема имеет большие возможности для развития логического мышления.
· легко выявляется логическая структура темы. Полезно использовать структурно-логические схемы;
· используются формально-логические определения (через ближайший род и видовое отличие).
Определить понятие, значит перечислить его существенные свойства, а это зачастую бывает нелегко. Однако, задача упрощается, если использовать ранее изученные понятия. Сказанное обусловило способ определения понятия, называемый «через ближайший род и видовое отличие». Конструирование определения этим способом заключается в следующем:
1. Указывается род, в который входит определяемое понятие как вид.
2. Указываются видовые отличия и связь между ними.
Пример: трапецией называется четырехугольник, у которого две стороны параллельны, а две другие нет. Род - четырехугольник. Видовое отличие, - у которого две стороны параллельны, а две другие нет.
2.3 Изучение свойств и признаков четырехугольников
Изучение свойств четырехугольников обычно не вызывают затруднений. При установлении различных свойств и признаков параллелограмма широко используются свойства и признаки равных треугольников, свойства углов, образованных при пересечении двух параллельных прямых третей, признаки параллельности. Материал о параллелограммах и их частных видах очень удобен для формирования и развития логического мышления учащихся. Именно здесь учитель имеет широкие возможности по работе с определениями: например, предложить ученику дать определение прямоугольника через понятие четырехугольника, параллелограмма и т.д. учащимся по силам самим установить, а затем и доказать различные свойства и признаки параллелограмма и трапеции.
Например:
Свойства |
Признак |
|
Теорема: В параллелограмме противоположные стороны равны и противоположные углы равны. Дано: - параллелограмм Доказать: 1. 2. |
Теорема: Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник параллелограмм. Дано: - четырехугольник Доказать: - параллелограмм |
При доказательстве теорем ученики, как показывает опыт, часто путают, признаки, свойства определения, не верно строят логические цепочки, умозаключения. Поэтому при работе с понятиями необходимо уже на этой теме формировать дедуктивное мышление, учить построению схем, таблиц, выявлять зависимости; делать правильные классификации, например, используя круги Эйлера.
В курсе планиметрии основным способом помогающим организовать материал, усвоить всю совокупность свойств фигуры, является создание некоторого образа, связываемого с понятием. В самом деле, что мы представляем себе, когда произносим или читаем слово «параллелограмм». Обычный параллелограмм, с диагоналями, которые в точке пересечения делятся пополам. Создание такого образа помогает многократное выполнение одного и того же чертежа, на котором все свойства видны. Этому способствуют и такие методические приемы, как обзор всех свойств, приводимых учителем, или опрос не по отдельным свойствам или теоремам, а по всей совокупности свойств фигуры: «Что вы знаете о трапеции?», «Перечислите все свойства прямоугольника» и т.д.
Таким образом, обучение учащихся самостоятельному решению задач требует определенной методики изучения теоретического материала курса, основанной на системном усвоении понятий.
Каждое математическое понятие есть некоторая система свойств и отношений, обладающая всеми признаками системы.
В различных учебниках изложение материала рассмотрено по-разному, по этому учителю нужно сочетать свою работу с материалом изложения на страницах других учебников.
2.3 Применение методов научного познания при изучении четырехугольников
Рассмотрим возможности использования методов научного познания при изучении темы «Четырехугольники».
2.3.1 Анализ и синтез
Как было сказано в первой главе, эмпирические методы не являются характерными для математики, поэтому они не применяются для изучения четырехугольников.
Наиболее часто в изучении четырехугольников применяют логические методы познания. Анализ наиболее часто применяется для решения задач на доказательство.
Пример 1. Докажите, что если в параллелограмме хотя бы один угол прямой, то он является прямоугольником.
Дано: ABCD - параллелограмм,
A=90?.
Доказать: ABCD - прямоугольник.
Анализ:
Пример 2. Доказать, что если диагональ параллелограмма является биссектрисой его углов, то он является ромбом.
Дано: ABCD - параллелограмм,
AC - диагональ.
Доказать: ABCD - ромб.
Анализ:
В приведенных примерах видно как после проведения анализа нужно решать задачу. В данных случаях применяется восходящий анализ. Рассмотрим пример применения нисходящего анализа.
Пример 3. Доказать, что в равнобедренной трапеции квадрат диагонали равен квадрату боковой стороны, сложенной с произведением оснований.
Дано: ABCD - трапеция.
Доказать: .
Анализ: Предполагаем, что верно равенство (1). Пытаемся получить из него верное следствие. Уменьшаем число параметров. Так как (, )(, то из равенства (1) получаем
,
,
.
что верно.
Приведем пример использования синтетического метода.
Пример 4. Доказать, что диагонали ромба взаимно перпендикулярны.
а) рассмотрим ; в нем (по условию);
б) (по свойству параллелограмма);
в) - медиана;
г) = высоте в ;
д) .
2.3.2 Сравнения и аналогии
Сравнение параллелограмма и трапеции позволяет выявить их общие свойства: они оба четырехугольники, оба имеют параллельные стороны, - и различие: в одном - две пары параллельных сторон, в другом - одна.
Если, например, включили бы в общие свойства параллелограмма и трапеции тот факт, что они оба обозначены одними и теми же буквами АВСD, или считали бы различием обозначение их различными буквами, то это было бы ошибочным подходом к сравнению.
Аналогия может быть использована при изучении свойств прямоугольника, ромба и квадрата. Так как прямоугольник это параллелограмм, у которого все углы прямые, то он обладает свойствами параллелограмма. Аналогично для ромба. Ромб это параллелограмм, у которого все стороны равны, следовательно он обладает свойствами параллелограмма. Квадрат это прямоугольник, у которого все стороны равны. Прямоугольник является параллелограммом, поэтому и квадрат является параллелограммом, у которого все стороны равны, то есть ромбом. Отсюда следует, что квадрат обладает всеми свойствами прямоугольника и ромба.
2.3.3 Обобщение
Рассмотрим переход от единого к общему, от общего к более общему.
Формирование понятия «квадрат» на раннем этапе обучения начинается показом множества предметов, отличающихся друг от друга формой, размерами, окраской, материалом, из которого они сделаны. Дети, после того как им показывают на одну из этих фигур и говорят, что это квадрат, безошибочно отбирают из множества фигур все те, которые имеют такую же форму, пренебрегая различиями, касающимися размеров, окраски, материала. Здесь выделение из множества предметов подмножества производится по одному еще недостаточно проанализированному признаку - по форме. Дети еще не знают свойств квадрата, они распознают его только по форме. Такое распознавание встречается у детей 4-5 лет. Дальнейшая работа по формированию понятия квадрата состоит в анализе этой формы с целью выявления ее свойств. Учащимся предлагается путем наблюдения найти, что есть общего у всех отобранных фигур, имеющих форму квадрата, чем они отличаются от остальных. Устанавливается, что у всех квадратов 4 вершины и 4 стороны. Но у некоторых фигур, которые мы не отнесли к квадратам, тоже 4 вершины и 4 стороны. Оказывается, у квадрата все стороны равны и все углы прямые. Все отобранные фигуры, обладающие этими свойствами, мы объединяем в один класс - квадраты (переход от единичного к общему).
В дальнейшем обучении этот класс включается в более широкий класс прямоугольников (переход от общего к более общему). При этом переходе к более широкому классу происходит сужение характеристики класса, одно из свойств, характеризующих класс квадратов (равенство всех сторон), опускается.
В нашем примере, если к содержанию понятия «прямоугольник» (к множеству свойств, характеризующих класс прямоугольников) добавить новое свойство (равенство всех сторон), мы получим содержание понятия «квадрат» (множество свойств, характеризующих класс квадратов).
Обобщение так же можно использовать при систематизации знаний по теме. Например, можно разделить класс на группы и каждой группе предложить, используя ранее изученный материал, составить схему отображающею виды многоугольников. А потом всем классом обсуждать данные схемы, тем самым, повторяя изученную тему.
2.3.4 Наблюдение и опыт
Наблюдение и опыт можно использовать при открытии свойств параллелограмма, прямоугольника, ромба, квадрата. Например, при изучении ромба ученикам можно предложить самим найти свойства данной фигуры и доказать их. На уроке учитель показывает модель, отображающую равенство противоположных сторон и противоположных углов. Учитель может предложить ученикам самостоятельно проверить опытным путем, что диагонали параллелограмма точкой пересечения делятся пополам.
2.3.5 Индукция
Рассмотрим применение индукции, а именно метода математической индукции.
Пример 5. Докажите, что n произвольных квадратов можно разрезать на части так, что из полученных частей можно сложить новый квадрат.
Решение. При n=1 утверждение очевидно. Докажем, что из двух квадратов (n=2) можно разрезать один так, что из полученных его частей и второго квадрата можно сложить третий квадрат.
Пусть даны квадраты: ABCD, AB=BC=CD=DA=x и STKZ, ST=TK=KZ=ZS=y и пусть xy.
На каждой стороне квадрата ABCD отложим от вершины отрезки AM=BN=CP=DQ=(x+y) и разрежем квадрат ABCD по отрезкам MP и NQ на четыре равные части. Ясно, что MP NQ, так как в каждом частном четырехугольнике (например, OMBN) сумма внутренних углов равна 3600, сумма тупого и острого углов равна 1800 (они смежные равным углам), а один угол прямой (это угол данного квадрата). Эти куски приложим к квадрату STKZ.
Полученная фигура является квадратом, так как =900 и . Итак, при n=2 утверждение задачи истинно.
Предположим, что утверждение задачи верно при n=k и докажем, что при этом оно верно и для n=k+1.
Пусть даны k+1 квадратов . Для любых двух квадратов из них верно, как уже доказано, утверждение задачи. Разрезая один из них и прикладывая куски его к другому квадрату, получим квадрат , а вместе с оставшимися k-1 квадратами - всего k квадратов, для которых доказанное утверждение верно по предложению. Таким образом, для k+1 квадратов утверждение задачи истинно.
Поэтому, по аксиоме индукции, n произвольных квадратов можно разрезать на части так, что из полученных частей можно сложить новый квадрат.
Глава III. Опытное преподавание
Для того чтобы показать эффективность использования методов научного познания при изучении темы «Четырехугольники» одного теоретического обоснования недостаточно. Любая теория должна быть подтверждена практикой. В связи с этим в Левинской средней общеобразовательной школе проводилась экспериментальная работа. В эксперименте участвовало 42 учащихся восьмых классов (21 - экспериментальный класс (ЭК), 21 - контрольный класс (КК)). Оба класса обучаются у одного преподавателя и по одному и тому же учебнику (одного авторского коллектива [2]). В ЭК, в отличие от КК, были проведены уроки с использованием методов научного познания (см. Приложение 1).
Эксперимент был направлен на проверку гипотезы настоящей дипломной работы, согласно которой, изучение темы «Четырехугольники» будет более эффективным, если применять методы научного познания.
С целью оценки результатов эксперимента посредством применения статистических методов учащимся были предложены две письменные контрольные работы (первая - в начале, вторая - в конце обучающего эксперимента) (см. Приложение 2).
Результаты контрольных работ в восьмых классах в начале и конце эксперимента представлены соответственно в таблицах 1 и 2, а также в диаграммах 1 и 2.
Таблица 1
Оценка |
Число учащихся, получивших эти оценки |
||
Контрольный класс |
Экспериментальный класс |
||
2 |
2 |
1 |
|
3 |
6 |
7 |
|
4 |
10 |
10 |
|
5 |
3 |
3 |
Таблица 2
Оценка |
Число учащихся, получивших эти оценки |
||
Контрольный класс |
Экспериментальный класс |
||
2 |
1 |
0 |
|
3 |
5 |
2 |
|
4 |
12 |
10 |
|
5 |
3 |
9 |
Анализ результатов выполнения контрольных работ в начале эксперимента позволил нам выдвинуть гипотезу H0: «выборки, представленные в таблице 1, однородны (распределение учащихся по баллам существенно не различаются)» при конкурирующей гипотезе H1: «выборки, представленные в таблице 1, неоднородны (распределение учащихся по баллам различаются существенно)». Проверим гипотезу о равенстве средних генеральных значений [3]. Найдена числовая характеристика
, где
- средние оценки в КК и ЭК соответственно.
,
.
- исправленные дисперсии КК и ЭК соответственно.
.
По таблице критических точек распределения Стьюдента на уровне значимости =0,05 и числа степеней свободы . Так как , то гипотеза принимается на уровне значимости 0,05. Поэтому можно утверждать, что на начало эксперимента качество знаний учащихся в контрольном и экспериментальном классах существенно не различается.
Для того чтобы убедится в положительном влиянии предложенной методики на качество знаний учащихся, проверим гипотезу о равенстве средних генеральных значений [3].
Выдвинута нулевая гипотеза : (средние оценки в КК и ЭК существенно не различаются) при конкурирующей гипотезе : (средняя оценка в КК существенно меньше средней оценки в ЭК). Вычислена числовая характеристика
, где
- средние оценки в КК и ЭК соответственно.
,
.
- исправленные дисперсии КК и ЭК соответственно.
.
По таблице критических точек распределения Стьюдента на уровне значимости =0,05 и числа степеней свободы . Так как , то гипотеза отвергается. Следовательно, на уровне значимости 0,05 можно утверждать, что средняя оценка КК существенно ниже, чем в ЭК.
Полученные результаты позволяют сделать вывод: качество знаний в экспериментальном и контрольном классах различны. Результаты учащихся экспериментального класса имеют тенденцию быть выше, чем результаты контрольных классов. На основании этого можно утверждать, что применение методов научного познания положительно влияет на качество знаний учащихся в восьмом классе.
Представленные результаты педагогического эксперимента свидетельствуют о более высоких показателях у учащихся экспериментальных классов. Статистическая обработка показала значимость наблюдаемых различий.
Таким образом, эксперимент подтвердил предположение о положительном влиянии методики обучения школьников математике с использованием методов научного познания.
Вывод. По данной главе можно сделать вывод, что проведенная экспериментальная работа подтверждает выдвинутую гипотезу: изучение темы «Четырехугольники» будет более эффективно, если применять методы научного познания.
Заключение
В теме «Четырехугольники» закладываются понятия основных видов четырехугольников и здесь же учащиеся знакомятся с основными видами задач, с методами их решения, оформления записи. В ходе изучения важно добиться, чтобы каждый ученик овладел всеми знаниями и умениями, необходимыми для дальнейшего успешного изучения новых понятий и теорем. Поэтому при подготовке к урокам геометрии по теме «Четырехугольники» учителю необходимо тщательно подбирать учебный материал, наглядные средства. На уроках больше времени отводить самостоятельной работе, творческой деятельности учащихся, использовать различные методики, формы работы. Также учителю необходимо применять в своей работе разнообразные методы познания. Все это будет наиболее полно способствовать лучшему усвоению геометрии учениками.
При выполнении выпускной квалификационной работы, нами было: раскрыто содержание понятий методов научного познания; изучена учебно-методическая литература по теме исследования; показано применение методов научного познания при изучении математики. Тем самым задачи исследования были выполнены. В ходе опытного преподавания подтверждена гипотеза. Таким образом, считаю, цель исследования достигнута.
Библиографический список
1. Александров, А. Д. Геометрия [Текст]: учеб. для 8-9 кл. общеобразоват. учреждений / А. Д. Александров, И. С. Вернер, В. И. Рыжик. - М.: Просвещение, 1991. - 415 с.
2. Атанасян, А. С. Геометрия [Текст]: учеб. для 7-9 кл. общеобразоват. учреждений / А. С. Атанасян. - М.: Просвещение, 1995. - 335 с.
3. Гмурман, В. Е. Теория вероятностей и математической статистика [Текст]: учеб. пособие для ВУЗов / В. Е. Гмурман. - М.: Высшая школа, 1999. - 479 с.
4. Горстко, А. Б. Познакомьтесь с математическим моделированием [Текст] / А. Б. Горстко. - М.: Знание, 1991. - 160 с.
5. Грес, П. В. Математика для гуманитариев / П. В. Грес. - М.: Логос, 2005.
6. Груденов, Я. И. совершенствование методики работы учителя математики [Текст]: книга для учителя / Я. И. Груденов. - М.: Просвещение, 1990. - 224с.
7. Математическая энциклопедия. Гл. ред. М. Виноградов. Том 3. Коо - Од. М.: Советская энциклопедия, 1982, 1184 стр., ил.
8. Методика преподавания математики [Текст]: учебник для вузов / Е. С. Канин, А. Я. Блох [и др.]; под ред. Р. С. Черкасова. - М.: Просвещение, 1985. - 268 с.
9. Методика преподавания математики [Текст]: учебник для вузов / В. А. Оганесян, Ю. М. Колягин [и др.] - М.: Просвещение, 1980. - 368 с.
10. Методика преподавания математики [Текст]: учебник для вузов / А. Я. Блох, В. А. Гусев, Г. В. Дорофеев [и др.] - М.: Просвещение, 1987. - 416 с.
11. Обойщикова, И. Г. Обучение моделированию учащихся 5 - 6 классов при изучении математики [Текст]: Автореферат диссертации на соискание ученой степени кандидата педагогических наук / И. Г. Обойщикова. - Саранск, 2002.
12. Овечкин, К. А. Использование методов научного познания при изучении темы «Четырехугольники» // Познание процессов обучения физике [Текст]: сборник статей. Вып. девятый / под ред. Ю. А. Саурова. - Киров: Изд-во ВятГГУ, 2008. - С. 54-59.
13. Петров, Е. С. Теория и методика обучения математике [Текст]: учеб.-метод. пособие для студ. мат. спец. / Е. С. Петров. - Саратов: Изд-во Сарат. ун-та, 2004. - 84 с.
14. Погорелов, А. В. Геометрия [Текст]: учеб. для 7-11 Кл. общеобразоват. учреждений / А. В. Погорелов. - М.: Просвещение, 1990. - 384 с.
15. Полякова, Т. С. Методика обучения геометрии в основной школе: Учебное пособие для студентов педвузов и пед.колледжей. - Ростов-на-Дону: РЕПУ, 1996. -96 с.
16. Саранцев, Г. И. Общая методика преподавания математики: Учебное пособие для студентов мат. специальности Пед. Вузов и университетиов - Саранск: Тип. Красный Октябрь, 1999. - 208 с.
17. Сичивица, О. М. Методы и формы научного познания [Текст] / О. М. Сичивица. - М., Высшая школа, 1993.
18. Смирнова, И. М. Геометрия [Текст]: учеб. для 7-9 Кл. общеобразоват. учреждений / И. М. Смирнова, В. А. Смирнов. - М.: Просвещение, 2001. - 271 с.
19. Смирнова, И. М. Дидактические материалы по геометрии для 7-9 классов / И. М. Смирнова, В. А. Смирнов. - М.: Просвещение, 2004. - 205 с.
20. Теоретические основы обучения математике в средней школе: Учебное пособие / Т. А. Иванова, Е. Н. Перевосщикова [и др.] - Н. Новгород: НГПУ, 2003. - 320 с.
21. Фарков, А. В. Контрольные работы, тесты, диктанты по геометрии: книга для учителя / А. В. Фарков. - М.: Экзамен, 2008. - 157 с.
22. Формирование системного мышления в обучении: учеб. пособие для вузов [Текст] / под ред. З. А. Решетовой - М.: ЮНИТИ-ДАНА, 2002. - 344с.
23. Шарыгин И. Ф. Геометрия [Текст]: учеб. для 7-9 Кл. общеобразоват. учреждений / И. Ф. Шарыгин. - М.: Дрофа, 2002. - 368 с.
24. Штофф, В. А. Моделирование и философия [Текст] / В. А. Штофф. - М.: Наука, 1966.
25. Эрдниев, П. М. Укрепление дидактических единиц в обучении математике: книга для учителя / П. М. Эрдниев, Б. П. Эрдниев - М.: Просвещение, 1992. -
26. http://fmi.asf.ru/library/book/mpm/
Подобные документы
Методические основы изучения темы "Четырехугольники" в курсе геометрии. Общее понятие о факультативном курсе. Факультативный курс для учащихся 8 класса по теме "Четырехугольники на плоскости", принципы и этапы его разработки, предъявляемые требования.
курсовая работа [520,6 K], добавлен 21.05.2013Сущность теоретических методов познания, примеры их использования в школьном курсе физики. Этапы цикла научного познания. Методы абстрагирования, идеализации, аналогии, моделирования и мысленного эксперимента. Этапы овладения методами в школьном курсе.
курсовая работа [18,3 K], добавлен 02.05.2010Современные экологические проблемы, связанные с гидросферой. Способы формирования интереса к процессу познания у школьников. Использование средств наглядности при изучении воды и растворов. Внеклассное мероприятие на тему: "Где вода, там и жизнь".
дипломная работа [2,6 M], добавлен 29.05.2010Строение и функции побега. Образовательные, развивающие и воспитательные задачи, решаемые при изучении темы "Побег" в школьном курсе биологии. Методические разработки уроков по теме "Побег", составление банка контрольных заданий по изучаемой теме.
курсовая работа [728,6 K], добавлен 15.06.2010Обзор учебников и методов изучения темы. Главные принципы при решении уравнений с переменной в знаменателе. Методические рекомендации для проведения пропедевтики темы, ее изучения и последующего закрепления. Подходы к обоснованию алгоритмов решения.
курсовая работа [2,4 M], добавлен 12.06.2010Виды и функции корней, типы корневых систем. Содержание темы "Корень" в школьном курсе биологии, структура ознакомительного урока, полученные учащимися знания и навыки. Методические разработки уроков по темам, игровые задания и дидактические карточки.
курсовая работа [697,7 K], добавлен 15.06.2010История открытия, строение и жизнедеятельность бактерий, их формы и размеры. Методические приемы, используемые при изучении темы "Бактерии". Методические разработки по теме: урок–лекция, урок "Знакомство с Царством бактерий", рабочий листок, кроссворд.
курсовая работа [4,6 M], добавлен 29.05.2010Психолого-педагогические основы изучения интеграла в школьном курсе математики. Анализ школьных учебников алгебры и начал анализа. Физические модели при изучении темы "Интеграл". Изучение свойств определенного интеграла с помощью физических моделей.
дипломная работа [140,2 K], добавлен 28.05.2008Роль и место темы "Многоугольники" в школьном курсе геометрии, методика изучения данной темы. Понятия и признаки треугольника, прямоугольника, ромба, квадрата, трапеции. Выпуклые и правильные многоугольники: доказательство теорем и решение задач.
дипломная работа [2,9 M], добавлен 16.02.2012Определение эффективных методов и средств обучения теме "Поверхности вращения второго порядка" в школьном курсе математики, разработка на этой основе системы занятий. Примеры построения поверхностей. Обзор основных возможностей математических пакетов.
дипломная работа [994,2 K], добавлен 09.07.2013