Анализ сложных электрических цепей постоянного тока и однофазного переменного тока
Анализ электрических цепей постоянного тока. Расчёт токов с помощью законов Кирхгофа. Расчёт токов методом контурных токов. Расчёт токов методом узлового напряжения. Исходная таблица расчётов токов. Потенциальная диаграмма для контура с двумя ЭДС.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 02.10.2008 |
Размер файла | 382,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
- 2 -
Министерство высшего и профессионального образования
Российской Федерации
Иркутский Государственный Технический Университет
Курсовая работа
По электротехнике и электронике
Анализ сложных электрических цепей постоянного тока и однофазного переменного тока
Выполнил:
Проверила:
Василевич М.Р.
Иркутск 2006г
Содержание:
1. Анализ электрических цепей постоянного тока
Расчёт токов с помощью законов Кирхгофа
Расчёт токов методом контурных токов
Расчёт токов методом узлового напряжения
Исходная таблица расчётов токов
Потенциальная диаграмма для контура с двумя Э.Д.С
Баланс мощности
Определение показания вольтметра
2. Анализ электрических цепей переменного тока
Расчёт токов с помощью законов Кирхгофа
Расчёт токов методом контурных токов
Расчёт токов методом узлового напряжения
Исходная таблица расчётов токов
Векторная диаграмма токов и топографическая диаграмма напряжений на комплексной плоскости
Определение показания вольтметра
1. Анализ электрических цепей постоянного тока
=9 Ом
=7,5 Ом
=12 Ом
=22,5 Ом
=315 Ом
=10,5 Ом
=0
=12 Ом
=-
=15 В
=33 В
=-
=2 В
=0 В
В предложенной электрической цепи заменяем источники тока на источники ЭДС.
2)Выбираем условно положительное направление токов.
3)Выбираем направление обхода независимых контуров.
Находим эквиваленты:
=*/ (+) =21
=+=0+12=12 Ом
=+=15+2=17
=+=33+0=33
1.1 Расчёт токов с помощью законов Кирхгофа
Записываем систему уравнений для расчета электрических цепей с помощью законов Кирхгофа. По 1 закону составляем (у-1) уравнение, где у количество узлов. По 2 закону Кирхгофа составляем [b-(y-1)] уравнение, где b - количество ветвей.
a) ++=0
b) -+=0
c)- --=0
I) -+=
II) --=-
III)- + -=-
Рассчитываем систему уравнений с помощью ЭВМ, векторы решения находятся в приложении 1.
(Данные расчета находятся в приложении 1)
После расчета на ЭВМ записываем:
=1.29 A =-0.80 A
=0.77 A =-0.52 A
=1.32 A =0.03 A
1.2 Расчёт токов методом контурных токов
Находим действующие в цепи токи с помощью метода контурных токов. Предполагается, что каждый контурный ток имеет свое собственное контурное сопротивление, которое равно арифметической сумме всех сопротивлений входящих в контур. Контурное ЭДС равно сумме всех ЭДС входящих в контур.
В каждом независимом контуре рассматривают независимые и граничащие ветви. В каждой граничащей ветви находят общее сопротивление, которое равно сопротивлению этой ветви. Составляют систему уравнений, количество которых равно количеству контурных токов. В результате расчета находят контурные токи и переходят к действующим.
1) Предположим, что в каждом независимом контуре течет свой контурный ток ,,. Выберем произвольно положительное направление обхода токов в одно направление.
2)Находим полно контурное сопротивление всех контурных токов.
=++=7,5+10,5+21=39 Ом
=++=21+12+12=45 Ом
=++=9+7,5+12=28,5 Ом
Находим общее сопротивление
==
==
==
Находим полные контурные ЭДС
=
=
=-
Составляем систему уравнений для нахождения контурных токов
Согласно второму закону Кирхгофа
--=
-+-=
--+=
(Данные расчета находятся в приложении 2)
После расчета на ЭВМ записываем:
=-0.52455258749889799877 (А)
=-1.3224896411883981310 (А)
=-1.2913691263334214934 (А)
4.Ток в независимой цепи равен контурному току с учетом знаков, а ток в зависимой цепи равен алгебраической сумме.
=-I33=1.29 A
=I11-I33=-0.52455258749889799877-(-1.2913691263334214934) =0,77 A
=-I22=1.32 A
=I22-I11=-1.3224896411883981310-(-0.52455258749889799877) -0,8 A
=I11=-0.52 A
=I33-I22=-1.2913691263334214934-(-1.3224896411883981310) =0,03 A
В результате токи равны:
=1.29 A
=0,77 A
=1.32 A
= -0,8 A
= -0.52 A
= 0,03 A
1.3 Расчёт токов методом узлового напряжения
Проверяем правильность нахождения токов в заданной электрической цепи методом узловых потенциалов. Согласно этому методу предполагается, что в каждом узле схемы имеется свой узловой ток который равен алгебраической сумме всех токов за счет проводимости ветвей. Этот метод основан на первом законе Кирхгофа и законе Ома.
Заземляем узел 3, ?3=0
Если в электрической схеме заземляется один из узлов, потенциал этой точки равен 0, а тока распределение не меняется.
Находим собственные проводимости ветвей присоединенных к оставшимся узлам 1,2,4. Собственная проводимость ветвей равна арифметической сумме проводимостей ветвей присоединенных к соответствующим узлам.
Находим взаимные проводимости, которые равны проводимости общих ветвей между соседними узлами.
Находим полный узловой ток, который равен сумме произведений ЭДС на соответствующую проводимость.
Составляем уравнение в соответствии с первым законом Кирхгофа.
(Данные расчета находятся в приложении 3)
После расчета на ЭВМ записываем:
=16,756645482734525139
-0,37345273475483642976
11,248845822938816704
1. По закону Ома находим искомые токи.
=(-)/=(11,248845822938816704-( -0,37345273475483642976))/9=1,291367 A
=(-+)/=((0,083333-11,248845822938816704)+17)/7,5=0,777932 A
=(-+)/=(0-,37345273475483642976-16,756645482734525139+33)/12= 1,322492 A
=(-)/=(0,083333-16,756645482734525139)/21=-0,79397 A
=(-)/=(11,248845822938816704-16,756645482734525139)/10,5=-0,52455 A
=(-)/=(0,083333-( -0,37345273475483642976))/12=0,038065 A
Округляем искомые токи до сотых долей:
=1,29 A
=0,78 A
=1,32 A
=-0,79 A
=-0,52 A
=0,04 A
1.4 Исходная таблица расчётов токов
V Составляем исходную таблицу расчетов токов всеми методами
I токиМетод |
I1,A |
I2,A |
I3,A |
I4,A |
I5,A |
I6,A |
|
Закон Кирхгофа |
1,29 |
0,77 |
1,32 |
-0,8 |
-0,52 |
0,03 |
|
Контурных Токов |
1,29 |
0,77 |
1,32 |
-0,8 |
-0,52 |
0,03 |
|
Узловых Потенциалов |
1,29 |
0,78 |
1,32 |
-0,79 |
-0,52 |
0,04 |
1.5 Потенциальная диаграмма для контура с двумя Э.Д.С
VI Строим потенциальную диаграмму
?R==42 Ом
=0 |
=0 |
|
-= |
=-17 |
|
-= |
=-11.225 |
|
-= |
=-16.685 |
|
-= |
=-32.525 |
|
-=- |
=0.475 |
|
-=- |
=0 |
1.6Определение показания вольтметра
VII Находим показания вольтметра по второму закону Кирхгофа
pV=-17+33+0,77*7.5+(-0,52)*10.5-1,32*12=
=0.475 В
1.7 Баланс мощности
XIII Составляем баланс мощности
56.62Вт=56.65Вт
2. Анализ электрических цепей переменного тока
1) Начертим электрическую цепь без ваттметра и записать данные.
=40.5 мГн
=0 мГн
=35.4 мкФ
=53 мкФ
=25 Ом
f=150 Гц
=70.5 cos(?t+275)
'=68.5 cos(?t-174)
'=56 sin(?t-170)
2)Найдем сопротивление элементов входящих в цепь.
Ом
Ом
Ом
Ом
3) Находим комплексы ЭДС, входящие в цепь.
Л= Л'+ Л''
70.5 В
68.5 В
=56 В
2.1 Расчёт токов с помощью законов Кирхгофа
4)Производим расчет предложенной схемы методом законов Кирхгофа.
Выбираем условно положительное направление токов. Рассчитываем искомые токи.
Записываем систему уравнений для мгновенных значений токов и напряжений в соответствии с первым и вторым законами Кирхгофа в интегро-дифференциальной форме, причем по первому закону Кирхгофа составляем (у-1) -уравнений, а по второму закону Кирхгофа -[b-(y-1)]-уравнений.
(у-1)=1
[b-(y-1)]=2
Или в комплексной форме:
Решаем данную систему уравнений с помощью ЭВМ.
(Данные расчета находятся в приложении 4)
После расчета на ЭВМ записываем значения комплексных токов:
[A]
[A]
==4.69 [A]
Находим действующие значения токов:
=6.37 [A]
=2.2 [A]
=4.69 [A]
2.2 Расчёт токов методом контурных токов
5. Производим расчет данной схемы методом контурных токов.
Находим полные контурные сопротивления:
j(38.15-29.99)+25=25+8.16j [Ом]
j(0-20.03)+25=25-20.03j [Ом]
Находим взаимное сопротивление:
=25 [Ом]
Находим комплексы полных контурных ЭДС:
Записываем систему уравнений:
Решаем систему уравнений с помощью ЭВМ.
(Данные расчета находятся в приложении 5)
После расчета на ЭВМ Записываем значения контурных токов:
=3.08+5.57j [A]
=1.04+4.75j [A]
Причем контурный ток равен току в независимой ветви, т.е. току . Контурный ток равен току в независимой ветви, но направлен навстречу. Искомый ток =-.
Таким образом:
=3.08+5.57j [A]
=0.24+0.82j [A]
=-1.04-4.75j [A]
2.3Расчёт токов методом узлового напряжения
6) Проверяем правильность нахождения расчета методом узловых потенциалов.
Для этого узел 2 заземляем, а для остальных составляем систему уравнений.
?2=0
Находим полную комплексную проводимость узла.
=0.04-0.07j
(Данные расчета находятся в приложении 6)
Находим комплекс узлового тока.
=
=
(Данные расчета находятся в приложении 7)
Находим комплексный потенциал:
В результате решения этого уравнения находим комплекс потенциала
и по закону Ома находим искомые токи.
(Данные расчета находятся в приложении 8)
По закону Ома находим искомые токи:
= [A]
(Данные расчета находятся в приложении 9)
= [A]
(Данные расчета находятся в приложении 10)
= [A]
(Данные расчета находятся в приложении 11)
2.4 Исходная таблица расчётов токов
7)Составляем сводную таблицу искомых токов:
токиМетод |
,A |
,A |
,A |
|
Законы Кирхгофа |
3,08+5,57j |
2.04+0.82j |
-1.04-4.75j |
|
Контурных Токов |
3,08+5,57j |
2.04+0.82j |
-1.04-4.75j |
|
Узловых Потенциалов |
3,08+5,57j |
2.04+0.82j |
-1.04-4.75j |
2.5 Векторная диаграмма токов и топографическая диаграмма напряжений на комплексной плоскости
8) Строим на комплексной плоскости векторную диаграмму токов и топографическую диаграмму напряжений и график изменения тока в неразветвленной части цепи.
1. [B]
[B]
2. [B]
3. [B]
4. [B]
=
=3.08+5.57j=6.36 [A]
= [A]
рад
(Данные расчета находятся в приложении 12)
2.6 Определение показания вольтметра
9)Определяем показания вольтметра по второму закону Кирхгофа:
pV-
pV=+=44.06-41.27j+(2.04+0.82j)*25=95.06-20.77j
pV==97 B
Приложения
Приложение 1:
Приложение 2:
Приложение 3:
Приложение 4:
Приложение 5:
Приложение 6:
Приложение 7:
Приложение 8:
Приложение 9:
Приложение 10:
Приложение 11:
Приложение 12:
График изменения тока в неразветвленной части цепи
Подобные документы
Практические рекомендации по расчету сложных электрических цепей постоянного тока методами наложения токов и контурных токов. Особенности составления баланса мощностей для электрической схемы. Методика расчета реальных токов в ветвях электрической цепи.
лабораторная работа [27,5 K], добавлен 12.01.2010Расчет линейных электрических цепей постоянного тока, определение токов во всех ветвях методов контурных токов, наложения, свертывания. Нелинейные электрические цепи постоянного тока. Анализ электрического состояния линейных цепей переменного тока.
курсовая работа [351,4 K], добавлен 10.05.2013Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока. Определение токов во всех ветвях методом контурных токов. Расчет однофазных цепей переменного тока. Уравнение мгновенного значения тока источника, баланс мощности.
реферат [1,3 M], добавлен 05.11.2012Система уравнений для расчётов токов на основании законов Кирхгофа. Определение токов методами контурных токов и узловых потенциалов. Вычисление баланса мощностей. Расчет тока с помощью теоремы об активном двухполюснике и эквивалентном генераторе.
практическая работа [276,5 K], добавлен 20.10.2010Расчёт параметров цепи постоянного тока методом уравнений Кирхгофа, контурных токов и методом узловых напряжений. Расчёт баланса мощностей. Расчёт параметров цепи переменного тока методом комплексных амплитуд. Преобразование соединения сопротивлений.
курсовая работа [1,3 M], добавлен 14.04.2015Основные законы электрических цепей. Освоение методов анализа электрических цепей постоянного тока. Исследование распределения токов и напряжений в разветвленных электрических цепях постоянного тока. Расчет цепи методом эквивалентных преобразований.
лабораторная работа [212,5 K], добавлен 05.12.2014Схемы линейных электрических цепей постоянного тока. Определение и составление необходимого числа уравнений по законам Кирхгофа для определения токов во всех ветвях. Определение тока в первой ветви методом эквивалентного генератора, результаты расчетов.
реферат [1,3 M], добавлен 15.12.2009Порядок расчета цепи постоянного тока. Расчет токов в ветвях с использованием законов Кирхгофа, методов контурных токов, узловых потенциалов, эквивалентного генератора. Составление баланса мощностей и потенциальной диаграммы, схемы преобразования.
курсовая работа [114,7 K], добавлен 17.10.2009Применение метода комплексных амплитуд к расчёту цепей гармонического тока, особенности построения векторных диаграмм. Расчет методом контурных токов мгновенного значения токов в ветвях, проверка баланса мощностей, векторной диаграммы токов и напряжений.
курсовая работа [160,3 K], добавлен 19.12.2009Расчет электрической цепи постоянного тока с использованием законов Кирхгофа, методом контурных токов, методом узловых потенциалов. Расчет реактивных сопротивлений, комплексов действующих значений токов, баланса активных и реактивных мощностей цепи.
курсовая работа [143,9 K], добавлен 17.02.2016