Проверочный тепловой расчет котлоагрегата типа КЕ-4-14 на твердом топливе
Расчет горения топлива и определение средней характеристики продуктов сгорания в поверхностях котла типа КЕ-4-14. Составление теплового баланса, расчет первого и второго газохода, хворостовых поверхностей нагрева. Подбор дополнительного оборудования.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 17.04.2010 |
Размер файла | 3,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
КУРСОВОЙ ПРОЕКТ
ПО ПРЕДМЕТУ: «ТЕПЛОМАСООБМЕН»
НА ТЕМУ:
«Проверочный тепловой расчет котлоагрегата типа КЕ-4-14 на твердом топливе, марки Ж (жирный уголь), Воркутинского месторождения, Коми АССР, Печорского бассейна, класса - Р (рядовой уголь), отсев»
Задание
Сделать проверочный тепловой расчет котлоагрегата типа КЕ-4-14 на твердом топливе, марки Ж (жирный уголь), Воркутинского месторождения, Коми АССР, Печорского бассейна, класса - Р (рядовой уголь), отсев.
Таблица - Исходные данные для расчетов
Величина |
Единицы измерения |
|
1. Тип котла 2. Паропроизводительность 3. Вид пара 4. Рабочее давление 5. Температура живительной воды 6. Топливо (твердое, газообразное) 7. Температура холодного воздуха 8. Температура выходящих продуктов сгорания 9. Процент продувки 10. Тип экономайзера |
КЕ-4-14 D=4 т/ч насыщенный 1,4 МПа (14 ат) 100 Т 30 150 3% ЕП |
|
Объем топки Площадь поверхности стен топки Диаметр экранных труб Шаг труб боковых экранов Площадь поверхности нагрева, воспринимающей лучи Площадь поверх. нагрева конвективных пучков Диаметр труб конвективных пучков Расположение труб конвективных пучков Поперечный шаг труб Продольный шаг труб Площадь живого пересечения для прохода продуктов сгорания Число рядов труб по ходу продуктов сгорания |
12,03 м3 38,57 м3 51 2,5 мм 55 мм 20,51 м3 91,89 м3 51 2,5 мм коридорное 90 мм 110 мм 0,59 м2 15 |
|
Размеры 1-го газохода: Высота Ширина |
2,1 м 0,68 м |
|
Размеры 2-го газохода: Высота Ширина |
2,1 м 0,54 м |
Рабочая масса топлива:
WP=5,5
AP=23,6
==0,8
CP=59,6
HP=3,8
NP=1,3
OP = 5,4
=5650 ккал/кг
По табл. PH-5-02:
Для каменного угля:
Вступление
Целью курсового проекта является проверочный тепловой расчет котлоагрегата типа КЕ-4-14 на твердом топливе, месторождения №28: Воркутинского месторождения, Коми АССР, Печорского бассейна.
Котельными установками называется комплекс оборудования; предназначенного для превращения химической энергии топлива в тепловую с целью получения горячей воды или пара заданных параметров.
Котельная установка состоит из котельного агрегата, вспомогательных механизмов и устройств.
Котельный агрегат включает топочное устройство, трубную систему с барабанами, пароперегреватель, водяной экономайзер, воздухоподогреватель, а также каркас с лестницами и помостами для обслуживания, обмуровку, газоходы и арматуру.
Все котлоагрегаты серии КЕ оснащены цепными воротами с пневмамеханическими закидывателями. Цепные ворота поставляются в виде блока, наперед собранного и обкатанного на заводе-изготовителе.
Это превысило эксплуатационную надежность ворот и сократило термины ее монтажа.
Ширина топочной камеры всех котлоагрегатов серии КЕ-4-14 одинаковая и составляет 1830 мм. Глубина топочной камеры котлоагрегатов серии меняется от 1980 до 7200 мм. Продукты сгорания с топочной камеры через окно, расположенное с левой стороны, следуют в конвективную поверхность нагрева. Она образована трубами, которые соединяют верхний и нижний барабаны. У казанов от 4 до 10 т/ч конвективная поверхность нагрева разделена продольной перегородкой на две части.
1. Котельные агрегаты
1.1 Котельные установки
Котельными установками называется комплекс оборудования; предназначенного для превращения химической энергии топлива в тепловую с целью получения горячей воды или пара заданных параметров. В зависимости от назначения различают следующие котельные установки: отопительные - для обеспечения теплом систем отопления, вентиляции и горячего водоснабжения; отопительно-производственные - для обеспечения теплом систем отопления, вентиляции, горячего водоснабжения и технологического водоснабжения и производственные - для технологического теплоснабжения.
Котельная установка состоит из котельного агрегата, вспомогательных механизмов и устройств.
Котельный агрегат включает топочное устройство, трубную систему с барабанами, пароперегреватель, водяной экономайзер, воздухоподогреватель, а также каркас с лестницами и помостами для обслуживания, обмуровку, газоходы и арматуру.
К вспомогательным механизмам и устройствам относят дымососы и дутьевые вентиляторы, питательные, водоподготовительные и пылеприготовительные установки, системы топливоподачи, золоулавливания (при сжигании твердого топлива), мазутное хозяйство (при сжигании жидкого топлива), газорегуляторную станцию (при сжигании газообразного топлива), контрольно-измерительные приборы и автоматы. В процессе получения горячей воды или пара для отопления, производственно-технических и технологических целей служат вода, топливо и воздух (рабочим телом является вода). В промышленности, сельском и коммунальном хозяйстве применяют различные виды котлов.
Паровой котел представляет собой устройство с топкой, обогреваемое продуктами сжигаемого в ней топлива и предназначенное для получения пара давлением выше атмосферного, используемого вне устройства, а водогрейный котел - такое же устройство, но предназначенное для нагревания воды, находящейся под давлением выше атмосферного и используемой в качестве теплоносителя вне устройства.
Котел - утилизатор - это паровой или водогрейный котел, в котором в качестве источника тепла используются горячие газы технологического процесса, котел-бойлер - паровой котел, в паровом: пространстве которого размещено устройство для нагревания воды, используемой вне котла, а в естественную циркуляцию включен отдельно стоящий бойлер. Стационарным называют котел, установленный на неподвижном фундаменте, передвижным - котел, имеющий ходовую часть или установленный на передвижном фундаменте. Пароперегреватель представляет собой устройство, предназначенное для перегрева пара выше температуры насыщения, соответствующей давлению в котле, в результате передачи ему тепла дымовыми газами, а экономайзер - устройство, обогреваемое продуктами сгорания топлива и служащее для подогрева или частичного испарения воды, поступающей в котел.
Воздухоподогреватель предназначен для подогрева поступающего в топочное устройство воздуха теплом уходящих газов. Питательная установка состоит из питательных насосов для подачи воды в котел под давлением, а также соответствующих трубопроводов и арматуры, тягодутьевое устройство - из дутьевых вентиляторов, системы газовоздуховодов, дымососа и дымовой трубы, обеспечивающих подачу необходимого количества воздуха в топочное устройство, движение продуктов сгорания по газоходам, и удаление их за пределы котлоагрегата.
Устройство теплового контроля и автоматического управления включает контрольно-измерительные приборы и автоматы, обеспечивающие бесперебойную и согласованную работу котельной установки для выработки необходимого количества пара определенной температуры и давления. В устройство для подготовки питательной воды входят аппараты и приспособления, обеспечивающие очистку воды от механических примесей и растворенных в ней накипеобразующих солей, а также удаление из нее газов. Котельные установки, работающие на пылевидном топливе, оборудуют дробилками, сушилками, мельницами, питателями, вентиляторами, а также системой транспортеров и пылегазопроводов. Устройство для удаления золы и шлака состоит из гидравлических систем и механических приспособлений: вагонеток или транспортеров или тех и других. Топливный склад служит для хранения топлива. В зависимости от вида используемого топлива склад оборудуют: при твердом топливе - механизмами для разгрузки и подачи топлива в котельную или топливоподготовительное устройство; при жидком - приемными и одготовительными устройствами для слива топлива, а также хранилищами; при газообразном - газорегуляторным пунктом (ГРП) или газорегуляторной установкой (ГРУ).
1.2 Общие понятия топлива и горения
Топливом называют вещество, выделяющее при определенных условиях большое количество тепловой энергии, которую используют в различных отраслях народного хозяйства для получения водяного пара или горячей воды систем отопления, вентиляции, горячего водоснабжения и производства электроэнергии. Топливо бывает горючее и расщепляющееся.
Горючее - топливо, которое выделяет теплоту при взаимодействии с окислителем (воздухом), а расщепляющееся (ядерное) - выделяет теплоту в процессе торможения продуктов деления тяжелых ядер химических элементов при взаимодействии их с нейтронами. Горючее топливо делится на органическое и неорганическое. В теплогенерирующих котельных установках (ТГУ) применяют органическое топливо, которое по агрегатному состоянию делят на твердое, жидкое и газообразное, а по способу получения - на естественное и искусственное.
Естественные: уголь, торф, сланцы, древесина, природный газ, попутный газ нефтяных месторождений.
Искусственные (синтетические, композиционные): топливные брикеты, торфяной кокс, дизельное и соляровое топливо, мазут (топочный, бытовой), топливные эмульсии и суспензии, доменный, коксовый, сланцевый газ.
Горением называется быстрый процесс экзотермического окисления горючего вещества, сопровождающегося выделением значительного количества тепловой энергии. Особенности процесса горения, отличающие его от родственных процессов окисления: высокая температура; быстротечность по времени; неизотермичность; изменение концентрации компонентов, структуры и формы поверхности реагирования во времени. По своей природе горение - процесс, протекающий при непрерывном подводе горючего и окислителя в зону горения и отводе газообразных продуктов сгорания. В основе процесса горения лежат экзотермические и эндотермические реакции, которые описываются стехиометрическими уравнениями и принципиальной особенностью которых является их обратимость (принцип Ле-Шателье). Для протекания реакции необходимо перемешивание компонентов на молекулярном уровне, иными словами, необходим процесс массопереноса реагирующих компонентов в зону реакции и продуктов реакции из нее. Процесс массопереноса осуществляется в турбулентном потоке за счет турбулентной диффузии, а в ламинарном потоке, неподвижной среде и в пограничном слое - за счет молекулярной диффузии, которые при постоянной температуре и давлении описываются законом Фика. Если реакция горения протекает мгновенно, то это явление называется взрывом. В зависимости от фазового состояния реагирующих веществ химические реакции горения делят на:
1) гомогенные - протекающие в объеме между компонентами, находящимися в одной фазе (газ и воздух);
2) гетерогенные - протекающие на поверхности раздела фаз (уголь или капля мазута и воздух).
1.3 Основные характеристики топлива
Общеизвестны основные разновидности топлива-дрова, торф, уголь, сланцы, нефтяные остатки, газ. Все они представляют собой органические соединения, способные при высоких температурах вступать в реакцию с кислородом воздуха, при чем происходит выделение тепла. Существует немало реакций, протекающих с выделением тепла, однако в качестве топлива применяются наиболее дешевые и удобные для сжигания реагенты. Топливо добывается в большом количестве, запасы его в природе весьма значительны. Требующийся для реакции кислород берется из окружающего воздуха. В результате реакции получаются сильно нагретые газообразные продукты сгорания, тепло которых используется в котельной установке. Охлажденные газы через дымовую трубу выбрасываются в атмосферу. Для сжигания может использоваться как естественное топливо, гак и искусственное, полученное после переработки естественного топлива с целью выделения из него ценных продуктов, к которым относятся смолы, бензины, бензолы, минеральные смазочные масла, краски, фармацевтические продукты, сернокислый аммоний, идущий для нужд сельского хозяйства, и др. Ниже приводится главнейший перечень разновидностей углей.
Таблица 1.3.1а - Классификация углей по размеру кусков (ГОСТ 19242 - 73)
Класс |
Условное обозначение |
Размер кусков, мм |
|
Плиточный |
П |
Более 100 |
|
Крупный |
К |
50-100 |
|
Орех |
О |
25-50 |
|
Мелкий |
М |
13-25 |
|
Семечко |
С |
6-13 |
|
Штыб |
Ш |
Менее 6 |
|
Рядовой |
Р |
0-200 |
Таблица 1.3.1б - Маркировка каменных углей
Наименование марок угля |
Обозначение |
Выход летучих веществ на горючую массу, Vг, % |
|
Длиннопламенный |
Д |
>35 |
|
Газовый |
Г |
>35 |
|
Газовый жирный |
ГЖ |
27-37 |
|
Жирный |
Ж |
27-37 |
|
Коксовый жирный |
КЖ |
25-31 |
|
Кокосовый |
К |
18-27 |
|
Коксовый второй |
К2 |
17-25 |
|
Слабоспекающийся |
СС |
25-37 |
|
Отощенный спекающийся |
ОС |
14-22 |
|
Тощий |
Т |
8-17 |
Топливо, расходуемое на сжигание в топках котлов или печей, называется рабочим топливом. Если мы отберем пробу рабочего топлива и исследуем ее в химической лаборатории, определив элементарный состав, то получим следующее равенство:
WP+AP+SP+CP+HP+NP+OP=100%,
где индексом «P» отмечается рабочее топливо.
Эта характеристика рабочего состава топлива дается в процентах к весу. Указанные элементы не являются механической смесью, они находятся в топливе в виде сложных соединений. Горючими элементами топлива являются CP, HP и SP - углерод, водород и летучая горючая сера - в отличие от серы негорючей, входящей в состав минеральных негорючих примесей топлива, образующих после его сжигания золу AP. Чем больше процентное содержание горючих элементов в топливе, тем выше его теплотворная способность - величина, указывающая количество больших калорий, выделяемых при сжигании 1 кг топлива.
OP - кислород, находящийся в топливе; тепла, как известно, не выделяет.
NP - азот, находящийся в топливе; элемент инертный, не участвующий в реакциях горения. Из топлива азот попадает в отходящие газы и примешивается к азоту воздуха, подаваемого для горения. Азот и кислород называются внутренним балластом топлива в отличие от балласта внешнего, к которому относятся зола и влага.
Зола AP - это негорючая минеральная часть топлива; в нее входят по преимуществу соли щелочных и щелочноземельных металлов, окислы кремния, железа, алюминия и пр., а также и минеральная сульфатная сера в соединениях CaSO4 и MgSO4. Накопление золы в ископаемом топливе происходит не сразу, а в три периода. Сначала появляется так называемая зола внутренняя (первичная), находившаяся в растениях, послуживших материалом для образования торфяников, а впоследствии и угольных пластов. Затем количество золы в топливе увеличивается за счет заноса земли и песка ветром и водой (вторичная зола). И, наконец, зола в топливо попадает при его добыче от загрязнения породой (третичная зола).
Сера S встречается в трех видах: органическая и колчеданная, или летучая горючая сера, а также сульфатная негорючая сера. Летучая сера дает 10 МДж теплоты.
Общая сера, находящаяся в топливе, разбивается на две части - горючую и негорючую. Минеральная сера входит в состав золы, а летучая в свою очередь может быть расчленена на две составляющие:
= , где
-органическая сера, входящая в состав основного ядра топлива, его материнского вещества;
-сера колчеданная, находящаяся в соединении с железом (FeS2-серный колчедан), вкрапленная в топлива до известной степени случайно и в значительной степени поддающаяся отбору при сортировке топлива. Сера в топливе, невзирая на то, что часть ее сгорает, считается примесью нежелательной, так как продукты ее сгорания вредно действуют на котельную установку и загрязняют окружающий воздух.
Влага в топливе WP - также примесь балластная, ее наличие особенно сильно сказывается в смысле снижения теплового эффекта горения, так как мало того, что вода своим присутствием уменьшает долю горючих элементов в единице веса топлива, она при горении топлива испаряется, отнимая на это часть тепла реакции. Находящаяся в топливе влага подразделяется на внешнюю и гигроскопическую. Оставшаяся часть влаги - гигроскопическая - удаляется из пробы топлива лабораторным путем.
Количество теплоты, выделяемое при полном сгорании единицы топлива, называется его теплотворностью, или теплотой сгорания и измеряется в кДж/кг или кДж/м3. Теплота сгорания - основной параметр органического топлива, характеризующий его энергетическую ценность. Различают высшую и низшую теплоту сгорания. За высшую теплотворность принимают количество теплоты, выделенное 1 кг (или 1 м3) рабочего топлива, причем, считают, что водяные пары, образующиеся от сгорания водорода и испарения влаги топлива, конденсируются. Низшей теплотой сгорания топлива называют количество теплоты, выделенное 1 кг (или 1 м3) рабочего топлива, без учета конденсации водяных паров.
В реальных условиях водяные пары уходят в атмосферу, не сконденсировавшись, и поэтому для расчетов используют низшую теплоту сгорания топлива. Теплота меньше на теплоту парообразования водяных паров (2460 кДж/кг). Удельная теплота сгорания твердого и жидкого топлива определяется сжиганием 1 г топлива в калориметрической бомбе, заполненной кислородом, которая помещается в сосуд (калориметр) с водой, а приращение температуры воды измеряется метастатическим термометром. Удельная теплота сгорания газообразного топлива определяется в калориметре путем сжигания исследуемого газа в воздушной среде. Расход газа измеряется счетчиком, а выделившаяся при этом теплота передается потоку проточной воды, расход которой определяется взвешиванием, а приращение температуры - термометрами.
Для обеспечения полного сгорания топлива в топочное устройство подводят воздуха больше, чем теоретически необходимо. Отношение действительно поступившего количества воздуха Vд к теоретически необходимому Vо, называется коэффициентом избытка воздуха ?т. Топки паровых и водогрейных котлов, как правило, работают с разрежением 2…3 мм вод. ст., в связи с чем происходит подсос воздуха и в топку и во все элементы котельной установки по ходу газового тракта, вплоть до дымососа. Присосы воздуха для каждого элемента котла и ориентировочно могут быть приняты:
* 0,05 - для первого конвективного пучка (газохода), фестона (с камерой догорания), пароперегревателя, воздухоподогревателя;
* 0,1 - для второго конвективного пучка (газохода), конвективной шахты, чугунного и стального экономайзера с обшивкой;
* 0,15…0,2 - для чугунного экономайзера без обшивки.
Поэтому коэффициент избытка воздуха в уходящих топочных газах - ?ух больше чем в топке, на суммарное значение присосов воздуха ??? и составляет: ?ух = ?т + ???.
Расход сжигаемого топлива должен обеспечивать получение необходимого количество полезной теплоты, а также восполнение тепловых потерь, сопровождающих работу котельной установки. Полезно используемая теплота в котельной установке Q1 идет на подогрев воды, ее испарение, получение
и перегрев пара. Соотношение, связывающее приход и расход теплоты, носит название теплового баланса. Тепловой баланс составляется на 1 кг твердого или жидкого топлива, на 1 м3 газообразного топлива
или в% от введенной теплоты. Суммарное количество введенной в топку теплоты называется располагаемой теплотой другая запись уравнения теплового баланса:
100 = q1 + q2 + q3 + q4 + q5 + q6.
Работа теплогенерирующей установки сопровождается потерями теплоты, выраженными обычно в долях, %:
qi = (Qi / ) 100.
1. Потери теплоты с уходящими топочными газами котлоагрегата:
q2 = (Q2 / ) 100, %.
В котлоагрегате это, чаще всего, наибольшая часть тепловых потерь. Потери теплоты с уходящими топочными газами можно понизить за счет:
* снижения объема дымовых топочных газов, путем поддержания требуемого коэффициента избытка воздуха в топке ?т и уменьшения присосов воздуха;
* снижения температуры уходящих топочных газов, для чего применяют хвостовые поверхности нагрева: водяной экономайзер, воздухоподогреватель, контактный теплообменник.
Температура уходящих топочных газов (140…180 °С) считается рентабельной и во многом зависит от состояния внутренней и внешней поверхности нагрева труб котла, экономайзера. Отложение накипи на внутренней поверхности стенок труб котла, а также сажи (летучей золы) на внешней поверхности нагрева существенно ухудшают коэффициент теплопередачи от топочных газов к воде и пару. Увеличение поверхности экономайзера, возду-
хоподогревателя для более глубокого охлаждения дымовых газов не является целесообразным, так как при этом уменьшается температурный напор ?Т и увеличивается металлоемкость. Повышение температуры уходящих топочных газов может произойти в результате неправильного процесса эксплуатации и сжигания топлива: большой тяги (топливо догорает в кипятильном пучке); наличия неплотности в газовых перегородках (газы напрямую идут по газоходам котельного агрегата, не отдавая теплоты трубам - поверхностям нагрева), а также при большом гидравлическом сопротивлении внутри труб (за счет отложения накипи и шлама).
2. Химический недожог q3 = (Q3 / ) 100, %.
Потери теплоты от химической неполноты сгорания топлива определяются по результатам анализа летучих горючих веществ Н2, СО, СН4 в уходящих дымовых топочных газах. Причины химической не-
полноты сгорания: плохое смесеобразование, недостаток воздуха, низкая температура в топке.
3. Механический недожог q4 = (Q4 / ) 100, %.
Потери теплоты от механической неполноты сгорания топлива характерны для твердого топлива и зависят от доли провала топлива через колосниковую решетку в систему шлакозолоудаления, уноса частичек несгоревшего топлива с дымовыми газами и шлаком, который может оплавить частицу твердого топлива и не дать ей полностью сгореть.
4. Потери теплоты от наружного охлаждения ограждающих конструкций
q5 = (Q5 / ) 100, %.
Возникают ввиду разности температуры наружной поверхности теплогенератора и окружающего наружного воздуха. Они зависят от качества изолирующих материалов, их толщины. Для поддержания q5 в заданных пределах необходимо, чтобы температура наружной поверхности теплогенератора - его обмуровки не превышала 50°С. Потери теплоты q5 уменьшаются по ходу движения топочных газов по газовому тракту, поэтому для теплогенератора введено понятие коэффициента сохранения теплоты = 1 ? 0,01q5.
5. Потери с физической теплотой шлака q6 = (Q6 / ) 100, %.
Возникают за счет высокой температуры шлаков порядка 650 °С, и характерны только при сжигании твердого топлива.
1.4 Внутрикотловая обработка воды
Для поддержания в котловой воде определенной концентрации солей, которая обеспечит безнакипный режим работы котла, применяют периодическую или непрерывную продувку. Продувка заключается в удалении из барабана котла части котловой воды с высоким солесодержанием и заменой ее питательной водой с малым солесодержанием. Продувку производят из тех
мест водотрубной системы котла, где наиболее высокое солесодержание воды, как показано на рис. 4.1.
Рисунок 1.4.1 - Схема продувки котла одноступенчатой системы испарения: 1 - труба для отвода продувочной воды; 2, 5 - верхний и нижний барабан; 3 - труба для подвода питательной воды; 4 - опускные трубы; 6 - подъемные (кипятильные) трубы; 7 - труба отвода шлама
Питательная вода подается в барабан по всей длине трубы 3 с отверстиями, проходящей в верхней части верхнего барабана 2. Нижняя аналогичная труба 1, расположенная в нижней части верхнего барабана, предназначена для сбора и отвода продувочной воды. В котлах со ступенчатым испарением продувку осуществляют из солевых отсеков или выносных циклонов. Периодическую продувку применяют для удаления шлама, который обычно скапливается в нижних коллекторах и барабанах котла. Величина продувки должна быть такой, чтобы солесодержание котловой воды соответствовало требованиям норм качества.
Обычно процент продувки котла принимают в зависимости от его паропроизводительности. Принято считать, что для нормальной работы теплогенерирующих установок процент продувки не должен превышать для котлов малой и средней мощности 10%, для котлов большой мощности - 5%, что связано с потерями теплоты с продувочной водой. Оптимальными считают потери теплоты с продувочной водой в пределах 0,1…0,5% от теплоты сгораемого топлива. Для случаев, когда одноступенчатое испарение требует большого процента продувки, используют ступенчатое испарение. Это позволяет уменьшить количество выводимой с продувкой горячей воды и сократить потери теплоты.
Сущность ступенчатого испарения заключается в следующем. Испарительная система котла разделяется на два отсека, соединенных по пару, но разделенных по воде. Питательная вода подается только в первый отсек, а для второго отсека питательной водой будет служить продувочная вода первого отсека. Продувка котла осуществляется из второго отсека. Так как концентрация солей во втором отсеке выше, чем в первом, то для вывода солей требуется меньший процент продувки для котла в целом. В современных паровых котлах широко используется ступенчатое испарение, при этом используются две или три ступени. Сама схема испарения может быть двух типов - с солевыми отсеками внутри барабана или с выносными циклонами. Рассмотрим более подробно каждый из них.
В химически очищенной воде находятся относительно нейтральные (N2 и NH3 и др.) и агрессивные (О2 и СО2) газы, последние приводят к химической коррозии внутренних поверхностей нагрева котла. Кроме этого, продукты коррозии нарушают циркуляцию воды в контуре котла, что может привести, в конечном итоге, к пережогу труб. Поэтому коррозионно-активные газы необходимо удалять из воды. Для этого существует несколько способов - химическая, каталитическая, термическая деаэрация.
Сущность химической деаэрации заключается в следующем - в воду добавляют сульфит натрия (Na2SO3), который окисляется до сульфата натрия (Na2SO4), забирая из воды кислород. При каталитической деаэрации воды коррозионно-активные газы удаляются из воды водородом.
Рисунок 1.4.2а - Схема деаэраторной установки атмосферного типа: 1 - охладитель пара; 2 - колонка (головка) деаэратора; 3 - бак (аккумулятор); 4 - гидрозатвор; 5 - водоуказательное стекло
Деаэратор состоит из двух основных частей - деаэраторного бака 3 и деаэраторной колонки 2. Химически очищенная вода поступает через охладитель пара 1 в верхнюю часть колонки деаэратора. Сюда же подается конденсат от сетевых подогревагелей. Вода стекает по распределительным тарелкам (по всему сечению колонки) вниз, в бак, и нагревается за счет пара, который движется вверх.
Для измерения давления пара имеются манометры на паропроводе и баке. При нагреве воды из нее выделяются газы, которые с частью пара из верхней части колонки поступают в охладитель пара. Там оставшийся пар конденсируется, и конденсат возвращается по сливной трубке в деаэратор, а газы выходят в атмосферу. Освобожденная в деаэраторе от газов питательная вода из нижней части бака направляется к котлам. Температура подогрева воды в деаэраторе атмосферного типа обычно лежит в пределах 102…104°С, что соответствует давлению в деаэраторе 0,12 МПа.
При превышении давления в деаэраторе относительно рабочего может произойти его разрыв, а при разрежении атмосферное давление может деформировать деаэратор. Чтобы этого не произошло, деаэратор оборудуется гидрозатвором 4 (рис. 1.4.2а)
Гидрозатвор устанавливается высотой 3,5…4 м относительно уровня воды в деаэраторе, диаметр трубы гидрозатвора берется обычно 70 мм. При уходе воды из деаэратора и создании в нем разрежения подпиточная вода поступает из гидрозатвора в питательный бак. При резком повышении уровня воды в баке деаэратора (перепитке) происходит сброс избытка воды через переливную трубу в гидрозатворе.
Для контроля за уровнем воды в баке имеется водоуказательное стекло 5.
Для предотвращения кавитации во всасывающих патрубках питательных насосов деаэратор устанавливают выше уровня установки насосов таким образом, чтобы создать требуемый подпор во всасывающих патрубках.
Для удаления газов из воды в теплогенерирующих установках с водогрейными котлами обычно используют вакуумные деаэраторы. Схема включения вакуумного деаэратора показана на рис. 1.4.2б. Она практически не отличается от описанной выше для деаэраторов атмосферного типа.
Поддержание разрежения в вакуумном деаэраторе осуществляется с помощью специальной вакуумной установки или эжекторного насоса 3, который включен в дополнительный контур, состоящий из бака резервной воды 1 и насоса 2.
Рис. 1.4.2б - Схема включения вакуумного деаэратора: 1 - бак резервной воды; 2 - насос; 3 - водоструйный эжектор; 4 - охладитель пара; 5 - вакуумный деаэратор; 6 - питательный бак деаэрированной воды; 7 - подпиточный насос
1.5 Топочные и горелочные устройства
Топка - устройство, предназначенное для сжигания топлива с целью получения теплоты. Топка выполняет функцию горения и теплообменного аппарата - теплота одновременно передается от факела горения излучением и от продуктов сгорания конвекцией к экранным поверхностям, по которым циркулирует вода. Доля лучистого теплообмена в топке, где температура топочных газов порядка 1000 °С, больше чем конвективного, поэтому, чаще всего, поверхности нагрева в топке называют радиационными. Для сжигания природного газа, мазута и пылевидного твердого топлива используются камерные топки, в конструкции которых можно выделить три основных элемента: топочную камеру, экранную поверхность, горелочное устройство.
1. Топочная камера или топочный объем - пространство, отделенное обмуровкой от окружающей среды. Обмуровкой называют ограждения, отделяющие топочную камеру и газоходы теплогенератора от внешней среды. Обмуровку в котельном агрегате выполняют из красного или диатомового кирпича, огнеупорного материала или из металлических щитов с огнеупорами. Внутренняя часть обмуровки топки - футеровка, со стороны топочных газов и шлаков, выполняется из огнеупорных материалов: шамотного кирпича, шамотобетона и других огнеупорных масс. Обмуровка и футеровка должны быть достаточно плотными, особо высокоогнеупорными, стойкими к химическому воздействию шлаков и иметь малый коэффициент теплопроводности.
2. Экранная радиационная поверхность нагрева выполнена из стальных труб диаметром 51…76 мм, установленных с шагом 1,05…1,1. Экраны воспринимают теплоту за счет радиации и конвекции и передают ее воде или пароводяной смеси, циркулирующим по трубам. Экраны защищают обмуровку от мощных тепловых потоков.
3. Горелочные устройства устанавливаются на одной или двух противоположных (встречных) поверхностях нагрева, на поду, или в углах топки. На стенах топки котла устраивают амбразуру - отверстие в обмуровке, обмурованное огнеупорным материалом, куда устанавливают воздушный регистр и горелочное устройство.
В зависимости от вида сжигаемого топлива различают множество конструкций горелочных устройств.
1. При сжигании твердого пылевидного топлива применяют горелки смешивающего типа. В амбразуре топочной камеры устанавливают улитку, в которой пылевоздушная смесь (пылевидное топливо с первичным воздухом) закручивается и по кольцевому каналу транспортируется к выходу горелки, откуда поступает в топку в виде закрученного короткого факела. Вторичный воздух, через другую аналогичную улитку, подается в топку со скоростью 18…30 м/с, в виде мощного закрученного потока, где интенсивно перемешивается с пылевоздушной смесью. Производительность горелок 2…9 т/ч угольной пыли.
2. При сжигании мазута применяют форсунки и мазутные горелки: механические, ротационные и паровоздушные (паро-механические).
Механическая форсунка. Подогретый примерно до 100°С мазут под давлением 2…4 МПа поступает в канал, перемещается в насадок (распыливающую головку), где установлен завихритель-распылитель. В результате прямолинейное движение мазута изменяется на вращательное, и мазут с большой скоростью (45…50 м/с) и сильным завихрением выбрасывается в топочную камеру, где, взаимодействуя с газовой средой, распыливается на мелкие капли. Расход мазута 0,2…4 т/ч. Достоинства: не нужен пар, нет движущихся частей. Недостатки: необходима двойная очистка мазута (грубая и тонкая); требуются мощные нефтенасосы; малый диапазон регулирования (60…100%); образование нагара.
Ротационная форсунка. Топливо подается через канал и сопло на вращающуюся чашу, дробится и сбрасывается в топочную камеру. Давление топлива - мазута составляет 0,15…1 МПа, а чаша вращается со скоростью 1500…4500 об/мин. Воздух поступает вокруг чаши через конус, охватывает вращающийся поток капель и перемешивается с ним. Достоинства: не требуются мощные нефтенасосы и тонкая очистка мазута от примесей; широкий диапазон регулирования (15…100%). Недостатки: сложная конструкция и повышенный уровень шума.
Паровоздушная или паро-механическая форсунка. Топливо подается в канал, по внешней поверхности которого поступает распыливающая среда - пар или сжатый воздух (давлением 0,5…2,5 МПа). Пар выходит из канала со скоростью до 1000 м/с и распыливает топливо (мазут) на мельчайшие частички. Воздух нагнетается вентилятором через амбразуру. Любая мазутная форсунка должна иметь устройство для хорошего перемешивания топлива с воздухом, что достигается использованием разного вида завихряющих приспособлений - регистров. Комплект форсунки с регистром и другими вспомогательными приспособлениями называется мазутной горелкой.
3. Газовые горелки. Газогорелочные устройства (горелки) предназначены для подачи к месту горения (в топку) газовоздушной смеси или раздельно газа и воздуха, устойчивого сжигания и регулирования процесса горения.
Основной характеристикой горелки является ее тепловая мощность, т.е. количество теплоты, выделяемое при полном сжигании газа, поданного через горелку, и определяется произведением расхода газа на его низшую теплоту сгорания. Основные параметры горелок: номинальная тепловая мощность, номинальное давление газа (воздуха) перед горелкой, номинальная относительная длина факела, коэффициенты предельного и рабочего регулирования горелки по тепловой мощности, удельная металлоемкость, давление в камере сгорания, шумовая характеристика.
Существуют три основных метода сжигания газа:
1) Диффузионный - в топку газ и воздух в необходимых количествах подают раздельно, и смешение происходит в топке.
2) Смешанный - в горелку подают хорошо подготовленную смесь газа с воздухом, содержащую только часть (30…70%) воздуха, необходимого для горения. Этот воздух называют первичным. Остальной (вторичный) воздух поступает к факелу (устью горелки) путем диффузии. К этой же группе относят горелки, у которых газо-воздушная смесь содержит весь воздух, необходимый для горения, и смешение происходит и в горелке, и самом факеле.
3) Кинетический - в горелку подают полностью подготовленную газо-воздушную смесь с избыточным количеством воздуха. Воздух смешивается с газом в смесителях, и смесь быстро сгорает в коротком слабосветящемся пламени при обязательном наличии стабилизатора горения. Наличие устойчивого пламени является важнейшим условием надежной и безопасной работы агрегата. При неустойчивом горении пламя может проскочить внутрь горелки или оторваться от нее, что приведет к загазованности топки и газоходов и взрыву газо-воздушной смеси при последующем повторном розжиге. Скорость распространения пламени для различных газов неодинакова: наибольшая 2,1 м/с - для смеси водорода с воздухом, а наименьшая 0,37 м/с - смеси метана с воздухом. Если скорость газо-воздушного потока окажется меньше скорости распространения пламени, происходит проскок пламени в горелке, а если больше - отрыв пламени.
По способу подачи воздуха для горения различают следующие конструкции горелок:
1) Горелки с поступлением воздуха к месту горения за счет разрежения в топке, создаваемого дымовой трубой или дымососом, или конвекции. Смешение газа с воздухом происходит не в горелке, а за ней, в амбразуре или топке, одновременно с процессом горения. Такие горелки называют диффузионными, они равномерно прогревают всю топку, имеют простую конструкцию, работают бесшумно, факел устойчив по отношению к отрыву, проскок пламени невозможен.
2) Горелки с инжекцией воздуха газом, или инжекционные. Струя газа, поступающего из газопровода под давлением, выбрасывается из одного или нескольких сопл с большой скоростью, в результате в инжекторе смесителя создается разрежение, а воздух подсасывается (инжектируется) в горелку и при движении вдоль смесителя смешивается с газом. Газо-воздушная смесь
проходит через горло смесителя (самая узкая часть), выравнивающее струю смеси, и поступает в его расширяющуюся часть - диффузор, где скорость смеси снижается, а давление возрастает. Далее газо-воздушная смесь поступает или в конфузор (где скорость увеличивается до расчетной) и через устье - к месту горения, или в коллектор с огневыми отверстиями, где сгорает в виде маленьких голубовато фиолетовых факелов.
3) Горелки с инжекцией газа воздухом. В них для подсоса газа используется энергия струй сжатого воздуха, создаваемого вентилятором, а давление газа перед горелкой поддерживается постоянным с помощью специального регулятора. Достоинства: подача газа в смеситель возможна со скоростью, близкой к скорости воздуха; возможность использования холодного или нагретого воздуха с переменным давлением. Недостаток: использование регуляторов.
4) Горелки с принудительной подачей воздуха без предварительной подготовки газо-воздушной среды. Смешение газа с воздухом происходит в процессе горения (т.е. вне горелки), и длина факела определяет путь, на котором это смешение заканчивается. Для укорочения факела газ подают в виде струек, направленных под углом к потоку воздуха, осуществляют закручивание потока воздуха, увеличивают разницу в давлениях газа и воздуха и т.п. По методу подготовки смеси данные горелки являются диффузионными (проскок пламени невозможен), они применяются как резервные при переводе одного топлива на другое в котлах ДКВР, в виде подовых и вертикально-щелевых.
5) Горелки с принудительной подачей воздуха и предварительной подготовкой газо-воздушной смеси, или газо-мазутные горелки. Они имеют наибольшее распространение и обеспечивают заранее заданное количество смеси до выхода в топку. Газ подается через ряд щелей или отверстий, оси которых направлены под углом к потоку воздуха.
1.6 Питание котла водой
Для подачи воды в котел (обычно вода подается в экономайзер) используется питательная установка, называемая часто питательным насосом. Эта установка должна обладать повышенной надежностью в эксплуатации. Даже кратковременное прекращение подачи воды в котел может привести к перегреву и пережогу труб или серьезным авариям, т.к. там, где должна циркулировать вода и отводить теплоту от дымовых газов, воды может не оказаться. В качестве основного устройства питания водой теплогенерирующих установок малой и средней мощности используют центробежные насосы с электроприводом. В производственных и производственно-отопительных котельных, где вырабатывается пар, могут применяться поршневые насосы с паровым приводом, а в небольших отопительных котельных иногда для питания котла водой используют инжекторные насосы.
Центробежные насосы с электроприводом в теплогенерирующих установках получили широкое преимущественное применение из-за высокой экономичности и надежности, удобства регулировки производительности и простоты обслуживания. Вместе с тем, в качестве недостатков таких питательных устройств выступают: необходимость держать насос под заливом при запуске; резкое снижение производительности насоса при механическом износе рабочего колеса; низкий КПД насосной установки при ее малой производительности по отношению к номинальной.
Поршневые насосы с паровым приводом нашли применение в качестве питательных установок только в теплогенерирующих установках с паровыми котлами, т. к. для их привода требуется пар. Очень часто паровые поршневые питательные насосы используются в качестве резервных. Паровые питательные насосы имеют ряд достоинств: независимость привода от наличия в теплогенерирующей установке электрической энергии; использование пара после насоса в цикле теплогенерирующей установки. Вместе с тем, есть ряд существенных недостатков: низкая экономичность; большой расход пара на перекачку воды; неравномерность подачи воды во времени и др.
Питание водой небольших отопительных котлов может осуществляться с помощью инжекторного (пароструйного) насоса, схематическое изображение которого показано на рис. 1.6.1.
Рисунок 1.6.1 - Принципиальная схема инжекторного насоса
Пар, проходящий через сопло (инжектор), вызывает в минимальном сечении, где скорость потока пара максимальна, разрежение, что приводит к подсосу воды в поток пара. В результате этого на выходе из инжектора давление
воды оказывается выше, чем оно было до инжектора.
Сам пар конденсируется, переходит в воду и отдает ей свою тепловую энергию, т.е. в инжекторном насосе параллельно с повышением давления воды идет и ее подогрев за счет теплоты пара.
Для надежной работы инжекторов температура питательной воды на входе в насос должна быть не выше 40°С и высота подачи не более 2 м. Расход пара в инжекторном насосе обычно составляет 1…9% от количества перекачиваемой воды. Основные достоинства инжекторных насосов: простота устройства и обслуживания; компактность; отсутствие движущихся частей. Недостатками являются: значительный расход пара на перекачку воды; отсутствие возможности регулировать производительность насоса при создаваемом им постоянном напоре воды.
Подача воздуха в топку для горения топлива (дутье) и удаление топочных дымовых газов (тяга) могут быть естественными - с помощью дымовой трубы и искусственными - с применением дутьевого вентилятора и дымососа.
Дымовые газы, пройдя газоходы теплогенератора, направляются в боров, дымосос и дымовую трубу.
Дымовые трубы предназначены для удаления топочных дымовых газов и рассеивания вредных соединений (содержащихся в продуктах сгорания) в атмосферном воздухе, с целью снижения их концентрации в атмосфере на уровне дыхания до необходимых параметров. Продукты сгорания содержат токсичные вещества, оказывающие вредное воздействие на биосферу (оксиды углерода, серы и азота и др.). Содержание вредных веществ в воздухе определяется их концентрацией - количеством вещества (мг), находящегося в 1 м3 воздуха (мг/м3). Максимальная концентрация вредных веществ, не оказывающих вредного влияния на здоровье человека, называется предельно допустимой концентрацией (ПДК). Высота дымовой трубы проектируется таким образом, чтобы предупредить недопустимое загрязнение воздушного
бассейна в районе котельной. Дымовая труба, сама по себе и всегда, создает естественную тягу, а движение топочных газов при этом происходит за счет гравитационных сил, обусловленных разностью плотностей холодного наружного атмосферного воздуха и горячих газообразных продуктов сгорания, заполняющих газоходы, дымовую трубу, считая от уровня горелки до устья трубы. Чем ниже температура наружного воздуха и выше его атмосферное давление, выше температура продуктов сгорания топлива, выше дымовая труба - тем естественная тяга больше. В ясную морозную погоду тяга лучше, а в туманную, ветреную, влажную - хуже.
При работе котельных агрегатов с давлением в топочной камере выше давления атмосферного воздуха или при небольшой производительности котельной, когда оказывается достаточной тяга, развиваемая дымовой трубой, дымососы не устанавливаются. В котельных малой производительности иногда для обеспечения тяги и дутья достаточно использования только дымовой трубы и ее самотяги, и тогда можно обойтись и без дутьевых вентиляторов. Естественная тяга (измеряется в Па, мм вод. ст., кгс/м2) в этом случае регулируется шибером, установленным в газоходе за котлом, а управление выведено на фронт котла, где должен быть фиксатор и указатель открывания заслонки. В верхней части шибера должно быть отверстие диаметром не менее 50 мм для вентиляции топки неработающего котла (при закрытом шибере).
Для устранения избыточного статического давления наиболее целесообразно устанавливать диффузоры в верхней части трубы. Они позволяют уменьшить сопротивление газового тракта в случае его заноса золой или при подключении дополнительных котлов, а также снизить расход энергии на транспортировку дымовых газов по тракту. Высота дымовых труб зависит от высоты застройки, предельно допустимых концентраций вредных веществ (ПДК) и может быть от 30 до 180 м.
При сжигании природного газа возможна установка любых труб, а для мазута и твердого топлива - только кирпичные или железобетонные трубы. Однако применение высоких труб не всегда оправдано и поэтому чаще используют невысокие трубы с установкой дутьевого вентилятора и дымососа. Установка дутьевого вентилятора и дымососа обеспечивает более надежную и эффективную работу котельных установок
Рисунок 1.6.3а - Схемы работы центробежного вентилятора: а - правильное положение направляющего аппарата; б - неправильное положение; 1 - кожух; 2 - ротор; 3 - направляющий аппарат; 4 - выходной патрубок вентилятора; 5 - присоединенный к вентилятору расширяющийся патрубок газовоздухопровода (диффузор)
По его окружности расположены вперед или назад загнутые лопатки, которые ударяясь о находящийся перед ними воздух (или дымовые газы), выбрасывают его наружу.
Выйдя из рабочего колеса, воздух (или газы) попадают в расширяющуюся полость между рабочим колесом и кожухом вентилятора, которая заканчивается выходным патрубком. Чем с большей силой ударяются лопатки о воздух или газы, тем больше создаваемый вентилятором напор, т.е. разность давления (или разрежения) в выходном и входном патрубках. Напор вентилятора измеряется в миллиметрах водяного столба (мм. вод. ст.). С увеличением скорости вращения рабочего колеса напор увеличивается почти пропорционально квадрату числа его оборотов. Создаваемый вентилятором напор затрачивается на преодоление сопротивления при движении воздуха или дымовых газов. Важно знать, что потеря напора на трение дымовых газов или воздуха пропорциональная квадрату их скорости (несколько уменьшаясь с повышением их температуры). Так при снижении нагрузки котла от максимальной до 70% потеря напора на трение уменьшается примерно в 2 раза; при снижении нагрузки вдвое потеря напора сокращается в 4 раза и т.д.
Дутьевой вентилятор имеет металлический корпус в виде улитки, в котором установлен ротор с лопатками, а на оси - электродвигатель (рис. 1.6.3б).
При вращении рабочего колеса в центре создается разрежение, куда через круглое отверстие поступает новая порция воздуха, и за счет центробежных сил он отбрасывается к стенкам корпуса и переходит в нагнетательное прямоугольное отверстие. Производительность дутьевого вентилятора должна обеспечивать с 10%-ным запасом подачу действительного объема воздуха, необходимого для горения с учетом его температуры, а напор вентилятора должен преодолеть сопротивление воздушного тракта (воздуховода, заслонки, горелки, направляющего аппарата). В качестве дутьевых вентиляторов обычно используют центробежные вентиляторы среднего давления. Забор воздуха для дутья осуществляется из верхней зоны котельного зала и частично снаружи с помощью специального клапана.
Рисунок 1.6.3б - Дутьевой вентилятор: 1 - всасывающий короб; 2 - ротор с рабочими лопатками; 3 - корпус; 4 - диффузор выходная часть корпуса); 5 - неподвижная осевая труба; 6 - двухступенчатый направляющий аппарат; 7 - электродвигатель
Дымосос - центробежный вентилятор, только с массивными лопатками ротора. Производительность дымососа должна быть на 10% больше полного объема топочных дымовых газов, удаляемых из котла, с учетом их температуры, а напор должен преодолеть гидравлическое сопротивление всего газового тракта (топки, газохода, экономайзера, воздухоподогревателя, борова, шибера, дымовой трубы) за вычетом самотяги дымовой трубы. Дутьевой вентилятор и дымосос должны синхронно работать так, чтобы в топке котла поддерживалось разрежение 1,5…3 мм вод. ст., а за котлом 4…6 мм вод. ст. и при открытых дверках или гляделках пламя не выбрасывалось из топки. При разрежении в топке более 8…10 мм вод. ст. происходит значительный подсос холодного воздуха в топку, что резко снижает температуру топочных газов и увеличивает расход топлива. Для измерения небольших давлений или разрежений и получения точных показаний применяют жидкостный тягонапоромер с наклонной трубкой (ТНЖ). Отдельные котельные агрегаты имеющие
герметичную стальную обшивку, работают с наддувом воздуха и обеспечивают избыточное давление внутри котла 40 мм вод. ст., а сопротивление воздушного и газового трактов (воздуховода, горелок, газохода, дымовой трубы) преодолевается за счет напора, создаваемого только дутьевым вентилятором.
1.7 Паровые котельные агрегаты
Подобные документы
Выбор типа котла. Энтальпия продуктов сгорания и воздуха. Тепловой баланс котла. Тепловой расчет топки и радиационных поверхностей нагрева котла. Расчет конвективных поверхностей нагрева котла. Расчет тягодутьевой установки. Расчет дутьевого вентилятора.
курсовая работа [542,4 K], добавлен 07.11.2014Определение объемов воздуха и продуктов сгорания, коэффициента полезного действия и расхода топлива. Расчет топки котла, радиационно-конвективных поверхностей нагрева, ширмового пароперегревателя, экономайзера. Расчетная невязка теплового баланса.
дипломная работа [1,5 M], добавлен 15.11.2011Расчет объема продуктов сгорания и воздуха. Тепловой баланс, коэффициент полезного действия и расход топлива котельного агрегата. Тепловой расчет топочной камеры. Расчет конвективных поверхностей нагрева и экономайзера. Составление прямого баланса.
курсовая работа [756,1 K], добавлен 05.08.2011Описание конструкции котлоагрегата, его поверочный тепловой и аэродинамический расчет. Определение объемов, энтальпий воздуха и продуктов сгорания. Расчет теплового баланса и расхода топлива. Расчет топочной камеры, разработка тепловой схемы котельной.
курсовая работа [1,5 M], добавлен 07.01.2016Особенности определения размеров радиационных и конвективных поверхностей нагрева, которые обеспечивают номинальную производительность котла при заданных параметрах пара. Расчётные характеристики топлива. Объёмы продуктов сгорания в поверхностях нагрева.
курсовая работа [338,5 K], добавлен 25.04.2012Тепловой расчет промышленного парогенератора БКЗ-75-39 ФБ при совестном сжигании твердого и газообразного топлива. Выбор системы пылеприготовления и типа мельниц. Поверочный расчет всех поверхностей нагрева котла. Определение невязки теплового баланса.
курсовая работа [413,3 K], добавлен 14.08.2012Выбор расчетных температур и способа шлакоудаления. Расчет энтальпий воздуха, объемов воздуха и продуктов сгорания. Расчет КПД парового котла и потерь в нем. Тепловой расчет поверхностей нагрева и топочной камеры. Определение неувязки котлоагрегата.
курсовая работа [392,1 K], добавлен 13.02.2011Конструкция и характеристики котла, технические характеристики парогенератора. Гидравлическая схема циркуляции теплоносителя. Составление теплового баланса котла и поверочный тепловой расчет конвективных поверхностей нагрева. Тепловая схема и параметры.
курсовая работа [1,8 M], добавлен 17.12.2014Котельный агрегат водочный конструкции типа БКЗ-75–39ФБ, его характеристика и технические особенности. Расчет объёма воздуха, энтальпий и продуктов сгорания. Сепаратор пыли. Тепловой баланс котлоагрегата. Схемы приготовления пылевидного топлива.
курсовая работа [153,4 K], добавлен 23.01.2011Расчет необходимого объема воздуха и объема продуктов сгорания топлива. Составление теплового баланса котла. Определение температуры газов в зоне горения топлива. Расчет геометрических параметров топки. Площади поверхностей топки и камеры догорания.
курсовая работа [477,7 K], добавлен 01.04.2011