Модернизация Алматинской ТЭЦ-2 путём изменения водно-химического режима системы подготовки подпиточной воды с целью повышения температуры сетевой воды до 140–145 С

Описание и расчёт тепловой схемы АТЭЦ-2, выбор и расчет турбин, энергетических котлов. Электрическая часть станции. Охрана труда на АТЭЦ-2. Мероприятия по изменению водно-химического режима с помощью реагента СК-110, расчет эффективности установки.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 24.08.2009
Размер файла 844,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

7.16.10 Сосуды под давлением. Применение предохранительных клапанов

Безопасность эксплуатации систем, работающих под давлением обеспечивается соблюдением «правил устройства и безопасной эксплуатации сосудов работающих под давлением», утвержденных Горгостехнадзором. Данные правила распространяются на:

сосуды работающие под давлением воды, с температурой выше 115 оС или другой жидкости с температурой превышающей температуру кипения при Р=0,07 МПа без учета гидростатического давления;

сосуды работающие под давлением пара или газа выше

Р>0,07 Мпа

баллоны предназначенные для транспортировки и хранения сжатых сжиженных и растворенных газов под Р>0.07 МПа

цистерны и бочки для транспортировки и хранения сжиженных газов, давление паров которых при температуре до 50 оС превышает Р=0.07 МПа.

(Предлагаемый в проекте котел (БКЗ 420-140-7с) имеет рабочее давление 14 МПа.)

Для обеспечения безопасности при эксплуатации сосуды в зависимости от их назначения должны быть оснащены:

предохранительными клапанами;

запорной или запорно-регулирующей арматурой;

приборами для измерения давления;

приборами для измерения температуры;

указателями уровня жидкости

Применению защиты от недопустимого повышения давления рабочей среды на ТЭЦ подлежат: пароводяной и газовый тракт котлов, деаэраторы, паровые пространства теплообменников, трубопроводы, насосы, выхлопные патрубки турбин, расширительные баки, редукционно-охладительные установки и так далее.

В качестве предохранительных устройств применяются: пружинные предохранительные клапаны, рычажные - грузовые предохранительные клапаны, импульсные предохранительные устройства (состоящие из главного предохранительного клапана и управляющего импульсного клапана прямого действия), предохранительные устройства с разрушающимися мембранами.

Предохранительные клапана служат для быстрого снижения давления рабочей среды до нормальной. Когда давление в защищаемом объекте достигает установленного предела, предохранительный клапан автоматически открывается и выпускает рабочею среду в атмосферу или специальную емкость большого объема и закрывается также автоматически при снижении давления до нормального. Это дает возможность оперативному персоналу восстановить нормальный режим работы оборудования или отключить его без повреждений.

По способу воздействия рабочей среды на тарелку затвора при срабатывании предохранительных устройств различают две группы клапанов:

Прямого и непрямого действия.

Клапаны прямого действия бывают с нагружением затвора грузом, пружинной и рычажной - грузовой системой. Эти клапана открываются с силой создаваемой давлением рабочей среды и приложенной непосредственно к тарелке затвора. С ростом давления сверху установленной нормы сила, действующая на тарелку снизу превышает усилия уравновешивающего устройства и открывает затвор. Рабочая среда при этом уходит из защищаемого объекта и давление в нем снижается до безопасной величины.

Клапаны непрямого действия применяются при большом номинальном расходе пара и высоких его параметрах, входят в состав импульсно предохранительных устройств.

В защищаемой системе при повышении давления пара выше допустимого открываются импульсно - предохранительный клапан. В следствии превышения усилия под тарелкой от воздействия перепадов давления над усилием, воздействующим на тарелку через исток со стороны груза. Пар из импульсно - предохранительного клапана через соединительный трубопровод опадает в надпоршневое пространство сервопривода главного предохранительного клапана. Так как площадь поршня превышает площадь тарелки, на которую постоянно воздействует давление пара и осуществляет закрытие клапана, возникает перестоновочное усилие, направленое в сторону открытия клапана, и главный предохранительный клапан открывается. При понижении давления до заданной величены, определяемого настройкой импульсно предохранительного клапана последний закрывается. Давление над поршнем главного предохранительного клапана падает и под воздействием перепада давления пара на тарелку и пружину он закрывается.

Каждый котел паропроизводительностью более 100 кг/ч должен быть снабжен не менее чем двумя предохранительными клапанами, один из которых должен быть контрольным.

Суммарная пропускная способность предохранительных клапанов, устанавливаемых на котел, должна быть не менее часовой производительности котлов.

7.17 Задачи сейсмостойкого проектирования ТЭЦ

Возникающие во время землетрясения хаотичные перемещения грунтов основания вызывают в конструкциях зданий и фундаментах под оборудованием низкочастотные затухающие колебания.

Колебания этих сооружений и их элементов, действуя на установленное на них оборудование и аппараты, в свою очередь вызывают в них свои колебания, возможно в другом диапазоне частот. Благодаря резонансным явлениям, колебания отдельных элементов зданий, конструкций, оборудования усиливаются, особенно при большой высоте вибрирующих объектов и на верхних отметках зданий, и могут достигать разрушительной силы.

Во время сейсмического воздействия обычное оборудование получает дополнительные инерционные нагрузки, на которые оно при конструировании не рассчитывалось.

Во время сейсмического толчка оборудование может подвергнуться механическому повреждению, может опрокинуться и сместиться. Повреждение сварных соединений, потеря теплоносителя, реагентов на химводоочистке, повреждение патрубков насосов или паропроводов парогенераторов, смещение крупных узлов оборудования, повреждение подшипников и лопаток турбоагрегатов, механическое повреждение, поломка, опрокидывание, выход из строя электрического оборудования - все эти явления недостаточно исследованы и поэтому не всегда могут быть правильно учтены при проектировании. Тем не менее, они должны в определенной степени быть учтены для обеспечения безопасной и надежной работы электростанции во время землетрясения.

Решение проблем сейсмостойкости ТЭЦ для обеспечения надежной ее эксплуатации, должны рассматриваться с учетом технико-экономических факторов, т.е. основываться на разумном сочетании требований надежности и экономики.

Основными задачами сейсмостойкого проектирования при разработке технологических частей проекта для ТЭЦ, строящихся в сейсмических условиях, является обеспечение:

безопасности обслуживающего персонала;

сохранности дорогостоящего оборудования;

надежности работы ТЭЦ.

Предложения по разработке сейсмических мероприятий.

Все оборудование, коммуникации и системы, отнесенные к источникам повышенной опасности, должны быть проверены и раскреплены с учетом дополнительных сейсмических нагрузок соответствующих девяти бальному землетрясению.

Паровые котлы Барнаульского котельного завода, в соответствии с данным проектом, изготовляются в сейсмическом исполнении.

Трубопроводы высокого давления, сетевой воды, трубопроводы оборудования пожаротушения рассчитываются и законструированы только с учетом высокой бальности сейсмического воздействия. Однако указанные мероприятия не могут полностью гарантировать исключения аварии. Предлагается рассмотреть вопрос автоматического отключения теплофикационной системы, а так же сброс пара в атмосферу, чтобы уменьшить возможные последствия при аварии паропроводов.

Резервуары большой емкости необходимо законструировать в соответствии с “Рекомендациями по расчету резервуаров и газгольдеров на сейсмические воздействия”.

Схема останова ТЭЦ при сейсмических толчках более 4 баллов должна обеспечивать автоматический останов без вмешательства обслуживающего персонала. Оборудование и приборы, действующие в останове, должны быть сейсмоустойчивы.

8. Бизнес-план

8.1 Резюме

В проекте предполагается использование ингибитора СК - 110 для коррекционной обработки воды с целью предупреждения образования накипи на поверхностях нагрева в пиковых бойлерах станции, внутренних поверхностях стенок трубопроводов и оборудования в системах теплоснабжения и ГВС.

Средства на реализацию проекта ЗАО АПК может изыскать за счет собственных средств.

8.2 Цели и задачи

Бизнес-план составлен для оценки перспективы использования реагента СК - 110 для повышения температуры сетевой воды до 1450С с целью уменьшения её догрева на Западном тепловом комплексе (ЗТК) и экономии затрат на топливо в целом по АПК путём сокращения расхода мазута.

8.3 Продукт (услуга)

Изменение водно-химического режима (ВХР) на АТЭЦ - 2 позволит повысить температуру сетевой воды не допуская отложений на стенках поверхностей нагрева

С технической точки зрения реализация проекта не представляет трудностей, т.к. не производится монтаж и установка дополнительного оборудования, нет реконструкции существующей схемы, работа осуществляется без привлечения дополнительного персонала.

8.4 Анализ рынка

Основными потребителями тепловой энергии АПК ТЭЦ - 2 в настоящее время являются:

комунально-бытовой сектор города

организации и предприятия

Дополнительный отпуск тепла за счёт увеличения температуры сетевой воды ведёт к снижению затрат в целом по АПК за счёт снижения расхода более дорогостоящего мазута по сравнению с углем.

В настоящее время реагент СК - 110 доставляется автотранспортом. В дальнейшем при увеличении поставок и доставкой его ж.д. транспортом в цистернах произойдёт снижение затрат на него.

8.5 План маркетинга

Потребность региона в тепловой энергии стабильна и в ближайшем будущем намечается увеличение её потребления. Производство и отпуск рассчитаны на внутренний рынок.

8.6 План производства

Изменение водно-химического режима (ВХР) производится на пиковых бойлерах в турбинном цехе (ТЦ) по существующей схеме узла дозирования ИОМСа.

Непосредственные участники проекта

АПК ТЭЦ-2

«АИЭС»

Экологический фонд «Вода Евразии» г. Екатеринбург

8.7 Персонал

Работа выполняется без привлечения дополнительного персонала, оперативным персоналом турбинного цеха.

8.8 Финансовый план

Экономические расчёты, выполненные в проекте, позволяют найти оптимальные решения технических вопросов, а технико-экономические показатели оценить проект, установить его соответствие современным задачам.

Исходные данные

с = 1 ккал/кг*К - теплоёмкость воды;

G = 3804 т/час - расход сетевой воды за отопительный период 2001-2002 г. (по данным ТЭЦ - 2);

t1 = 1280C - фактическая температура сетевой воды до испытаний;

t2 = 1350C - температура сетевой воды в 1-й период испытаний;

t3 = 1450C - температура сетевой воды в 1-й период испытаний;

ккал/кг - низшая рабочая теплота сгорания для Карагандинского угля; ккал/кг - низшая рабочая теплота сгорания для мазута (М - 100);

Определение отпуска тепла от ТЭЦ при повышении температуры сетевой воды до:

а) 1350С: (без изменения водно-химического режима)

;

Гкал/час;

Гкал/от.с.

182 - количество дней в отопительном сезоне;

24 - количество часов в сутках;

Q - удельный расход тепла за 1 час;

б) 1450С: (с применением реагента СК - 110)

;

Гкал/час;

Гкал/от.с.

182 - количество дней в отопительном сезоне;

24 - количество часов в сутках;

Q - удельный расход тепла за 1 час;

Определение экономического эффекта от увеличения температуры сетевой воды до:

а) 1350С:

Дополнительный расход угля на ТЭЦ при 1-м этапе испытаний:

тонн.

Стоимость угля включая ж/д тариф:

сугл. = Gугл.* Ц = 26899 * 1290 = 34700000 тенге.

Ц = 1290 тнг. - цена 1 тонны угля;

Экономия мазута на Западном тепловом комплексе при 1-м этапе испытаний:

тонн.

Стоимость мазута включая ж/д тариф:

смаз. = Gмаз.* Ц = 11654,4 * 11796 = 137475302,4 тенге.

Ц = 11796 тнг. - цена 1 тонны мазута;

Экономический эффект составит:

Э = смаз. - сугл. = 137475302,4 - 34700000 = 102775302,4 тенге 663066,5 $

б) 1450С:

ккал/кг - низшая рабочая теплота сгорания для Карагандинского угля; ккал/кг - низшая рабочая теплота сгорания для мазута (М - 100);

Дополнительный расход угля на ТЭЦ при 2-м этапе испытаний:

тонн.

Стоимость угля включая ж/д тариф:

сугл. = Gугл.* Ц = 65326 * 1290 = 84270540 тенге.

Ц = 1290 тнг. - цена 1 тонны угля;

Экономия мазута на Западном тепловом комплексе при 2-м этапе испытаний:

тонн.

Стоимость мазута включая ж/д тариф:

смаз. = Gмаз.* Ц = 28305,6 * 11796 = 333869142,7 тенге.

Экономический эффект составит:

Э = смаз. - сугл. = 333869142,7 - 84270540 = 249598602,7 тенге 1610313,6 $

При повышении температуры сетевой воды до 1350С используется водно-химический режим только с подкислением ИОМСом, а при дальнейшем увеличении температуры (135 - 1450С) раствор реагента смешивается в процентном соотношении с комплексоном СК - 110 (см. ниже «содержание раствора в %»).

Концентрация раствора в сетевой воде составляет - 0,8 мг/л;

Содержание раствора:

ИОМС (70 %) = 0,56 г/м3

СК - 110 (30 %) = 0,24 г/м3

Стоимость реагентов с учётом доставки:

ИОМС = 480 тыс.тенге/тонну

СК - 110 = 730 тыс.тенге/тонну

Для определения количественного расхода реагентов, затрат на их приобретение и использование при прохождении разных температурных режимов находим расход сетевой воды за отопительный период по формуле:

G = 3804 * 24 * 182 = 16616 тыс.м3

где 3804 - расход сетевой воды (м3/ч)

24 - число часов в сутках

182 - число дней за отопительный период

Затраты на реагент ИОМС без применения СК - 110 (подогрев сетевой воды до 1350С):

З1 = G * С * Ц = 16616 * 0,8 * 0,48 = 6380 тыс.тенге

где G - расход сетевой воды за отопительный период;

С - концентрация раствора (мг/л)

Ц - стоимость ИОМСа (тенге/грамм)

Затраты на реагенты с применением комбинированного раствора (ИОМС + СК - 110) (подогрев сетевой воды производится от 1350С до 1450С):

З2 = G * (С1 * Ц1 + С2 * Ц2) = 16616 * (0,24 * 0,73 + 0,56 * 0,48) =

= 7377 тыс.тенге

где G - расход сетевой воды за отопительный период;

С1 - концентрация раствора ИОМСа г/м3

Ц1 - стоимость ИОМСа (тенге/грамм)

С2 - концентрация раствора СК - 110 г/м3

Ц2 - стоимость СК - 110 (тенге/грамм)

Расчёт увеличения затрат на хим.реагенты при использовании комбинированного раствора (ИОМС + СК -110):

Зх.р. = З2 - З1 = 7377 - 6380 = 997 тыс.тенге.

Чистая прибыль получаемая АПК от внедрения проекта:

П = Э - Зх.р. = 249598 - 997 = 248601тыс.тенге 1603877$

где Э - экономический эффект от внедрения проекта без учёта стоимости реагента СК - 110

8.9 Расчёт точки безубыточности проекта

Определение затрат на тепловую энергию за отопительный период:

Зт/э = Qт * Ст/э = 2243143 * 628,5 = 1409815 тыс.тенге

628,5 - себестоимость тепловой энергии (тенге/Гкал)

Переменные затраты составят:

Зпер. = 192,1* 2243,143 * 2127 = 916541 тыс.тенге

где 192,1 - удельный расход условного топлива на отпуск тепловой энергии (кг/Гкал)

2127 - цена 1-й тонны условного топлива (тенге)

Постоянные затраты составят:

Зпост. = Зт/э - Зпер. = 1409815 - 916541 = 493274 тыс.тенге

Прибыль:

Пр = 248601 тыс.тенге

Выручка от реализации:

В.р. = Зпер. + Зпост. + Пр = 248601 + 493274 + 916541 = 1673038 тыс.тенге.

Сумма покрытия:

Sпокр. = В.р. - Зпер. = 1673038 - 916541 = 756497 тыс.тенге

Коэффициент покрытия:

К =

Пороговая выручка:

R' = Зпост. / К = 493274 / 0,45 = 1096164 тыс.тенге

Запас прочности:

St =

Значение запаса прочности показывает , что если в силу изменения диспетчерского задания по отпуску тепла более чем на 34% , станция будет работать по невыгодному режиму с убытком.

9. Спецвопрос

9.1 Введение

Использование природных вод в качестве теплоносителя, особенно при повышенных температурах и давлениях, приводит к выделению на теплонесущих поверхностях или “поверхностях контакта” различных отложений, содержащихся в этой воде, которые могут привести к снижению температуры сетевой воды, увеличению расхода топлива, аварийному или преждевременному останову оборудования и снижению его производительности. Во избежание всего этого, требуется ограничить или полностью исключить накипеобразования на теплообменных поверхностях.

В последнее время для этих целей широко используется метод коррекционной обработки воды с помощью ингибиторов отложений (ИОМСа). Влияние ИОМСа и его композиций на кристаллизацию труднорастворимых соединений, экспериментальные исследования и их результаты рассматриваются в этом разделе.

Также в нём приведены расчёт и описание установки на которой производились исследования по повышению температуры сетевой воды в пиковых бойлерах до температуры 140 - 145С, путём изменения водно-химического режима, проведены испытания по нахождению оптимального соотношения между комплексонами ИОМС и СК - 110; результаты расчетного эксперимента, на основании которых построены графики зависимости; экспериментальное исследование влияния качественного и количественного состава композиций на интенсивность накипеобразования, а также анализ полученных результатов.

9.2 Описание и расчёт экспериментальной установки

Исследования проводились на экспериментальной установке. Схема установки показана на рис.1. На первой ступени теплообменника происходит нагрев исходной воды от 150С до 120 0С, на второй ступени - от 120 0С до 1500С. Рабочее давление Первая и вторая ступени представляют собой одноходовые кожухо-трубчатые теплообменники типа "труба в трубе". Нагреваемая вода проходит по внутренней трубке, а греющий пар подается в кожух теплообменника. Теплоотдача от пара к стенке трубки происходит за счет пленочной конденсации на ее поверхности.

Принцип работы установки. В бак исходной воды дозируется реагент, который тщательного перемешивается при помощи насоса по линии рециркуляции. Затем исходная вода с определенным содержанием растворенного в ней реагента подается под давлением при помощи насоса на первую ступень теплообменника, на которой возможность подогрева воды достигает 1200С, далее вода поступает во вторую ступень теплообменника, где она нагревается до 150 оС. Для контроля тепловых параметров установка оборудована соответствующими контрольно-измерительными приборами. Контроль параметров водно-химического режима осуществляется с помощью пробоотборников установки.

Конструкция теплообменной установки позволяет снимать и производить замену внутренней трубки, что даёт возможность подробно изучить накипь на стенках трубки и сделать вывод об эффективности того или иного реагента.

Для контроля за водно-химическим режимом необходимо фиксировать текущий тепловой и гидравлический режим работы установки, анализировать водно-химический режим путем отбора проб на выходе с установки. Основные параметры водно-химического режима, подлежащие определению, - общая жесткость, общая щелочность.

9.3 Обследование проектной и фактически существующей схемы теплосети АПК ТЭЦ-2. Анализ существующего водно-химического режима оборудования

Выбор проектной схемы подготовки подпиточной воды для открытой системы теплоснабжения ТЭЦ-2 был сделан с учетом качества исходной воды, характеристик установленного теплофикационного оборудования и параметров работы. Особенностью работы АТЭЦ-2 является использование однотрубной системы теплоснабжения, выполняющей функции подпиточной линии системы теплоснабжения г. Алматы. В большинстве случаев величина подпитки, то есть производительность системы подготовки подпиточной воды составляет незначительный объем от общего объема теплосети. При незначительном превышении концентраций основных накипеобразующих компонентов в подпиточной воде над концентрацией этих же компонентов в сетевой воде, этот фактор не окажет существенного влияния на качество сетевой воды, вследствие существенного разбавления. При работе по однотрубной системе, когда транзитная линия выполняет функции подпиточной линии тепловых сетей, превышение нормируемых показателей оказывает существенное влияние на интенсивность накипеобразования, поэтому при работе по однотрубной системе необходима организация водно-химического режима полностью исключающего процессы накипеобразования.

До перехода на комплексонный водно-химический режим подготовка подпиточной воды осуществлялось по схеме Na-катионирования с подкислением. Причем в летний период осуществлялось только подкисление. Для подкисления до необходимой остаточной щелочности использовалась серная кислота. С появлением ингибитора отложений минеральных солей (ИОМС) был введен комплексонный водно-химический режим тепловых сетей. Данная технология позволила существенно снизить эксплуатационные затраты и значительно упростить схему подготовки сетевой воды. Однако применение ИОМСа не позволило работать в безнакипном режиме при температурах свыше ~110-120 0С поскольку ингибирующие способности ИОМСа ограниченны как по качеству исходной воды, так и по предельной температуре не воды, а стенки теплообменного аппарата. В связи с этим было принято решение о переходе на комбинированный режим: ввод ИОМСа при предварительном подкислении исходной воды серной кислотой. Данная схема обработки подпиточной воды применяется и в настоящее время. Дозирование ИОМСа производится насосом-дозатором, а кислоты эжекторами.

После изменения в 2000 г. последовательности ввода ИОМСа и серной кислоты, с учетом необходимого расстояния для равномерного распределения концентрационного поля, температура подогрева сетевой воды была повышена до 125 0С при температуре стенки не выше 140 0С. Показатели водно-химического режима составляли: остаточная щелочность Що = 0,7 мг-экв/л, ИОМС = 0,8 0,1 мг/л. Повышение температуры подогрева сетевой воды при исключении накипеобразования возможно за счет изменения состава антинакипина Базовой частью композиции должен быть ИОМС, а составляющей - бесфосфорный реагент, обладающий не меньшими ингибирующими свойствами, чем ИОМС. Это позволит исключить образование фосфатных отложений даже при повышении температуры сетевой воды и концентрации фосфатов в исходном ИОМСе.

Для определения предельных технологических параметров работы оборудования и выбора композиции была спроектирована экспериментальная установка и проведены натурные эксперименты по выбору композиции, величины подкисления, дозы композиции и оптимального водно-химического режима.

9.4 Экспериментальные испытания по выбору оптимального водно-химического режима

В качестве бесфосфорного реагента в составе композиции предлагается использование СК-110, имеющий санитарно-эпидемиологическое разрешение на применение в тепловых сетях города, технологический регламент на технологию применения реагентов в системах теплоснабжения и горячего водоснабжения и технические условия применения.

Реагент СК-110 предназначен для коррекционной обработки воды в системах теплоснабжения и горячего водоснабжения с целью предупреждения образования накипи на поверхностях нагрева в водогрейных котлах и бойлерах, а также для снижения загрязненности внутренних поверхностей стенок трубопроводов и оборудования в системах теплоснабжения и горячего водоснабжения.

ИОМС (ингибитор отложений минеральных солей) содержит до 90% нитрилотриметилфосфоновой кислоты и около 10% фосфолированных полиаминов. Обработка воды ИОМСом практически не увеличивает ее минерализации, не усиливает ее коррозионно-агрессивные свойства, не оказывает влияния на биологические обрастания или насосные отложения. Механизм стабилизирующего действия заключается в адсорбции комплексона на микро-зародышах кристаллизирующейся соли, что препятствует дальнейшему росту кристаллов и образованию отложений и обеспечивает стабильность пересыщенных растворов.

9.5 Конструктивный и тепловой расчет экспериментальной установки для нагрева воды с 15 до 150 0С

Конструктивный и тепловой расчет пилотной установки производится последовательно для первой, а затем второй ступени теплообменника. Задача расчета состоит в определении при номинальном режиме и заданной тепловой производительности геометрических размеров теплообменника.

Исходными данными являются:

скорость протекания воды W=1,5 м/с;

температура исходной воды t ж1`=15 0С;

температура воды на выходе из первой ступени теплообменника tж1`=1200С;

параметры греющего пара Р=0,981 МПа, t=250 0С;

внутренняя трубка теплообменника d=14/12мм, материал медь, латунь;

коэффициент теплопроводности =130 Вт/м0С;

теплоемкость воды Ср1=4,187 кДж/кг0С;

расход нагреваемой воды G1=0,61м3/ч;

Расчет первой ступени теплообменника

1. Количество передаваемой теплоты:

Q= G1* Ср1(t ж1``-t ж1`) = (120-15)*4,187*610/3600 = 74,4 кВт;

2. Расход пара, при Р=0,981 мПа ts=2500С; i``=2942 кДж/кг; i`= 760кДж/кг;

G2= Q/0,98 (i``- i`) = 74,4*103/0,98 (2942 - 760) = 0,0348 кг/с;

3. Для расчета коэффициента теплоотдачи к внешней поверхности трубки при конденсации пара необходимо знать температуру внешней поверхности tс2 и высоту трубки Н. Так как значения этих величин неизвестны, то расчет производим методом последовательных приближений. Определяем средне логарифмический температурный напор:

tл= (t ж1``- t ж1`) / (2,3 * lg(ts - t ж1`) / ( ts - t ж1``);

tл = (120 - 15) / (2,3 lg(250-15) / (250 - 120)) = 178 0С

4. Задаёмся температурой стенки наружной трубы

tс2 ts-tл/2 = 250 - 178/2 = 160 0С

5. Задаёмся высотой трубок Н = 1,5 м

6. Приведенная длина трубки

Z = t2 Н*А; При ts=180 0С : В = 13*10-3 м/Вт; А = 150 1/м*с

Z = ( ts- tс2 )*Н*А=(250-160)*1,5*150=20250 >2300

7. Течение пленки конденсата турбулентное по всей длине трубки.

Re = (253+0,069 (Рr/Рrс)0,25*Рr0,5*(Z-2300))4/3;

Рr1

Рrс1,1

Re = (253+0,069(1/1,1)0,25*10,5(20250-2300)) 4/3=16600;

8. Коэффициент теплоотдачи (от пара к стенке трубки)

2=Rе/t2*Н*В=16600/90*1,5*13*10-3=9459 Вт/м2 0С;

9. Среднеарифметическая температура воды:

tж1 =0,5*(tж1`+ tж1``)=0,5*(120+15)=67,5 0С

при этой температуре:

ж1=0,425*10-6;

ж1=66,4*10-2;

ж1=974;

Рr ж1=2,64;

10. Rе ж1=W*d1/ж1=1,5*12*10-3/(0,425*10-6)=42353;

Течение воды турбулентное.

Перепад температур по толщине стенки оцениваем примерно в 10 С, тогда

tс1 tс2-1=160-1=159 0С;

Nuж1 = 0,021 * Rе ж10,8 * Рr ж10,43 * (Рr ж1 / Рrс1)0,25 = 0,021 * 423530,8 * 2,640,43 * *(2,64 / 1,1)0,25= 200;

11. Коэффициент теплоотдачи (от стенки трубки к воде):

1= Nuж1*( ж1/d1) = 200*0,66/(12*10-3) = 11000 Вт/( м2 0С);

12. Коэффициент теплопередачи:

К=1/(1/1+/+1/2) = 1/(1/11000+0,001/130+1/9459) = 4894 Вт/(м2 0С);

13. Средняя плотность теплового потока:

q = К*tл = 4894*178 = 871179 Вт/м2;

14. Площадь поверхности нагрева:

F = Q/q = 74,4/871 = 0,085 м2;

15. Высота трубок:

Н = F/(*dср*n) = 0,085/(3,14*13*10-3*1) = 2,1 м;

16. Температуры стенок трубок:

tс2 = ts-q/2 = 250 - 871179/10126 = 164 0С;

tс1 = tс2-q*/ = 164 - 871179*10-3/130 = 1570С;

Расчет второй ступени теплообменника

Исходные данные:

скорость течения воды W=1,5 м/с;

температура воды t ж1`=120 0С;

температура воды на выходе из первой ступени теплообменника tж1`=1600С;

параметры греющего пара: Р=0,981 мПа, t=250 0С;

внутренняя трубка теплообменника: d=14/12мм, материал латунь;

коэффициент теплопроводности: =130 Вт/м0С;

теплоемкость воды: Ср1=4,187 кДж/кг0С;

расход нагреваемой воды: G1=0,61м3/ч;

1. Количество передаваемой теплоты:

Q= G1* Ср1(t ж1``-t ж1`) = (150-120)*4,187*610/3600 = 21,3 кВт;

2. Расход пара, при Р=0,981 МПа ts=2500С; i``=2942 кДж/кг; i`=760кДж/кг;

G2=Q/0,98(i``- i`) = 21,3*103/0,98(2942- 760) = 0,01 кг/с;

3. Для расчета коэффициента теплоотдачи к внешней поверхности трубки при конденсации пара необходимо знать температуру внешней поверхности tс2 и высоту трубки Н. Так как значения этих величин неизвестны, то расчет производим методом последовательных приближений.

Определяем среднелогарифмический температурный напор:

tл= (t ж1``-t ж1`)/(2,3*lg(ts- t ж1`)/( ts- t ж1``)=(150-120)/(2,3 lg(250-120)/(250-150)) = 115 0С

4. Задаёмся температурой наружной стенки трубы

tс2 ts-tл/2 = 250 - 115/2 = 193 0С

5. Задаёмся высотой трубок Н = 2 м

6. Приведенная длина трубки

Z = t2 Н*А; При ts=180 0С : В = 13*10-3 м/Вт; А = 150 1/м*с

Z = (ts- tс2)*Н*А=(250-193)*2*150= 17100 >2300

7. Течение пленки конденсата турбулентное по всей длине трубки.

Re = (253+0,069 (Рr/Рrс)0,25*Рr0,5*(Z-2300))4/3;

Рr1 (180 0С)

Рrс0,95 (193 0С)

Re = (253+0,069(1/0,95)0,25 *10,5(17100-2300)) 4/3=14005;

8. Коэффициент теплоотдачи (от пара к стенке трубки)

2=Rе/t2*Н*В=14005/100*1,5*13*10-3=5386 Вт/м2 0С;

9. Среднеарифметическая температура воды:

tж1 = 0,5*(tж1`+ tж1``)=0,5*(120+150) =135 0С

при этой температуре:

ж1=0,224*10-6;

ж1=68,55*10-2;

ж1=930;

Рr ж1=1,3;

10. Rе ж1=W*d1/ж1=1,5*12*10-3/(0,224*10-6) = 80357;

Течение воды турбулентное.

Перепад температур по толщине стенки оцениваем примерно в 10 С,

тогда tс1 tс2-1=193-1=192 0С;

Nuж1 = 0,021 * Rе ж10,8 * Рr ж10,43 * (Рr ж1/Рrс1)0,25 = 0,021 * 803570,8 * 1,30,43 * *(1,3/0,95)0,25 = 213;

Коэффициент теплоотдачи (от стенки трубки к воде):

1= Nuж1*( ж1/d1) = 213*0,69/(12*10-3) = 12248 Вт/ (м2 0С);

Коэффициент теплопередачи:

К=1/(1/1+/+1/2) = 1/(1/12248+0,001/130+1/5386) = 3636 Вт/(м2 0С);

11. Средняя плотность теплового потока:

q = К*tл = 3636*115 = 418175 Вт/м2;

12. Площадь поверхности нагрева:

F = Q/q = 21,3/418 = 0,05 м2;

13. Высота трубок:

Н = F/(*dср*n) = 0,05/(3,14*13*10-3*1) = 1,2 м;

14. Температуры стенок трубок:

tс2 = ts-q/2 = 250-418175/5386 = 172 0С;

tс1 = tс2-q*/ = 172-418175*10-3/130 = 169 0С;

9.6 Описание схемы и оборудования экспериментальной установки, принцип работы

Первая ступень теплообменника подогревает исходную воду от 150С до 120 0С, вторая ступень догревает воду до 150 0С. Первая и вторая ступени представляют собой одноходовые кожухо-трубчатые теплообменники типа "труба в трубе". Нагреваемая вода проходит по внутренней трубке, а греющий пар подается в кожух теплообменника. Теплоотдача от пара к стенке трубки происходит за счет пленочной конденсации на ее поверхности. Конструктивный расчет теплообменника приведен в параграфе (Конструктивный и тепловой расчет экспериментальной установки для нагрева воды с 15 до 150 0С).

9.7 Принцип работы

В бак исходной воды дозируется реагент, который тщательного перемешивается при помощи насоса по линии рециркуляции. Затем исходная вода с определенным содержанием растворенного в ней реагента подается под давлением при помощи насоса на первую ступень теплообменника, где происходит её подогрев до 1200С, далее вода поступает на вторую ступень теплообменника, где она нагревается до 150 оС. Для контроля тепловых параметров установка оборудована соответствующими контрольно-измерительными приборами. Отбор проб производится с помощью пробоотборников установки. Контроль параметров водно-химического режима осуществляется по показателям общей жесткости и общей щелочности воды на входе и выходе установки.

Конструкция теплообменной установки позволяет снимать и производить замену внутренней трубки, что даёт возможность исследовать состав накипи на стенках латунной трубки и сделать вывод об эффективности того или иного реагента.

9.8 Экспериментальные испытания

С целью определения выбора оптимального состава и дозы реагентов на экспериментальной установке были проведены исследования с комплексонами ИОМС и СК-110. Параметры водно-химического режима приведены в таблице **

Таблица

№ опыта

Длительность опыта

Температура, оС

Остаточная щелочность, мг-экв/л

Доза СК-110, мг/л

Доза ИОМС, мг/л

1.

4 часа

80-85

Исходная

-------

2,2

2.

2 часа

120

Исходная

-------

1,7

3.

4 часа

135-140

Исходная

2,0

-----

4.

3 часа

150

Исходная

2,0

------

5.

3 часа

150

1,1

1,0

1,0

6.

2 часа

145-150

2,6

1,0

1,0

7.

3 часа

138

0,8

-------

1,2-1,4

8.

3 часа

150

0,8

2-2,5

-------

9.

6 часов

150

1,0

0,4

1,0

10.

3 часа

150

1,5

0,4

0,8

11.

6 часов

145

1,5

0,3

0,6

12.

10 часов

145

1,5

0,3

0,6

За время испытаний фиксировались данные по тепловому и водно-химическому режимам по которым далее были построены графики, из которых видно изменение температуры сетевой воды в зависимости от давления греющего пара.

10. Заключение

В дипломной работе необходимо было рассмотреть и составить проект системы оборотного водоснабжения нефтеперерабатывающего завода. При проектировании системы оборотного водоснабжения, необходимо организовать водно-химический режим предприятия, чтобы оптимизировать работу теплообменного оборудования. При организации водно-химического режима завода, в дипломном проекте был проведен ряд расчетных экспериментов по определению пресыщения исходной воды по основным накипеобразователям, толщины отложений и интенсивности накипеобразования в зависимости от скорости течения воды и температуры подогрева. На основе полученных результатов был предложен новый, более эффективный по сравнению с ранее известными, ингибитор коррозии и накипи Хеламин. Также был рассмотрен вопрос о методах борьбы с биологическими обрастаниями.

Расчетные эксперименты показали, что изначально пересыщения исходной воды по основным накипеобразователям при температуре окружающей среды нет. При повышении температуры оборотной воды происходит интенсификация процесса накипеобразования и образование твердой фазы: пересыщение воды по карбонату кальция начинается с 40 С и составляет 0,02 г/м3, с увеличением температуры подогрева величина пересыщения увеличивается и уже при температуре 100 С составляет 0,106 г/м3. Произведенные расчеты толщины отложений показывают, что при скорости течения воды 1 м/с и температуре 40 С, на теплообменных поверхностях за 2 недели образуется слой накипи толщиной 9,7*10(-3) мм , за год толщина накипи увеличивается до 0,25 мм.

С целью определения оптимальной дозы реагента Хеламин и влияния температуры на эффективность ингибирования были проведены экспериментальные исследования, в которых рассматривались различные дозы реагента Хеламин. Для проведения экспериментов использовался имитат иртышской воды с заведомо ухудшенными характеристиками и подогрев производился до температур 90 и 100 С, которые значительно выше температур технологического процесса. Контроль процесса накипеобразования проводился по показателям общей жесткости и щелочности. Результаты опытов показали, что наиболее оптимальной является концентрация Хеламина равная 0,5 мг/л.

Для борьбы с биологическими обрастаниями в охлаждающих системах предприятия, был предложен реагент Вестсайд 12Е, как наиболее эффективный против сульфатовосстанавливающих и илообразующих бактерий, которые присутствуют практически во всех оборотных системах охлаждения. Дозирование реагента Вестсайд 12Е колеблется от 0,3 до 10 мг/л, в зависимости от степени загрязнения и метода обработки.

С экономической точки зрения применение реагента Хеламин более целесообразно, по сравнению с ранее применяемыми реагентами, т.к. Хеламин имеет ряд следующих преимуществ:

1) Хеламин является высоко эффективным ингибитором карбоната кальция.

2) Сокращает реагентное хозяйство.

3) Увеличиваются сроки межпромывочного и межремонтного периодов.

4) Применение Хеламина сокращает затраты на приобретения реагентов.

Экономия средств составляет 8043750 тенге в год.

По сравнению с известными реагентами, которые являются опасными для здоровья человека химикатами, Хеламин относится к малоопасным веществам, что упрощает условия труда и безопасность жизнедеятельности производственного персонала.


Подобные документы

  • Разработка водоподготовительной установки, подбор водно-химического режима и расчет системы технического водоснабжения ТЭЦ мощностью 360 МВт. Показатели исходной воды, стадии ее обработки. Схема ВПУ, выбор оборудования; способы очистки конденсатов.

    курсовая работа [414,9 K], добавлен 23.12.2013

  • Водоподготовка и организация водно-химического режима электростанции. Электростанции и предприятия тепловых сетей. Использование воды в теплоэнергетике. Оборудование современных электростанций. Методы обработки воды. Водно-химический режим котлов.

    реферат [754,8 K], добавлен 16.03.2009

  • Расчет тепловых нагрузок на отопление сетевой и подпиточной воды, добавочной воды в ТЭЦ. Загрузка турбин, котлов и составляется баланс пара различных параметров для подтверждения правильности подбора основного оборудования. Выбор паровых турбин.

    курсовая работа [204,3 K], добавлен 21.08.2012

  • Разработка водоподготовительной установки, подбор водно-химического режима и расчет системы технического водоснабжения электростанции мощностью 4800 МВт. Пересчет показателей качества исходной воды, выбор схемы ее обработки; подбор и компоновка насосов.

    курсовая работа [154,6 K], добавлен 09.03.2012

  • Расчет тепловой нагрузки и построение графика. Предварительный выбор основного оборудования: паровых турбин и котлов. Суммарный расход сетевой воды на теплофикацию. Расчет тепловой схемы. Баланс пара. Анализ загрузки турбин и котлов, тепловой нагрузки.

    курсовая работа [316,0 K], добавлен 03.03.2011

  • Выбор типа и количества турбин, энергетических котлов ГРЭС. Составление принципиальной тепловой схемы электростанции, её расчет на заданный режим. Выбор вспомогательного оборудования тепловой схемы станции. Выбор тягодутьевых установок и дымовой трубы.

    дипломная работа [1,2 M], добавлен 02.11.2010

  • Источники водоснабжения ТЭЦ. Анализ показателей качества исходной воды, метод и схемы ее подготовки. Расчет производительности водоподготовительных установок. Водно-химический режим тепловых электростанций. Описание системы технического водоснабжения ТЭС.

    курсовая работа [202,6 K], добавлен 11.04.2012

  • Проект ТЭЦ для города Минска. Выбор оборудования тепловой и электрической частей, топливного хозяйства и системы технического водоснабжения, водно-химического режима. Экономическое обоснование реконструкции электростанции. Разработка инвариантных САР.

    дипломная работа [1,8 M], добавлен 08.04.2014

  • Выбор типа и количества турбин и котлов. Составление и описание принципиальной тепловой схемы электростанции. Определение часового расхода топлива энергетических и водогрейных котлов. Определение выбросов ТЭЦ в атмосферу, расчет и выбор дымовой трубы.

    дипломная работа [505,3 K], добавлен 15.01.2015

  • Подогреватели сетевой воды вертикальные. Расчет средней температуры воды. Определение теплоемкости воды, теплового потока, получаемого водой. Коэффициент теплоотдачи от стенки трубы. Теплофизические параметры конденсата при средней температуре конденсата.

    курсовая работа [507,5 K], добавлен 28.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.