Электропривод и система автоматического управления насосной установки

Проектирование автоматизированного электропривода насосной установки системы горячего водоснабжения. Анализ технологического процесса и работы оператора. Расчетная схема механической части электропривода. Выбор систем электропривода и автоматизации.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 16.05.2012
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1. Технологическая часть
  • 1.1 Анализ технологического процесса
  • 1.2 Анализ работы оператора
  • 1.3 Расчетная схема механической части электропривода
  • 2. Выбор систем электропривода и автоматизации
  • 2.1 Расчет нагрузок механизмов установки
  • 2.2 Предварительный расчет мощности двигателя
  • 2.3 Патентно-информационный обзор
  • 2.3.1 Общие сведения
  • 2.3.2 Насосная станция перекачки с регулируемым электроприводом на основе ИМС
  • 2.3.3 Насосная станция с регулируемым электроприводом по схеме АВК
  • 2.3.4 Насосные станции с частотными электроприводами
  • 2.3.5 Насосная станция с приводом на базе вентильного электродвигателя
  • 2.3.6 Многоскоростные электродвигатели в насосных установках
  • 2.4 Требования к автоматизированному электроприводу
  • 2.5 Требования к системе автоматизации насосной установки
  • 2.6 Обоснование выбора системы электропривода
  • 2.6.1 Обоснование выбора системы электропривода
  • 2.6.2 Предварительный выбор электродвигателя, преобразователя и устройств автоматизации
  • 3. Технико-экономическое обоснование рациональной системы электропривода
  • 3.1 Расчет капитальных вложений
  • 3.2 Определение годовых эксплуатационных расходов
  • 4. Проверка выбранных электродвигателей по перегрузочной способности и нагреву
  • 4.1 Построение нагрузочных диаграмм и уточнение мощностей электродвигателей
  • 4.2 Расчет параметров схемы замещения, построение естественной механической характеристики
  • 4.3 Проверка выбранного электродвигателя по перегрузочной способности и перегреву
  • 5. Расчет и проектирование силовой схемы автоматизированного электропривода
  • 6. Расчет основных параметров и проектирование системы управления электроприводом
  • 6.1 Функциональная схема электропривода
  • 6.2 Математическое описание установки
  • 6.3 Разработка структурной схемы и расчет ее параметров
  • 6.3.1 Структурная схема системы стабилизации напора
  • 6.3.2 Структурная схема системы управления электроприводом
  • 6.3.3 Линеаризация структурной схемы и настройка регулятора
  • 6.4 Построение статических характеристик
  • 7. Анализ динамических характеристик электропривода насосной установки
  • 8. Проектирование системы автоматизации насосной установки
  • 8.1 Выбор принципов и проектирование схемы управления насосной установки
  • 8.2 Формализация условий работы установки
  • 8.3 Выбор аппаратов
  • 8.4 Разработка функциональной схемы
  • 8.5 Разработка программы управления установкой
  • 9. Конструктивная разработка пульта управления насосной установкой
  • 10. Проектирование схемы электроснабжения и защиты насосной установки
  • 10.1. Проектирование схемы электроснабжения и защиты насосной установки
  • 10.2. Выбор аппаратов и кабелей
  • 10.3 Таблица перечня элементов производственной установки
  • 11. Наладка и диагностика электропривода насосной установки
  • 12. Техника безопасности и охрана труда
  • 12.1 Техника безопасности при работе насосной установки
  • 12.1.1 Общие сведения
  • 12.1.2 Обеспечение электробезопасности насосной установки
  • 12.2 Производственная санитария
  • 12.3 Пожарная безопасность
  • 13. Технико-экономические показатели
  • Заключение
  • Список использованых источников
  • Приложения

Введение

Рациональное использование водных и топливно-энергетических ресурсов, а также охрана окружающей среды определили направление развития систем водо - и теплоснабжения. При проектировании новых и реконструкции существующих систем водоснабжения все чаще предусматривается создание систем бессточного водопользования на базе замкнутых циклов. Основными энергетическими звеньями систем водоснабжения, обеспечивающими перемещение различных жидких сред по водопроводам, являются насосные станции.

Задачей настоящего курсового проекта является проектирование автоматизированного электропривода насосной установки системы горячего водоснабжения, т.е. насосной станции горячего водоснабжения (теплового пункта).

Значительная экономия топливно-энергетических ресурсов достигается при централизации теплоснабжения жилых, промышленных и общественных зданий в городах и других населенных пунктах. Рациональная концентрация и централизация производства горячей воды и пара для отопительных и технологических нужд, постепенная ликвидация нерентабельных мелких котельных, строительство ТЭЦ и крупных районных котельных - основные пути развития централизованного теплоснабжения. С этим развитием связано строительство протяженных и широко разветвленных тепловых сетей с многочисленными тепловыми пунктами разнородных потребителей жилого и промышленного секторов.

Теплоснабжение народного хозяйства и населения является одной из основных подсистем энергетики страны. Назначение системы теплоснабжения состоит в обеспечении потребителей необходимым количеством теплоты в виде пара и горячей воды требуемых параметров.

электропривод насосная установка автоматизация

В системах централизованного теплоснабжения (СЦТ) осуществляются следующие технологические процессы: производство и отпуск теплоты, транспортирование и использование теплоносителя.

Производство и отпуск теплоты осуществляются в теплоподготовительных установках источников теплоты - ТЭЦ и городских или промышленных котельных. В источниках теплоты используют органическое или ядерное топливо. Основное назначение источников теплоты - обеспечение экономичных режимов отпуска теплоты в тепловую сеть, надежная, бесперебойная и экономичная работа их агрегатов.

Транспортирование теплоносителя производится по тепловым сетям, соединяющим источник теплоты с потребителями. К тепловым сетям относят теплопроводы и сооружения на них - сетевые станции (подкачивающие, смесительные, дроссельные). СЦТ городов являются, как правило, водяными системами, где в качестве теплоносителя применяется вода.

Водяные системы теплоснабжения могут быть закрытыми и открытыми. В закрытых системах циркулирующая в тепловой сети вода используется только как теплоноситель, из сети для потребления она не отбирается; в открытых системах теплоноситель (вода) разбирается у потребителей для нужд горячего водоснабжения.

Для теплоснабжения городов от источников теплоты до данной группы потребителей, как правило, используются двухтрубные тепловые сети.

Назначение тепловых сетей - надежная, бесперебойная транспортировка теплоносителя при минимальных потерях теплоты и воды.

Использование теплоносителя (отпуск теплоты) осуществляется в теплоприемниках потребителей: в системах отопления, вентиляции, горячего водоснабжения. При отпуске теплоты потребителям осуществляется поддержание по заданному закону параметров нагреваемой среды.

В связи с возрастающей стоимостью электроэнергии тема данного проекта является актуальной.

1. Технологическая часть

1.1 Анализ технологического процесса

При описании технологической установки используются некоторые термины, являющиеся специфическими для данного типа установок:

Насос - гидравлическая машина, создающая напорное перемещение жидкости при сообщении ей энергии.

Насосный агрегат (НА) - совокупность насоса, электропривода и передаточного механизма (муфта, редуктор, шкив).

Насосная установка (НУ) - комплекс оборудования обеспечивающий требуемый режим работы насосов одного или нескольких насосных агрегатов. НУ состоит из одного или нескольких насосных агрегатов, трубопроводов, запорной и регулирующей арматуры, контрольно-измерительной аппаратуры, а также аппаратуры управления и защиты.

Насосная станция (НС) - сооружение, включающее в себя одну или несколько насосных установок, а также вспомогательные системы и оборудование.

Насосные установки подразделяются на водопроводные, канализационные, мелиоративные, теплофикационные и др.

Теплофикационные насосные станции (тепловые пункты) предназначены для подачи потребителям горячей воды требуемых параметров.

Насосные установки ежегодно расходуют около 20% электроэнергии, вырабатываемой энергосистемами республики. В настоящее время большая часть насосных установок работают неэкономично. Потери электроэнергии составляют 10.15%, а иногда достигают 20.25% потребляемой электроэнергии.

Применение экономичных способов регулирования, основанных на изменении частоты вращения рабочих колес насоса, позволяет значительно сократить потери электроэнергии в насосных установках. В современных насосных установках изменение частоты вращения насосов осуществляется с помощью автоматизированного электропривода (АЭП).

Поступление горячей воды в систему хозяйственно-бытового потребления и характер распределения ее суточных расходов, неравномерны и зависят от степени благоустройства зданий и от числа жителей населенного пункта.

В открытых системах теплоснабжения жилых районов между центральным тепловым пунктом и тепловыми пунктами зданий прокладывается четырехтрубная тепловая сеть: два трубопровода - подающий и обратный - для подачи теплоты в системы отопления зданий и два трубопровода - подающий и циркуляционный - для подачи воды в системы горячего водоснабжения. Схема такого теплового пункта представлена на рис.1.1.

Режим работы насосной установки подачи горячей воды определяется режимом водопотребления и наличием напорно-регулирующих сооружений системы водоснабжения. В таблице 1.1 приведено примерное распределение среднесуточного расхода горячей воды по часам суток при среднем секундном их расходе 20 л/с и общем коэффициенте неравномерности водоотведения Кобщ=1,3 [1, стр. 193]. Если в сети водопотребителя нет регулирующей емкости, то для обеспечения потребителя водой в час максимального водопотребления (по таблице от 9 до 10 ч) часовую подачу установки необходимо принимать по максимуму, т.е. равной 5,6% объема суточного водопотребления. Общую подачу и мощность насосной станции можно уменьшить, если ввести в сеть потребителей водонапорную башню с регулирующей емкостью, но, в отдельных случаях, регулирующая емкость напорной башни может получиться непомерно большой, а ее строительство окажется экономически нецелесообразным. Оборудование насосных установок центробежными насосами, обладающими возможностью саморегулирования, позволяет использовать системы горячего водоснабжения без регулирующих емкостей.

Таблица 1.1.

Примерное распределение среднесуточного расхода горячей воды по часам суток при среднем секундном расходе 20 л/с и коэффициенте неравномерности водоотведения Кобщ=1,3.

Часы суток

Часовой расход,%

Часы суток

Часовой расход,%

0.1

3

12.13

4,7

1.2

2,5

13.14

4,1

2.3

2,5

14.15

4,1

3.4

2,6

15.16

4,4

4.5

3,5

16.17

4,7

5.6

4.1

17.18

4,1

6.7

4,5

18.19

4,5

7…8

4,9

19.20

4,5

8.9

4,9

20.21

4,5

9.10

5,6

21.22

4,8

10.11

4,9

22.23

4,6

11…12

4,7

23…24

3,3

Насосная станция системы горячего водоснабжения состоит из входного коллектора, к которому через щитовой затвор подведены всасывающие линии двух насосов (тип К90/20). Напорные линии насосов объединены напорным коллектором. Один из насосов является основным, второй - аварийным. Функции насосов периодически меняются. Насосную станцию с потребителями соединяют напорные водоводы. По заданию на данной насосной установке теплового пункта системы горячего водоснабжения используем насос типа К (горизонтальный центробежный консольный насос). Насосы типа К предназначены для подачи чистой воды и других чистых жидких сред температурой до 105С. Приводятся в движение асинхронным двигателем типа 4А. Технические характеристики насоса приведены в таблице 1.2.

Табл.1.2.

Технические характеристики насоса типа К90/20.

Подача м3

л/с

60

80

100

16,7

22,2

27,8

Напор, м

25,7

22,8

18,9

Частота обращения рабочего колеса, об/мин

2900

Мощность насоса, кВт

5,6

6,3

6,7

КПД насоса, %

76

79,5

77

Допустимая вакуумметрическая высота всасывания, м

5,4

5,3

4,2

Диаметр рабочего колеса, мм

148

1.2 Анализ работы оператора

Система автоматического управления может работать как в ручном, так и в автоматическом режиме. При работе системы в ручном режиме функция оператора заключается в ручной коммутации насосов в зависимости от напора жидкости в сети. Напор жидкости в сети в этом режиме может контролироваться по датчикам. Считаем, что температура жидкости контролируется автоматически на центральном тепловом пункте.

При работе системы в автоматическом режиме функция оператора заключается в визуальном контроле исправности системы управления.

1.3 Расчетная схема механической части электропривода

Кинематическая схема механической части электропривода изображена на рис.1.2.

Упругими свойствами соединительной муфты и валов можно пренебречь ввиду большой жесткости механиче6ской системы. Тогда на основании кинематической схемы (рис.1.2.) составим одномассовую расчетную схему механической части электропривода, представленную на рис.1.3.

2. Выбор систем электропривода и автоматизации

2.1 Расчет нагрузок механизмов установки

При подборе центробежных насосов для конкретных установок необходимо знать зависимость одних параметров от других. В качестве независимого переменного параметра при построении характеристик принимают подачу насоса Q, так как она непосредственно связана с расходом жидкой среды в системе трубопроводов данной насосной установки. Изменение же остальных параметров насоса зависит от подачи.

Статической характеристикой сети (трубопровода) называется зависимость между расходом жидкости через трубопровод и напором H, который требуется для обеспечения этого расхода. Она описывается уравнением:

, (2.1)

где: Нст - статическая составляющая напора, в нашем случае равна нулю, R - сопротивление сети, не является постоянной величиной, изменяется в зависимости от состояния сети от 100Rб при отсутствии потребления воды из сети до Rб при максимуме потребления воды из сети, здесь Rб = - базовое сопротивление сети (сопротивление сети при максимальном потреблении воды из нее).

При отсутствии потребления воды из сети, сопротивление сети имеет значение 100Rб т.к. в этом случае идет сток воды через обратный трубопровод, а также имеются утечки воды (например, в неплотных соединениях и т.д.).

Статической (напорной) характеристикой насоса называется зависимость напора Н от подачи насоса Q при постоянной частоте вращения n рабочего колеса:

, (2.2)

где: Н0 - напор, соответствующий нулевой подаче, , м; С - коэффициент, определяемый как , здесь Н1 = 25,7 м и Q1 = 60 м3/ч - некоторые точки на характеристике насоса; n, nном - соответственно текущая и номинальная скорость вращения насоса.

Характеристики строим для nном = 2900 об/мин; n = 2489 об/мин; n = 1993 об/мин, что необходимо для поддержания напора соответственно при максимальном потреблении воды из сети, потреблению воды из сети равному 50%, максимальному потреблению воды из сети.

По формулам 2.1 и 2.2 строим совмещенные статические характеристики сети (трубопровода) и насоса (турбомеханизма). Данные характеристики, были рассчитаны и построены на ЭВМ при помощи программы EXCEL'97. Результаты расчетов по формулам 2.1 и 2.2 в графическом виде приведены на рис.2.1.

2.2 Предварительный расчет мощности двигателя

Определим мощность двигателя, необходимую для привода насоса. Исходя из [1, c.266] получаем:

(2.3)

где: = 1000 кг/м3 - плотность перекачиваемой жидкости (воды); = 1.25 - коэффициент запаса; Qном и Нном - параметры насоса, g = 9.81 кг/ - ускорение свободного падения; ном = 79,5% - номинальный КПД насоса.

Подставив необходимые значения в формулу 2.3, получаем, что мощность, необходимая для приведения насоса в движение равна 7,5 кВт.

2.3 Патентно-информационный обзор

2.3.1 Общие сведения

Работа насосных установок электроэнергии. В современных отечественных и зарубежных системах регулирование режимов работы насосных установок осуществляется посредством автоматизированного регулируемого электропривода. В таких системах регулируемым параметром является напор жидкости. Современное развитие техники позволяет поддерживать заданный напор с большой точностью. Однако высокая точность влечет за собой непрерывное изменение частоты вращения электродвигателя насосного агрегата и вследствие этого способствует возникновению знакопеременных нагрузок на отдельные элементы насосного агрегата (эластичные муфты, соединяющие насос с двигателем и др.), ведущих к преждевременному их износу. Поэтому в ряде случаев приходится устанавливать повышенную зону нечувствительности системы регулирования, что понижает точность стабилизации напора.

В качестве регулируемого электропривода насосной установки в системе горячего водоснабжения предусматривается использование одного из типов электропривода, в том числе: индукторных муфт скольжения (ИМС) с питанием возбуждения от тиристорных блоков БУ-3509 и им подобных; частотных преобразователей серии ПЧТ, ПЧР-2 SAMI (фирма Stromberg) и других типов; электроприводов по схеме АВК на базе преобразователей ТДП-2 и станций управления ШДУ; электроприводов на базе вентильных электродвигателей с преобразователями ПЧВН, ПЧВС.

Стабилизация напора жидкости осуществляется за счет того, что при уменьшении водоразбора напор в сети увеличивается, а частота вращения электродвигателя насоса в результате действия системы регулирования уменьшается. При увеличении водопотребления, наоборот, напор жидкости в сети падает, а частота вращения увеличивается. Основная цель системы стабилизации напора жидкости в системе трубопроводов заключается в поддержании напора на заданной отметке.

В системах стабилизации напоров в сети, необходимо предусматривать включение дополнительных нерегулируемых насосов при существенных увеличениях притока или водопотребления и отключение их при уменьшении.

Регулируемым приводом должны оснащаться наиболее крупные насосные агрегаты с наиболее пологой характеристикой. В случае использования однотипных насосов во избежание образования мертвых зон рабочие колеса нерегулируемых насосов должны иметь диаметры, меньшие регулируемых. При равенстве диаметров и работе регулируемого насоса в режиме максимальных подач с повышенной частотой вращения (в случае применения частотного электропривода) он должен быть укомплектован двигателем повышенной мощности в соответствии с рекомендациями.

Несмотря на явные преимущества, регулируемый электропривод еще не получил широкого распространения в насосных установках. В настоящее время сложились условия, требующие его более широкого использования. Бурное развитие полупроводниковой техники позволило создать на базе статических преобразователей надежные и сравнительно недорогие регулируемые электроприводы. Кроме того, мировой энергетический кризис наглядно продемонстрировал подлинную ценность энергетических ресурсов и стимулировал меры по их рациональному расходованию. В результате этого расширились работы по исследованию, разработке и созданию насосных установок, оснащенных автоматизированным регулируемым электроприводом. Ниже приводится описание некоторых, наиболее характерных установок.

2.3.2 Насосная станция перекачки с регулируемым электроприводом на основе ИМС

Целесообразность применения САУ с регулируемым электроприводом в насосных станциях, с учетом существующего у нас в стране соотношения цен на оборудование и электроэнергию и других факторов обоснована в работах ВНИИВОДГЕО. Экспериментальная проверка этих предположений была осуществлена на Ивановской насосной станции г. Москвы. На этой станции два установленных насосных агрегата из шести были оснащены ИМС, изготавливаемыми серийно. Номинальные параметры агрегатов: подача 800 м3/ч (О,22 м3/с), напор 33 м (О,33), мощность 160 кВт, частота вращения 960 об/мин, вращающий момент ИКС 1, 60 кНм (160 кгс/м). Регулирование режима работы установки без регулируемого электропривода осуществлялось периодическим включением-отключением: насосных агрегатов. Число включений составляло 30-40 в сутки, а число работающих агрегатов в зависимости от притока изменялось от 1 до 6. Система автоматического регулирования изменяет частоту вращения одного или двух регулируемых агрегатов и общее, число работающих агрегатов в соответствии с изменением притока. Частота вращения изменяется по сигналу отклонения, формируемому при выходе уровня из заданных пределов. Сигнал отклонения, обработанный по ПИ-закону, поступает на вход системы импульсно-фазного управления тиристорного возбудителя ИМС. Тем самым регулируется ее ток возбуждения и соответственно частота вращения электродвигателя насоса. При существенных изменениях притока, когда изменение частоты вращения регулируемого насоса не обеспечивает требуемого изменения подачи насосной установки, возникает необходимость в изменении общего числа работающих на станции агрегатов. Для этого служит блок взаимодействия регулируемых и нерегулируемых агрегатов. Блок отключает спин из нерегулируемых агрегатов и форсирует возбуждение ИКС до максимального значения тока (5 А) в тот момент времени, когда частота вращения регулируемого насоса становится настолько малой, что его обратный затвор закрывается и насос прекращает откачку. Если же частота вращения регулируемого насоса достигает максимального значения, а приток продолжает увеличиваться и установка не справляется с откачкой сточных вод из резервуара, блок включает дополнительно один из нерегулируемых агрегатов и уменьшает возбуждение ИМС до минимума. Система обеспечивает стабилизацию уровня в резервуаре насосной станции с точностью 50 мм и кратковременными отклонениями (до 350 мм) при подключении или отключении нерегулируемого насосного агрегата. Система позволяет регулировать частоту вращения одновременно нескольких, в данном случае двух, агрегатов. Необходимость в таком режиме работы возникает при незначительном превышении притока над подачей одного насоса. В таких условиях параллельная работа регулируемого и нерегулируемого агрегатов неустойчива, так как нагрузка регулируемого агрегата составляет всего 5-10% номинала. Возникающие при этом незначительные изменения притока влекут за собой включение и отключение нерегулируемого агрегата. Вследствие этого создаются значительные возмущающие воздействия, которые не всегда могут быть сняты системой регулирования. Синхронная работа двух регулируемых агрегатов, эквивалентная работе одного агрегата большой мощности, предотвращает возникновение неустойчивых режимов работы. Внедрение системы регулирования позволило сократить потребление электроэнергии примерно на 10%, т.е. на 170000 кВт в год, а также число включений насосных агрегатов с 30 до 3 в сутки.

Повышение эффективности СНУ обеспечивается введением устройства, изменяющего число работающих агрегатов до того, как регулируемый насосный агрегат войдет в зону недопустимо низких КПД. Такое устройство разработано во ВНИИВОДГЕО и прошло проверку на одной из действующих московских насосных станций. Одновременно опыт эксплуатации выявил чрезвычайно низкую надежность ИМС, серийно изготавливаемых нашей промышленностью, что не позволяет рекомендовать их для широкого внедрения до приведения их в соответствие с лучшими образцами ИМС, изготавливаемых зарубежными фирмами. На объекте испытывались несколько систем регулирования: с дискретными и аналоговыми преобразователями уровня различных типов. В условиях насосных станций наиболее надежными оказались аналоговые преобразователи с воздушным колоколом.

2.3.3 Насосная станция с регулируемым электроприводом по схеме АВК

В г. Москва длительное время работает СНУ Кунцевской насосной станции, на которой установлено шесть насосных агрегатов мощностью 800 кВт, в том числе 3-4 рабочих. Система автоматического регулирования состоит из одного асинхронного электродвигателя с фазным ротором мощностью 800 кВт и частотой вращения 740 об/мин, преобразователя АВК, функции которого выполняет агрегат ТДП2ЗО4ОО-Т, состоящий из выпрямителя и инвертора, сглаживающего дросселя ФРОС-800, согласующего трансформатора ТС4ОО, станции управления П3ДУ90248А и пусковых резисторов, преобразователя уровня, состоящего из воздушного колокола и дифференциального манометра; ПИ-регулятора. Система стабилизирует уровень жидкости в резервуаре с точностью 7-10 см. Более высокая точность стабилизации уровня влекла за собой повышенный износ пальцев эластичной муфты, соединяющей электродвигатель с насосом. Повышенный износ обусловлен волнением жидкости в резервуаре (высота волны по 20 см), что потребовало увеличить зону нечувствительности САУ и снизить точность стабилизации уровня. Принцип действия системы регулирования частоты вращения агрегата аналогичен вышеописанной. Изменение числа работающих на станции насосных агрегатов осуществляется оперативным персоналом. Использование этой системы в насосной установке экономит ежегодно 600700 тыс. кВт/ч электроэнергии, таким образом примерно 4-5 % общего энергопотребления.

Дополнительные капитальные затраты, обусловленные применением системы регулирования в насосной установке, составили 15 тыс. руб. Регулируемый насосный агрегат используется в течение года до 5ООО час.

В настоящее время в целях повышения эффективности работы САУ и снижения износа регулируемого насосного агрегата намечено оснащение еще одного насоса регулируемым электроприводом того же типа.

2.3.4 Насосные станции с частотными электроприводами

В насосной станции Мосвокстрой (г. Москва) обычный короткозамкнутый асинхронный электродвигатель насоса мощностью 110 кВт/ч включен через преобразователь ПЧТ, разработанный в НИИ ХЭМЗ. Система управления электроприводом построена аналогично ранее описанным, за исключением того, что в качестве преобразователя уровня в системе использован ультразвуковой уровнемер ЭХО3. Применение частотного электропривода в этой установке уменьшает потребление электроэнергии на 60 тыс. кВт - ч в год, Т.о. примерно на 5 %.

В насосных станциях г. Москва используются также частотные преобразователи типа ПЧР-2 и производства финской фирмы Stromberg, на основе которых созданы и работают свыше 10 систем автоматического регулирования режима работы насосных станций с агрегатами мощностью от 75 до 160 кВт. Система регулирования с применением частотного преобразователя типа SAMI фирмы Stromberg длительное время эксплуатируется на Ново-Нагатинской станции, обеспечивая экономию электроэнергии 7-8% общего ее потребления.

Частотные преобразователи фирмы Stromberg - высоконадежные и достаточно компактные средства регулирования насосных агрегатов. Для обеспечения равномерного использования насосных агрегатов предусматривается устройство, с помощью которого они могут поочередно подключаться к одному преобразователю.

Известны случаи применения отечественных частотных преобразователей типа ПЧТ в г. Харькове, типа ЭКТ - в г. Ленинграде и др.

2.3.5 Насосная станция с приводом на базе вентильного электродвигателя

На Филевской насосной станции г. Москва внедрена САУ с использованием электропривода на базе вентильного электродвигателя. Из шести насосов марки 30-ФВ-17, установленных на станции, один из них оснащен таким электроприводом с применением преобразователя ПЧВН, разработанного НИИ ХЭМЗ. Мощность электропривода 1600 кВт, напряжение двигателя 10 кВ. Преобразователь подключен к питающей электросети через понижающий сухой трансформатор мощностью 4000 кВА, а двигатель - к преобразователю через такой же повышающий трансформатор. В состав преобразователя входит также тиристорный преобразователь питания системы возбуждения синхронного электродвигателя, который при внедрении электропривода не заменялся. Система управления электроприводом насоса аналогична вышеописанным. В качестве датчика уровня использован воздушный колокол и дифманометр с выходом 0-5 мА. В системе управления использован ПИ-регулятор типа Р-17. Применение САУ с регулируемым электроприводом снизило потребление электроэнергии примерно на 1200 тыс. кВт-ч год, улучшило условия эксплуатации насосного оборудования, облегчило условия работы оперативного персонала. Анализ работы САУ и выполненные расчеты показывают, что оборудование аналогичным электроприводом второго насосного агрегата позволяло бы увеличить экономию электроэнергии почти вдвое. На станции прошло проверку устройство, исключающее работу регулируемого насоса в зоне низких КПД.

2.3.6 Многоскоростные электродвигатели в насосных установках

Циркуляционные насосные станции некоторых московских ТЭЦ укомплектованы вертикальными насосными агрегатами с двухскоростными двигателями марки ДВДА215/64-16-20К. Из семи насосов каждой станции два приводятся во вращение этими электродвигателями. Номинальная мощность двигателей 1400 кВт, частота вращения 375 и 300 об/мин. Наличие таких насосных агрегатов позволяет лучше приспосабливать режим работы насосной установки к режиму работы теплосети. Применяются двухскоростные электродвигатели и в водопроводных насосных установках.

2.4 Требования к автоматизированному электроприводу

Насосы являются механизмами с режимом длительной нагрузки с малым числом включений и большим количеством часов работы в году. Нагрузка на валу приводного двигателя спокойная, без перегрузок. Необходимый диапазон частоты регулирования не превышает, как правило, 2:

1. Нагрузка на валу механизма носит чисто вентиляторный характер, т.е. статический момент сопротивления на валу механизма пропорционален квадрату скорости.

Электропривод должен нормально функционировать в условиях повышенной влажности и относительно высоких температур, а также иметь максимально возможные показатели надежности. В этих условиях предпочтительным является применение асинхронного электродвигателя с короткозамкнутым ротором, получающего питание от преобразователя частоты. АД КР отличается простотой, надежностью, отсутствием контактных соединений (щеток), дешевизной, а преобразователь частоты позволяет добиться достаточно точного регулирования скорости АД КР.

Таким образом, можно сформулировать требования к электроприводу. Электропривод должен обеспечивать:

диапазон регулирования скорости 3: 1;

перегрузочную способность не ниже 1,5;

плавный пуск насосного агрегата и разгона до заданной скорости;

торможение выбегом;

климатическое исполнение УХЛ4;

степень защиты IP44.

2.5 Требования к системе автоматизации насосной установки

Автоматизация производственных установок позволяет более быстро и точно воспроизводить технологический процесс. При полной автоматизации процесса не требуется постоянного участия человека, ему остается роль наблюдателя и корректировщика. На данный момент целесообразно автоматизировать производственные установки при помощи микропроцессорных систем (программируемых контроллеров), которые позволяют заменить жесткую логику на программное управление, повысить надежность и гибкость системы управления.

Определим требования к автоматизированной системе управления:

плавный пуск насосного агрегата и разгон до заданной скорости;

определение необходимого напора в зависимости от текущего расхода;

стабилизация необходимого напора жидкости в системе за счет регулирования скорости вращения электродвигателя;

включение и отключение резервного насоса в зависимости от требуемого расхода;

ввод в действие резервного насоса в случае аварии рабочего;

автоматический разгон насосного агрегата после исчезновения напряжения питания (автоматическое повторное включение);

защита от тепловых перегрузок приводных двигателей насосных агрегатов;

периодическая смена основного насосного агрегата стабилизирующего подачу жидкости в систему;

система управления должна обеспечивать контроль минимального, максимального и аварийного расхода.

2.6 Обоснование выбора системы электропривода

2.6.1 Обоснование выбора системы электропривода

Для привода насосной установки предварительно была выбрана система: преобразователь частоты - асинхронный двигатель с короткозамкнутым ротором.

Действительно, на основании сформированных требований к электроприводу и системе автоматизации (см. п.2.5, п.2.6.), можно предположить, что использование в насосной установке двигателя постоянного тока с тиристорным выпрямителем не имеет смысла, т.к. по сравнению с асинхронным двигателем с КЗР и ПЧ ДПТ имеет следующие недостатки:

наличие щеточного контакта понижает надежность и неприхотливость двигателя;

высокая стоимость ДПТ, по сравнению с АД КЗР;

на щеточных контактах отрицательно сказывается высокая влажность окружающей среды, следовательно, для использования в насосной установке потребуется специальный, герметизированный ДПТ, что еще более поднимет его сложность и стоимость.

Достоинства ДПТ перед АД такие как простота и точность регулирования скорости в широком диапазоне, хорошие статические характеристики в данном случае, при использовании в качестве привода насосной установки, не имеют решающего значения, т.к. особая точность отработки заданной скорости и ее стабилизации не нужна, тем более не нужен широкий диапазон регулирования скорости (вполне достаточно иметь диапазон регулирования скорости D = 3…5). Тем более, что использование системы ПЧ-АД дает результаты не намного худшие, чем использование системы УВ-ДПТ или ШИП-ДПТ, а преобразователь частоты стоит не намного больше чем управляемый выпрямитель или широтно-импульсный преобразователь, которые все чаще применяются для управления приводами постоянного тока.

Системы электропривода с АД с фазным ротором не являются актуальными т.к.:

система АД ФР со ступенчатым регулированием скорости в принципе подходит по характеристикам и дешевле по стоимости, но, наличие добавочных сопротивлений в роторной цепи увеличивает расход электроэнергии, что является весьма актуальным;

система АД ФР с импульсным регулированием сопротивления имеет характеристики, аналогичные характеристикам системы ПЧ-АД КЗР, но при соизмеримой цене преобразователя частоты и импульсного регулятора сопротивления, стоимость АД ФР гораздо выше, чем АД КЗР.

Системы электропривода с синхронными двигателями также как и системы АД ФР вполне пригодны для насосных установок, но их использование обойдется дороже из-за дороговизны двигателя.

Таким образом можно выделить следующие существенные преимущества системы ПЧ-АД КЗР перед другими системами электропривода при использовании его в насосной установке: простота и надежность двигателя; отсутствие контактных соединений (щеток) в двигателе; низкая стоимость двигателя; достаточное качество регулирования скорости; экономичность.

Недостаток системы ПЧ-АД КЗР один - пока что достаточно высокая стоимость преобразователя частоты.

Исходя из вышеперечисленных соображений, целесообразно использовать в качестве приводного двигателя насосной установки асинхронный двигатель с короткозамкнутым ротором, а питание двигателя осуществлять от преобразователя частоты с векторным управлением.

2.6.2 Предварительный выбор электродвигателя, преобразователя и устройств автоматизации

В качестве электропривода для проектируемой установки применим трехфазный асинхронный электропривод, построенный по системе ПЧ-АД КЗР. Действительно, применение системы ПЧ-АД позволяет плавно изменять скорость привода в достаточно широких пределах, что должно обеспечить плавное регулирование напора в насосной установке, и, в итоге, значительно уменьшить количество энергии, потребляемой насосной установкой.

Автоматизировать установку предлагается внедрением программируемого контроллера. В функции контроллера в таком случае будут входить: выработка задания для электропривода в зависимости от напора в сети; осуществление переключения основного и резервного насосов при выходе из строя основного; диагностика состояния элементов установки; подключение дополнительного насоса при перегрузке основного; выдача аварийных сигналов в диспетчерскую службу.

В соответствии с техническими данными насоса, рассчитанной предварительно мощностью двигателя (см. п.2.3.1), а также, согласно выбранной системы электропривода, предварительно выбираем трехфазный асинхронный двигатель 4А112М2У3 с короткозамкнутым ротором серии 4А, с номинальными техническими характеристиками приведенными ниже [2]:

номинальная мощность: 7,5 кВт;

синхронная частота вращения: 3000 об/мин;

номинальное скольжение: 2,6%;

номинальный КПД: 87,5%;

номинальный cos = 0,88;

Мmaxном = 2,2;

Мпном = 2;

критическое скольжение: 17%;

кратность пускового тока: Iп/Iном = 7,5;

момент инерции двигателя: 0,01 кг*м2.

Степень защиты выбранного двигателя - IP44, обеспечивает защиту от проникновения внутрь оболочки проволоки, инструментов и т.п. диаметром или толщиной более 2,5мм и от проникновения твердых тел размером более 1 мм, обеспечивает защиту от брызг: вода, разбрызгиваемая на оболочку в любом направлении не должна оказывать вредного влияния на изделие.

Способ охлаждения ICАО141 - закрытая машина с ребристой или гладкой станиной, обдуваемой внешним вентилятором, расположенным на валу машины.

В соответствии с требованиями, предъявляемыми к системе автоматизации, выбранной системой электропривода и выбранным двигателем, для питания двигателя предварительно выбираем преобразователь частоты РЭН-2-02-УХЛ4 (ЯВИЕ.435321.001) производства Новополоцкого завода "Измеритель", а для управления насосной установкой применим контроллер ГСП МИКРОДАТ.

3. Технико-экономическое обоснование рациональной системы электропривода

Выбор системы автоматизированного электропривода насосной установки будем производить на основе анализа сравнительных данных. Экономическая оценка базируется на принципе минимальных расходов: начальных затрат, затрат электроэнергии, эксплуатационных затрат и затрат на ремонт. Данные сравниваемых систем электропривода насосной установки приведены в таблице 3.1.

Таблица 3.1.

Данные сравниваемых систем.

Данные о насосной станции

Базовый вариант

Проектируемый вариант

Число насосов

2

2

Мощность и тип приводного двигателя

7,5 кВт,

АД-КЗР

7,5 кВт,

АД-КЗР

Преобразователь частоты

-

РЭН-2-02

3.1 Расчет капитальных вложений

Рассчитываем капитальные вложения. Капитальные вложения определим исходя из выражения (3.1):

К = кэ. д. + кп. ч. + ку. а, (3.1)

где кэ. д. - стоимость электродвигателя; кп. ч. - стоимость преобразователя частоты; ку. а. - стоимость устройств автоматики; кпр. - стоимость прочего оборудования (сглаживающие дроссели, контакторы и т.д.).

Расчеты капитальных вложений насосной установки и сравнение капиталовложений базового (нерегулируемый электропривод) и проектируемого (регулирование скорости электропривода в системе ПЧ-АД) производим в таблице 3.2.

Таблица 3.2.

Расчет и сравнение капиталовложений базового и проектируемого варианта насосной установки

Наименование

Базовый вариант

Проектируемый вариант

Цена

тыс. руб.

Стоимость тыс. руб.

Цена

тыс. руб.

Стоимость тыс. руб.

Электродвигатель

137500

275000

137500

275000

Преобразователь

-

-

412500

412500

Устройства автоматики (ПК)

142000

142000

142000

142000

Прочее оборудование (дроссели и т.п.)

-

27500

-

55000

Итого

444500

884500

3.2 Определение годовых эксплуатационных расходов

Годовые эксплуатационные расходы - это суммарные затраты на рабочий механизм и его электропривод, необходимые для эксплуатации механизма в течение, т.е. это себестоимость эксплуатации механизма.

Годовые эксплуатационные расходы в общем случае сводятся к следующим составляющим:

С = Сээ+ Са+ Собсл, (3.2)

где Сээ - стоимость потребляемой электроэнергии; Са - амортизационные отчисления; Собсл. - годовые затраты по эксплуатации электрической части установки.

Амортизационные отчисления:

Са = а. К, (3.3)

где а = 8 % - процент отчислений на реновацию; К - капиталовложения.

Затраты на электроэнергию:

Сээ = Рном. дв. Со.12 + Wэ. Сдоп, (3.4)

где Рном. дв - номинальная мощность используемых одновременно двигателей, кВт; Со = 2,1 тыс. руб. /кВтч - тарифная ставка (основная); Сдоп = 1,5 тыс. руб. /кВтч - тарифная ставка (дополнительная); Wэ - электрическая энергия потребляемая за год, кВтЧ:

Wэ = РпТгод/ном, (3.5)

где Рп - мощность потребляемая установкой; ном - номинальный КПД установки, %; Тгод - число рабочих часов в год, ч, Тгод = 8760 ч.

Основой, для расчета мощности, потребляемой установкой, является суточное распределение расхода воды. Если, в базовом варианте мощность двигателя не зависит от расхода воды, то, проектируемый вариант, позволяет уменьшить мощность установки при уменьшении расхода воды. Исходя из примерного распределения среднесуточного расхода горячей воды, приведенного в таблице 1.1 рассчитаем среднесуточную мощность, потребляемую насосной установкой:

Pср =, (3.6)

где Рср - среднесуточная мощность, потребляемая насосной установкой, Рi - мощность потребляемая установкой в течении i-го часа.

Оборудование электропривода является ремонтируемым. Оно проходит планово-предупредительные ремонты, периодичность и объем проведения которых регламентируется сметой планово-предупредительных ремонтов и сетей энергетики. Затраты на планово-предупредительные ремонты и обслуживание можно определить как:

Собсл = Ср. р + Смат + Со, (3.7)

где Ср. р - заработная плата ремонтных рабочих; Смат - стоимость материалов для ремонта; Со - общие расходы, у. е.;

Заработная плата ремонтных рабочих определяется следующими параметрами.

Плановая продолжительность ремонтного цикла составляет:

Тпл = Ттабл к и c, (3.8)

где Ттабл = 15 лет табличная величина ремонтного цикла;

к = 0,75 - коэффициент обусловленный ремонтным циклом; и = 1 - коэффициент использования; c = 0,65 - коэффициент сменности;

Плановая продолжительность межремонтного цикла будет составлять:

tпл = tтаб. к. с. и, (3.9)

tтаб = 12 мес - табличная величина межремонтного цикла;

Количество капитальных ремонтов в расчете на 1 год:

Мк. р. = 1/Тк. р., (3.10)

Количество текущих ремонтов в расчете на 1 год:

Мт. р. = 12/tпл, (3.11)

Определим годовую трудоемкость капитальных ремонтов:

Тк. р. = Мк. р. n. Hк. р. kп. р., (3.12)

где

n = 2 - количество однотипных машин или аппаратов, шт;

Hк. р = 12,5 - челчас - норма трудоемкости капитального ремонта;

kп. р = 1 - поправочный коэффициент, зависящий от электрической машины.

Определим трудоемкость текущих ремонтов:

Тт. р. = Мт. р. n. Hт. р. kп. р., (3.13)

Hт. р = 1,5 чел-час - норма трудоемкости текущего ремонта. Трудоемкость технического обслуживания принимаем равной 10% табличной трудоемкости текущего ремонта электропривода без учета поправочных коэффициентов. Трудоемкость технического обслуживания электропривода за год:

ТТ.о. = 0,1 12 nсмНтр, (3.14)

где nсм = 3 - количество смен работы. Суммарные затраты времени на ремонт и техническое обслуживании составляют:

Т = Тт. р. Ткр. Тт. о, (3.15)

Затраты на заработную плату ремонтных рабочих:

Ср. р. = Стар.0,5. Т, (3.16)

где Стар = 27,5 тыс. руб. часовая тарифная ставка рабочего (по IV разряду);

0,5 - начисления на ликвидацию последствий аварии на ЧАЭС, на содержание детских дошкольных учреждений, социальное страхование, пенсионный фонд, премирование, выплаты дополнительной заработной платы (гос. обязанности).

Стоимость материалов для ремонта электропривода примем равной 100% от основной заработной платы без учета дополнительных затрат.

Общие расходы примем равными 50% от основной заработной платы без учета дополнительных затрат.

Рассчитав годовые эксплуатационные расходы для базового и проектируе6мого вариантов по формулам (3.2) - (3.16), сведем их в таблицу 3.3.

Таблица 3.3.

Расчет и сравнение годовых эксплуатационных расходов.

Наименование и ед. измерения

Обозначение

Формула для расчета

Базовый вариант

Проектируемый вариант

Разность

Амортизационные отчисления, тыс. руб.

Са

3.3

35560

47560

- 12000

Потребляемая за год электроэнергия, кВт

Wэ

3.5

82125

38132

Стоимость электроэнергии, тыс. руб.

Сээ

3.4

123377

57387

65990

Плановая продолжительность ремонтного цикла, лет

Тпл

3.8

7

7

Плановая продолжительность межремо-нтного цикла, мес.

tпл

3.9

4

6

Кол-во капитальных ремонтов в год

Мкр

3.10

0,2

0,14

Кол-во текущих ремонтов в год

Мтр

3.11

3

2

Трудоемкость капитальных ремонтов

Ткр

3.12

5

3,5

Трудоемкость текущих ремонтов

Ттр

3.13

9

6

Трудоемкость технического обслуж.

Тто

3.14

5,4

5,4

Суммарные затраты на ремонт и ТО

Т

3.15

243

113,4

Затраты на заработную плату, тыс. руб.

Срр

3.16

13365

6237

7,128

Стоимость материалов, тыс. руб.

Смат

13365

6237

7,128

Общие затраты,

Тыс. руб.

Со

6682

3118

3564

Затраты на обслуживание, тыс. руб.

Соб

3.7

33412

15592

17820

Годовые эксплуатационные расходы, тыс. руб.

С

3.2

192349

120539

71810

Таким образом, ежегодно эксплуатационные расходы в проектируемой установке будут меньше на 71810 тыс. руб. чем в действующей.

Для оценки экономической эффективности сравниваемых вариантов используем понятие фактического срока окупаемости. Фактическим сроком окупаемости называют период, в течение которого превышение капитальных затрат одного варианта по сравнению с затратами другого окупается прямыми (без амортизационных отчислений) эксплуатационными затратами. Наиболее выгодный вариант должен иметь наименьший срок окупаемости.

Определим фактический срок окупаемости дополнительных капитальных вложений:

, (3.17)

где Кб и Кп - капиталовложения, соответственно по базовому и проектируемому варианту насосной установки, Сб и Сп - суммы прямых эксплуатационных затрат, соответствующие базовому и проектируемому вариантам.

После расчетов по формуле (3.17) получим, что срок окупаемости равен 5 лет. Для водопроводных систем, нормативный срок окупаемости составляет 7-10 лет, т.е. проектируемая насосная установка имеет лучшие технико-экономические показатели по сравнению с базовой.

4. Проверка выбранных электродвигателей по перегрузочной способности и нагреву

4.1 Построение нагрузочных диаграмм и уточнение мощностей электродвигателей

Исходя из примерного распределения среднесуточного расхода горячей воды по часам суток (см. п.1.1., таблица 1.1) можно построить график водопотребления, приведенный на рис.4.1, считая при этом, что расход горячей воды в течение часа равномерен.

Исходя из графика потребления горячей воды, можно построить диаграммы скорости и момента насоса, и, соответственно двигателя, учитывая, что подача жидкости пропорциональна скорости, а момент турбомеханизма пропорционален квадрату скорости насоса.

Коэффициент пропорциональности для скорости найдем из уравнения:

Q2 = Q1 (n2/n1), (4.1)

где Q1 и Q2 - подача насоса, при скорости насоса соответственно n1 и n2.

Таким образом, получаем:

Q2 = kn2 = (n1/Q1) n2 (4.2)

Подставляя в уравнение 4.2 номинальные данные насоса из таблицы 1.2 получаем, что коэффициент пропорциональности к = 2900/25 = = 116 л/ (соб/мин).

Момент насоса для относительной скорости можно определить как:

Мнас = М0 + 0,95Мнас*2, (4.3)

где М0 - момент определяемый силами трения в механизме, принимаем равным 5% от номинального момента насоса; Мнас - номинальный момент насоса, определяем как Мнас = Рнас / нас, где Рнас и нас - соответственно номинальные мощность и частота вращения насоса; * - относительная скорость насоса: * = /н.

Исходя из формул 4.2, 4.3 и графика водопотребления рис.4.1 строим нагрузочные диаграммы механизма, приведенные на рис.4.2 и рис.4.3.

Как видно из диаграмм (рис.4.2 и 4.3.) нагрузка имеет продолжительный характер, следовательно, имеем продолжительный режим работы установки (S1). Поэтому проверять выбранный двигатель можно без учета динамических режимов работы.

4.2 Расчет параметров схемы замещения, построение естественной механической характеристики

Произведем расчет естественной статической характеристики выбранного двигателя.

Для этого рассчитаем параметры схемы замещения асинхронного двигателя по паспортным данным:

Полное сопротивление короткого замыкания:

= 220/ (7,5*14,76) = 1,99 Ом, (4.4)

где Uф=220 В - номинальное фазное напряжение; Iнн/ (3Uф. ннcosн) =14,7 А; I = 7,5 - кратность пускового тока. Пусковой коэффициент мощности:

= 0,244, (4.5)

где cosн=0,88 - номинальный коэффициент мощности; н=0,875 - номинальный КПД; - номинальное скольжение; - отношение потерь в обмотке статора к полным потерям при номинальной нагрузке; п = 2 - кратность пускового момента.

Активное пусковое сопротивление короткого замыкания:

= 0,486 Ом. (4.6)


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.