Понятие категорического силлогизма
Силлогизм - дедуктивное умозаключение, в котором из двух категорических высказываний выводится одно новое. Диаграмма Эйлера для терминов: государство, республика, монархия. Построение таблицы истинности для формулы. Определение фигуры и модуса силлогизма.
Рубрика | Философия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 29.03.2010 |
Размер файла | 80,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
9
Содержание
1. Что такое простой категорический силлогизм? Дайте его структуру
2. Для следующих терминов постройте диаграмму Эйлера: государства, республики, монархии
3. Постройте таблицу истинности следующей формулы
Список использованной литературы
1. Что такое простой категорический силлогизм? Дайте его структуру
Категорический силлогизм (или просто: силлогизм) - это дедуктивное умозаключение, в котором из двух категорических высказываний выводится новое категорическое высказывание.
Логическая теория такого рода умозаключений называется силлогистикой. Она была создана еще Аристотелем и долгое время служила образцом логической теории вообще. Гетманова А.Д. Логика: Учеб. для ВУЗов / Гетманова Александра Денисовна. - 6-е изд. - М.: Высш. шк.: Омега. - Л., 2002. - с.286
В силлогистике выражения "Все ... есть ...", "Некоторые ... есть ...", "Все ... не есть ..." и "Некоторые ... не есть..." рассматриваются как логические постоянные, т.е. берутся как единое целое. Это не высказывания, а определенные логические формы, из которых получаются высказывания путем подстановки вместо многоточий каких-то имен. Подставляемые имена называются терминами силлогизма.
Существенным является следующее традиционное ограничение: термины силлогизма не должны быть пустыми или отрицательными.
Примером силлогизма может быть:
Все жидкости упруги. Вода - жидкость. Вода упруга.
В каждом силлогизме должно быть три термина: меньший, больший и средний.
Меньшим термином называется субъект заключения (в примере таким термином является термин "вода").
Большим термином именуется предикат заключения ("упруга"). Термин, присутствующий в посылках, но отсутствующий в заключении, называется средним ("жидкость"). Меньший термин обозначается обычно буквой S, больший - буквой Р и средний - буквой М. Посылка, в которую входит больший термин, называется большей. Посылка с меньшим термином называется меньшей. Большая посылка записывается первой, меньшая - второй. Логическая форма приведенного силлогизма такова:
Все М есть Р. Все S есть М.
Все S есть Р.
В зависимости от положения среднего термина в посылках (является он субъектом или предикатом в большей и меньшей посылках) различаются четыре фигуры силлогизма. Схематически фигуры изображаются так:
По схеме первой фигуры построен силлогизм:
Все птицы (М) имеют крылья (Р). Все страусы (S) - птицы (М).
Все страусы имеют крылья.
По схеме второй фигуры построен силлогизм:
Все рыбы (Р) дышат жабрами (М). Киты (S) не дышат жабрами (М).
Все киты не рыбы.
По схеме третьей фигуры построен силлогизм:
Все бамбуки (М) цветут один раз в жизни (Р). Все бамбуки (М) - многолетние растения (S).
Некоторые многолетние растения цветут один раз в жизни.
По схеме четвертой фигуры построен силлогизм:
Все рыбы (Р) плавают (М). Все плавающие (М) живут в воде (S).
Некоторые живущие в воде - рыбы.
Посылками и заключениями силлогизмов могут быть категорические суждения четырех видов: SaP, SiP, SeP и SoP.
Модусами силлогизма называются разновидности фигур, отличающиеся характером посылок и заключения.
Всего с точки зрения всевозможных сочетаний посылок и заключения в каждой фигуре насчитывается 64 модуса. В четырех фигурах 4 Ч 64 = 256 модусов.
Силлогизмы, как и все дедуктивные умозаключения, делятся на правильные и неправильные. Задача логической теории силлогизма - систематизировать правильные силлогизмы, указать их отличительные черты.
Из всех возможных модусов силлогизма только 24 модуса являются правильными, по шесть в каждой фигуре. Вот традиционно принятые названия правильных модусов первых двух фигур:
1-я фигура: Barbara, Celarent, Darii, Ferio, Barbari, Celaront; 2-я фигура: Cesare, Camestres, Festino, Baroco, Cesaro, Camestros.
В каждом из этих названий содержатся три гласных буквы. Они указывают, какие именно категорические высказывания используются в модусе в качестве его посылок и заключения. Так, название Celarent означает, что в этом модусе первой фигуры большей посылкой является общеотрицательное высказывание (SeP), меньшей - общеутвердительное (SaP) и заключением - общеотрицательное высказывание (SeP).
Из 24 правильных модусов силлогизма 5 являются ослабленными: заключениями в них являются частноутвердительные или частноотрицательные высказывания, хотя в случае других модусов эти же посылки дают общеутвердительные или общеотрицательные заключения (ср. модусы Cesare и Cesaro второй фигуры). Если отбросить ослабленные модусы, остается 19 правильных модусов силлогизма. Ивин А.А. Логика: учеб. для ВУЗов /Ивин Александр Архипович. - М.: Фаир-Пресс: Гранд, 2002. - с.86
Для оценки правильности силлогизма могут использоваться круги Эйлера, иллюстрирующие отношения между объемами имен.
Возьмем, для примера, силлогизм:
Все металлы (М) ковки (Р). |
9
Железо (S) ковко (Р). |
Отношения между тремя терминами этого силлогизма (модус Barbara) представляются тремя концентрическими кругами. Эта схема интерпретируется так: если все М (металлы) входят в объем Р (ковких тел), то с необходимостью S (железо) войдет в объем Р (ковких тел), что и утверждается в заключении "Железо ковко".
Другой пример силлогизма:
Все рыбы (Р) не имеют перьев (М). У всех птиц (S) есть перья (М). |
9
Ни одна птица (S) не является рыбой (Р). |
Отношения между терминами данного силлогизма (модус Cesare) представлены на рисунке. Он истолковывается так: если все S (птицы) входят в объем М (имеющие перья), а М не имеет ничего общего с Р (рыбы), то у S (птицы) нет ничего общего с Р (рыбы), что и утверждается в заключении.
Пример неправильного силлогизма:
Все тигры (М) - млекопитающие (Р). |
9
Все хищники (S) - млекопитающие (Р). |
Отношения между терминами данного силлогизма могут быть представлены двояко, как это показано на рисунке. И в первом, и во втором случаях все М (тигры) входят в объем Р (млекопитающие) и все М входят также в объем S (хищники). Это соответствует информации, содержащейся в двух посылках силлогизма. Но отношение между объемами Р и S может быть двояким. Охватывая М, объем S может полностью входить в объем Р или объем S может лишь пересекаться с объемом Р. В первом случае можно было бы сделать общее заключение "Все хищники - млекопитающие", но во втором случае правомерно только частное заключение "Некоторые хищники - млекопитающие". Информации, позволяющей сделать выбор между этими двумя вариантами, в посылках не содержится. Значит, мы не вправе делать общее заключение. Силлогизм не является правильным.
В силлогизме, как и во всяком дедуктивном умозаключении, в заключении не может содержаться информация, отсутствующая в посылках. Заключение только развертывает информацию посылок, но не может привносить новую информацию, отсутствующую в них. Демидов И.В. Логика: учебник /Демидов Игорь Владимирович: под ред. Б.И. Каверина. - М.: Дашков и Ко, 2004. - с.124
В обычных рассуждениях нередки силлогизмы, в которых не выражается явно одна из посылок или заключение. Такие силлогизмы называются энтимемами. Примеры энтимем: "Щедрость заслуживает похвалы, как и всякая добродетель", "Он - ученый, поэтому любопытство ему не чуждо", "Керосин - жидкость, поэтому он передает давление во все стороны равномерно" и т.п. В первом случае опущена меньшая посылка "Щедрость - это добродетель", во втором - большая посылка "Всякому ученому не чуждо любопытство", в третьем - опять-таки большая посылка "Всякая жидкость передает давление во все стороны равномерно".
Для оценки правильности рассуждения в энтимеме следует восстановить ее в полный силлогизм.
2. Для следующих терминов постройте диаграмму Эйлера: государства, республики, монархии
Диаграммы Эйлера-Венна позволяют представить множества, как множества точек на плоскости, ограниченные замкнутыми кривыми круглой или овальной формы. Прямоугольная рамка ограничивает универсум. Обычно, если не требуется иное, рисуют так называемый общий случай: когда каждое из множеств имеет свои собственные точки и точки, общие с другими множествами.
Решение:
Государство может быть или республикой или монархией.
Понятия (А) «монархия» и (В) «республика» являются противоречащими понятиями, потому, что они несовместимы и оба подчинены понятию (С) «государство».
Поэтому диаграмма будет выглядеть следующим образом:
А С В С
3. Постройте таблицу истинности следующей формулы:
(АВ)(ВС)
В логическом выражении данная формула выглядит так:
(если А, то не В) и (если и только если В, то не С)
Формула имеет три переменных: А, В и С. Суждения, которые используются в формуле: конъюнктивные, импликативные, и эквивалентные.
Таблица истинности:
А |
В |
С |
В |
С |
АВ |
ВС |
(АВ)(ВС) |
|
и |
и |
и |
л |
л |
л |
л |
л |
|
и |
и |
л |
л |
и |
л |
и |
л |
|
и |
л |
и |
и |
л |
и |
и |
и |
|
и |
л |
л |
и |
и |
и |
л |
л |
|
л |
и |
и |
л |
л |
л |
л |
л |
|
л |
и |
л |
л |
и |
л |
и |
л |
|
л |
л |
и |
и |
л |
л |
и |
л |
|
л |
л |
л |
и |
и |
л |
л |
л |
Список использованной литературы
1. Берков В.Ф. Логика: учеб. для студентов вузов /Берков В.Ф.; Яккевич Я.С; Павлюкевич В.И. Под общ. ред. В.Ф. Беркова. - 8-е изд. - Минск: Театр Системс, 2006. - 412с.
2. Бочаров В.А., Маркин В.И. Основы логики: учебник для гуманитарных и естественных факультетов университетов. - М.: Космополис, 1994. - 271с.
3. Гетманова А.Д. Логика: Учеб. для ВУЗов /Гетманова Александра Денисовна. - 6-е изд. - М.: Высш. шк.: Омега. - Л., 2002. - 416с.
4. Демидов И.В. Логика: учебник /Демидов Игорь Владимирович: под ред. Б.И. Каверина. - М.: Дашков и Ко, 2004. - 345с.
5. Ивин А.А. Логика: учеб. для ВУЗов/Ивин Александр Архипович. - М.: Фаир-Пресс: Гранд, 2002. - 319с.
6. Кузина Е.Б. Логика: Экспресс-курс для подгот. к экзамену/Кузина Елена Борисовна. - М.: Владос, 2003. - 80с.
7. Светлов В.А. Практическая логика: учеб. пособие для ВУЗов /Светлов Виктор Александрович. - изд. 3-е, доп. И испр. - СПб.: Росток, 2003. - 682с.
Подобные документы
Понятие простого категорического силлогизма и его правила. Аксиома простого категорического силлогизма. Правила фигур и посылок. Термины силлогизма, пример. Понятия, входящие в состав силлогизма. Проверка правильности умозаключения обратным выведением.
контрольная работа [26,8 K], добавлен 16.11.2010Учение о силлогизме как исторически первый законченный фрагмент логической теории умозаключений. Логика высказываний и категорические высказывания. Взаимная зависимость предложений. Фигуры и модусы силлогизма. Отношения между терминами рассуждения.
контрольная работа [53,4 K], добавлен 07.01.2011Характеристика обращения суждений. Способ получить непосредственное умозаключение в результате логического преобразования. Существование абсурда, логической бессмыслицы. Сущность категорического силлогизма, прогрессивного и регрессивного полисиллогизма.
контрольная работа [38,1 K], добавлен 17.03.2009Предмет логики, ее значение и виды. Особенности определения истинности сложного суждения по таблице истинности. Построение фигуры категорического силлогизма на основании посылки: "Все люди – смертны". Путь формирования логической культуры мышления.
контрольная работа [12,2 K], добавлен 07.12.2009Графическое изображение вида отношений между понятиями. Определение фигуры силлогизма и выполнение его полного разбора: указание заключения и посылки, среднего, меньшего и большего терминов. Проведение анализа корректности приведенных аргументов.
контрольная работа [18,2 K], добавлен 22.04.2010Силлогизмы — умозаключения, состоящие из двух суждений, из которых с необходимостью выводится третье. Основные особенности силлогизма. Дедуктивные и посредственные логические умозаключения. Простой категорический силлогизм. История возникновения понятия.
контрольная работа [31,8 K], добавлен 15.01.2011Характеристика типов высказываний по их модальности. Общие отношения между высказываниями. Простой категорический силлогизм. Правила силлогизма. Фигуры и модусы силлогизма. Основные различия между традиционным и аристотелевским силлогизмом.
курсовая работа [52,4 K], добавлен 19.05.2007Заслуги Аристотеля в логике, окрытие силлогизма. Сравнение стагиритовского силлогизма с истолкованием его Аль-Фараби. Пример силлогизма с конкретным содержанием по Фараби. Его приемы сведения к совершенным модусам несовершенных категорических силлогизмов.
реферат [22,1 K], добавлен 15.05.2019Подбор понятий, противоположных и противоречащих данным. Объединенная классификация суждений. Изображение отношений между терминами (субъектом и предикатом) с помощью кругов Эйлера. Определение фигуры категорического силлогизма, его возможность.
контрольная работа [76,4 K], добавлен 02.10.2014Определение силлогизма как дедуктивного опосредованного вывода. Структура и общие правила силлогизма. Подразделение умозаключений на виды по различным основаниям: направленности мысли, строгости, количеству составляющих элементов, их характеру.
реферат [24,9 K], добавлен 12.07.2015