Анизотропные кристаллы. Кристаллография. Сингония высшего, среднего, низшего порядков

Понятие элементарной ячейки кристалла. Элементы симметрий: плоскость, центр, оси. Виды симметрий у октаэдра. Виды сингоний, относящиеся к высшему, низшему, среднему порядкам. Порядок сингонии, изотропность кристалла. Скорость прохождения света в веществе.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 12.01.2012
Размер файла 361,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Анизотропные кристаллы. Кристаллография. Сингония высшего, среднего, низшего порядков

Что такое элементарная ячейка кристалла?

Элементарная ячейка кристалла, - это тот минимальный воображаемый объём кристалла, параллельные переносы (трансляции) которого в трёх измерениях позволяют как из кирпичиков построить трёхмерную кристаллическую решётку в целом.

Какие виды симметрий присутствуют в кристаллах?

Симметрия есть закономерная повторяемость в расположении предметов или их частей на плоскости или в пространстве. В природе симметрия проявляется в большом разнообразии и особенно характерна для кристаллов. Она является их важнейшим и специфическим свойством, отражающим закономерность внутреннего строения.

Рассмотрим элементы симметрии.

1. Плоскость симметрии. Это воображаемая плоскость, которая делит фигуру на две равные части так, что одна из частей является зеркальным отражением другой. Плоскость симметрии обозначается буквой Р. Если плоскостей симметрии в данном кристалле несколько, то перед обозначением плоскости ставится их число, например - 3Р, три плоскости симметрии. В кристаллах могут быть одна, две, три, четыре, пять, шесть, семь и девять плоскостей симметрии. Многие кристаллы вообще не имеют ни одной плоскости симметрии.

2. Центр симметрии. Центром симметрии называется такая точка внутри фигуры, при проведении через которую любая прямая встретит на равном от ней расстоянии одинаковые и обратно расположенные части фигуры. Центр симметрии обозначается буквой С (или i). Если каждая грань кристалла имеет себе равную, хотя и обратно расположенную грань, то данный кристалл обладает центром симметрии. Некоторые кристаллы могут не иметь центра симметрии.

3. Оси симметрии. Осью симметрии называется воображаемая прямая, при повороте вокруг которой всегда на один и тот же угол происходит совмещение равных частей фигуры. При повороте на 360 градусов совмещение граней в разных кристаллах возможно два, три, четыре или шесть раз (т.е. при каждом повороте на 180, 120, 90 и 60 градусов). Ось симметрии обозначается буквой L, порядок оси показывает, сколько раз при повороте на 360 градусов произойдёт совмещение каждой из граней. Так в кристаллах возможны оси второго L2, третьего L3, четвёртого L4 и шестого L6 порядков. Оси симметрии L3, L4, L6 называются осями симметрии высшего порядка. Оси симметрии питого и выше шестого порядка в силу закономерности внутреннего строения кристаллов невозможны. Ось симметрии первого порядка L1 показывает, что для совмещения фигуры с её начальным положением нужно сделать поворот на 360 градусов , это соответствует полному отсутствию симметрии, ибо любой предмет при повороте на 360 градусов вокруг любого реального направления совместится с самим собой.

4. Инверсионные оси симметрии. Инверсионной осью симметрии (Li) называется воображаемая прямая, при повороте вокруг которой на некоторый определённый угол и отражении в центральной точке фигуры (как в центре симметрии) фигура совмещается сама с собой, т.е. инверсионная ось представляет совместное действие оси симметрии и центра симметрии. При этом нужно отметить, что на кристаллах центр симметрии может не проявляться в виде самостоятельного элемента симметрии.

В кристаллах возможны только 32 сочетания элементов симметрии (32 вида симметрии). Виды симметрии объединяются в сингонии (от греческого "син" - сходно и "гония" - угол) или системы. Всего различают семь сингоний.

Триклинная, моноклинная и ромбическая сингонии называются низшими, потому что они не имеют осей симметрии выше второго порядка (L2).

Тригональная, тетрагональная и гексагональная сингонии называются средними; они имеют одну ось симметрии высшего порядка (L3, L4 или Li4), L6 (или Li6).

Кубическая сингония имеет несколько осей симметрии высшего порядка (L3, L4 или Li4); она называется высшей сингонией.

кристалл симметрия сингония свет

Какие виды симметрий у октаэдра?

У октаэдра 15 осей симметрии.9 из них проходят через противоположные вершины, шесть - через середины ребер. Центр симметрии октаэдра - точка пересечения его осей симметрии. Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4 вершины октаэдра, лежащие в одной плоскости. Шесть плоскостей симметрии проходят через две вершины, не принадлежащие одной грани, и середины противоположных ребер.

Октаэдр

Что такое сингония?

СИНГОНИЯ (от греч. syn - вместе и gonia - угол), классификационное подразделение кристаллов по признаку симметрии элементарной ячейки кристалла, характеризуется соотношениями между ее ребрами и углами. Существует 7 сингоний: кубическая, гексагональная, тетрагональная, тригональная, ромбическая, моноклинная, триклинная.

1. Какие виды сингоний относятся к высшему, низшему, среднему порядкам?

Существует 7 сингоний. В высшей категории имеется одна сингония -- кубическая. К средней категории относятся три сингонии: гексагональная, тетрагональная, тригональная. К низшей категории относятся три сингонии: ромбическая, моноклинная, триклинная.

Как связаны порядок сингонии и изотропность кристалла?

Анизотропные свойства в кристаллах высшей категории выражены слабее всего, поскольку любому направлению в кристалле соответствуют другие симметрично эквивалентные направления.

Кристаллы средней категории проявляют заметную анизотропию физических свойств, особенно заметно различие свойств вдоль и поперек главной оси симметрии.

К низшей категории относятся кристаллы, у которых нет осей симметрии порядка выше, чем 2, а единичных направлений несколько. Это наименее симметричные кристаллы с сильной анизотропией физических свойств.

Назовите любых 3 изотропных кристалла

Пирит, сфалерит, борацит

Чем объясняется то, что скорость прохождения света в веществе различная для разных направлений?

Скорость света в веществе меньше и зависит от состава вещества

Скорость света постоянная везде. Вещество состоит из атомов и молекул, а между ними вакуум, пространство без вещества. Вот в этом вакууме между атомами и молекулами движутся фотоны, конечно, если это разрешает структура кристаллической решётки. Если кристаллическая решётка располагается таким образом, что для прямолинейно движущихся фотонов есть сквозные коридоры, по которым фотоны могут двигаться, то фотоны пролетают вещество насквозь.

Фотоны летят в вакууме по сквозным коридорам между атомами и молекулами и сталкиваются с ними. При столкновении электроны атомов и молекул переизлучают фотоны и они снова летят в вакууме прямолинейно со скоростью света. На переизлучение фотонов затрачивается время. Таким образом, время прохождения единицы длины вещества фотонами будет больше, чем движение света вне вещества. Эта задержка прохождения фотонами вещества, зависящая от состава вещества, и будет выявляться в результате экспериментов. Необходимо уметь правильно трактовать результаты экспериментов. Задержка в прохождении светом веществ разная, а скорость света везде постоянная одна и та же, потому, что фотоны могут двигаться только в вакууме.

Размещено на Allbest.ru


Подобные документы

  • Дифракция рентгеновских лучей. Индицирование дифрактограмм кристаллов кубической сингонии. Пример обозначения плоскостей в элементарной ячейке, относящихся к семейству. Процесс установления индексов интерференции. Основные типы кубических решёток.

    лабораторная работа [3,5 M], добавлен 10.05.2019

  • Представление кристалла в обратном пространстве, получение выражения для характеризующих кристаллическую решетку объемных, плоскостных, линейных и угловых параметров. Правило для определения индексов плоскости и индексов лежащего в ней направления.

    презентация [255,5 K], добавлен 23.09.2013

  • Научные открытия физиков П.А. Черенкова, И.М. Франка и И.Е. Тамма, связанные с объяснением причины необычного по поляризации и длине волны излучения в веществе движением частиц со скоростями, превосходящими скорость распространения света в этой среде.

    презентация [3,5 M], добавлен 09.04.2015

  • Поворот плоскости поляризации света под действием магнитного поля. Характеристики оптических циркуляторов. Коэффициент отражения, использование эффекта Фарадея. Использование двулучепреломляющих элементов из кристалла рутила в качестве поляризаторов.

    доклад [417,8 K], добавлен 13.07.2014

  • Применения МД для исследования пластической деформации кристаллов. Алгоритм интегрирования по времени. Начальное состояние для кристалла с дефектами. Уравнение для ширины ячейки моделирования. Моделирования пластической деформации ГПУ кристаллов.

    дипломная работа [556,7 K], добавлен 07.12.2008

  • Общая характеристика и диаграмма энергетических уровней кристалла Cr2+:ZnSe. Селективный резонатор с фильтром Лио и с эталоном Фабри-Перо. Схема прохождения лучей при прохождении через дисперсионную призму в резонаторе. Спектры генерации Cr2+:ZnSe лазера.

    курсовая работа [1,5 M], добавлен 29.06.2012

  • Кварцевые резонаторы с пьезоэлементом: общая характеристика и основные технические параметры, виды преобразования энергии и возникающих колебаний. Срезы кристалла, зависимость резонансной частоты от толщины пьезопластин. Резонанс и антирезонанс.

    курсовая работа [1,0 M], добавлен 18.05.2013

  • Расчет графиков нагрузки потребителей и мощности подстанции. Выбор силовых трансформаторов и проводов ЛЭП; распределительного устройства высшего, среднего и низшего напряжения; силовых выключателей, разъединителей. Расчет токов короткого замыкания.

    курсовая работа [452,8 K], добавлен 06.10.2014

  • Диапазон шкалы электромагнитных волн, особенности ее спектра (полоса частот). Скорость света, основные виды радиоволн. Излучение как поток квантов - фотонов, распространяющихся со скоростью света. Инфракрасное, световое и рентгеновское излучение.

    презентация [635,5 K], добавлен 10.04.2014

  • Сущность и области применения в науке и технике поляризации света. Закон Малюса, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор. Вращение плоскости поляризации оптически активными веществами.

    реферат [490,8 K], добавлен 01.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.