Проектирование электроснабжения цеха механической сборки деталей

Расчет нагрузок и выбор силового трансформатора. Эксплуатация и ремонт электрооборудования. Электроэрозионная установка, защита электрооборудования от коррозий. Расчет токов короткого замыкания. Монтаж заземляющих шин внутреннего заземляющего контура.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 04.06.2013
Размер файла 974,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

Введение

1. Общая часть

1.1 Краткие сведения о предприятии

1.2 Структура предприятия

1.3 Характеристика цеха

1.4 Существующая схема электроснабжения

1.5 Выбор схемы электроснабжения

2. Расчетная часть

2.1 Расчет освещения

2.2 Расчет нагрузок и выбор силового трансформатора

2.3 Расчет токов короткого замыкания

2.4 Выбор аппаратуры

2.5 Расчет ЛЭП

2.6 Расчет и выбор кабеля

2.7 Расчет заземления

2.8 Эксплуатация и ремонт электрооборудования

2.9 Монтаж оборудования

2.10 Монтаж заземляющих шин внутреннего заземляющего контура

3. Специальная часть

3.1 Описание электрооборудования цеха и подстанций

3.2 Схема станций и подстанций, их описание

3.3 Электроэрозионная установка, защита электрооборудования от коррозий

4. Охрана труда

4.1 Мероприятия по безопасности эксплуатации оборудования

4.2 Мероприятия по ТБ при работе электрооборудования

4.3 Противопожарные мероприятия

5 Экономическая часть

5.1. Определение капитальных затрат

5.2 Расчет штата

5.3 Расчёт затрат на заработную плату, начисления на заработную плату

5.4 Расчет затрат на амортизацию

5.5 Расчёт затрат на электроэнергию

5.6 Расчёт затрат на материалы

5.7 Расчет затрат на ремонт, пусконаладочных расходов, накладных расходов, налогов

5.8 Определение калькуляции затрат по участку (цеху и т.д.)

Заключение

Список литературы

ВВЕДЕНИЕ

В данном дипломном проекте будет рассмотрено электроснабжение и электрооборудование цеха механической сборки деталей среднего машиностроительного завода.

Электроэнергия служит человеку уже много десятилетий, и с течением времени потребность в ней непрерывно возрастает, что объясняется её преимуществами перед другими видами энергии: легко преобразуется в механическую, тепловую и световую энергии; сравнительно просто передаётся на значительные расстояния; скорость распространения электроэнергии приблизительно равна скорости света, и, наконец, производство и потребление электроэнергии совпадают по времени.

В области электроснабжения потребителей задачи развития промышленности, путем повышения эффективности производства на базе ускорения научно-технического прогресса, предусматривают повышение уровня проектно-конструкторских разработок, внедрение и рациональную эксплуатацию высоконадежного электрооборудования, снижение непроизводственных расходов электроэнергии при передаче, распределении и потреблении.

Развитие и усложнение структуры систем электроснабжения, возрастающие требования к экономичности и надежности их работы в сочетании с изменяющейся структурой и характером потребителей электроэнергии, широкое внедрение устройств управления распределением и потреблением электроэнергии на базе современной вычислительной техники ставят проблему подготовки высококвалифицированных инженеров.

Важнейшим этапом в развитии творческой деятельности будущих специалистов является курсовое и дипломное проектирование, в ходе которого развиваются навыки самостоятельного решения инженерных задач и практического применения теоретических знаний.

Оптимизация производственных процессов в сочетании с оптимизацией систем промышленного электроснабжения может и должна дать стране дополнительные средства за счёт сокращения непроизводительных расходов

Система электроснабжения - это совокупность элементов предназначенных для преобразования, производства, распределения и потребления электрической энергии. Электрическую энергию производят электрические станция: ТЭС (тепловая электростанция), ТЭЦ (тепло-электроцентраль), ГЭС (гидро-электростанция), ГРЭС (гидро-распределительная электростанция), АЭС (атомная электростанция), ВЭС (ветряная электростанция). Помимо перечисленных станций также существуют не традиционные методы получения электрической энергии например: под действием солнца, энергии морских приливов и отливов, энергия получаемая в результате перегнивания пищевых отходов и растений окружающей среды(органические вещества) . Электроснабжение промышленных предприятий напрямую зависит от комплексного решения инженерных задач. Для обеспечения критичного оборудования «чистым» гарантированным электропитанием необходимо использовать источник бесперебойного питания, который обеспечит «неразрывность» синусоиды напряжения в случае аварии в сети общего пользования и защиту оборудования от всех видов электрических помех. Используя источники бесперебойного питания можно обеспечить надежное электроснабжение предприятий любой отрасли деятельности. Надежное электроснабжение -- важный фактор, определяющий успешное функционирование любого производства.

Для обеспечения бесперебойного питания нужно также учитывать резервное электроснабжение. Резервное электроснабжение позволяет полностью исключить риски, связанные с непредвиденным отключением напряжения в центральных электросетях.

Электрификация обеспечивает выполнение задачи широкой комплексной механизации и автоматизации производственных процессов, что позволяет усилить темпы роста производительности общественного труда, улучшить качество продукции и облегчить условия труда. На базе использования электроэнергии ведется техническое перевооружение промышленности, внедрение новых технологических процессов и осуществление коренных преобразований в организации производства и управлении им. Поэтому в современной технологии и оборудовании промышленных предприятий велика роль электрооборудования, т.е. совокупности электрических машин, аппаратов, приборов и устройств, посредством которых производится преобразование электрической энергии в другие виды энергии и обеспечивается автоматизация технологических процессов.

Электромашиностроение - одна из ведущих отраслей машиностроительной промышленности. Процесс изготовления электрической машины складывается из операций, в которых используется разнообразное технологическое оборудование. При этом основная часть современных электрических машин изготовляется методами поточно-массового производства. Специфика электромашиностроения заключается главным образом в наличии таких процессов, как изготовление и укладка обмоток электрических машин, для чего применяется не стандартизированное оборудование, изготовляемое обычно самими электромашиностроительными заводами.

Электромашиностроение характерно многообразием процессов, использующих электроэнергию: литейное производство, сварка, обработка металлов и материалов давлением и резанием, термообработка и т.д. Предприятия электромашиностроения широко оснащены электрифицированными подъемно-транспортными механизмами, насосными, компрессорными и вентиляторными установками.

Современная энергетика характеризуется нарастающей централизацией производства и распределения электроэнергии. Для обеспечении подачи электроэнергии от энергосистем к промышленным объектам, установкам, устройствам и механизмам служат системы электроснабжения состоящие из сетей напряжением до 1000 В и выше и трансформаторных, преобразовательных и распределительных подстанций. Для передачи электроэнергии на большие расстояния используются сверхдальние линии электропередач (ЛЭП) с высоким напряжением: 1150 кВ переменного тока и 1500 кВ постоянного тока.

В современных многопролетных цехах автомобильной промышленности широко используют комплектные трансформаторные подстанции (КТП), комплектные распределительные установки (КРУ), силовые и осветительные шинопроводы, аппараты коммутации, защиты, автоматики, контроля, учета и так далее. Это создает гибкую и надежную систему электроснабжения, в результате чего значительно уменьшаются расходы на электрообеспечение цеха.

Автоматизация затрагивает не только отдельные агрегаты и вспомогательные механизмы, но во все большей степени целые комплексы их, образующие полностью автоматизированные поточные линии и цехи.

Первостепенное значение для автоматизации производства имеют многодвигательный электропривод и средства электрического управления. Развитие электропривода идет по пути упрощения механических передач и приближения электродвигателей к рабочим органам машин и механизмов, а так же возрастающего применения электрического регулирования скорости приводов.

Целью настоящего дипломного проекта является проектирование электроснабжения механического цеха механической сборки деталей №9. Основной задачей настоящего проекта является проектирование надежного бесперебойного электроснабжения приемников цеха с минимальными капитальными затратами и эксплуатационными издержками и обеспечение высокой безопасности.

Системы электроснабжения промышленных предприятий создаются для обеспечения электроэнергией промышленных приемников, к которым относятся электродвигатели различных машин и механизмов, электрические печи, электролизные установки, аппараты и машины для электрической сварки, осветительные установки и др.

Система распределения и потребления электроэнергии, получаемой от энергосистем, строится таким образом, чтобы удовлетворялись основные требования электроприемников, находящихся у потребителей.

Надежность электроснабжения достигается благодаря бесперебойной работе всех элементов энергосистемы и применению ряда технических устройств как в системе, так и у потребителей: устройств релейной защиты и автоматики, автоматического включения резерва, контроля и сигнализации. Качество электроснабжения определяется поддержанием на установленном уровне значений напряжения и частоты, а также ограничением в сети высших гармоник, не синусоидальности и несимметричности напряжения.

Экономичность электроснабжения достигается путем разработки совершенных систем распределения электроэнергии, использования рациональных конструкций комплектных распределительных устройств и трансформаторных подстанций и разработки оптимизации системы электроснабжения. На экономичность влияет выбор рациональных напряжений, оптимальных значений сечений проводов и кабелей, числа и мощности трансформаторных подстанций, средств и компенсации реактивной мощности и их размещение в сети.

Реализация этих требований обеспечивает снижение затрат при сооружении и эксплуатации всех элементов системы электроснабжения, выполнение с высокими технико-экономическими показателями этой системы, надежное и качественное электроснабжение промышленных предприятий.

1. ОБЩАЯ ЧАСТЬ

1.1 Краткие сведения о предприятии

Машиностроительные заводы состоят из отдельных производственных единиц, называемых цехами, и различных устройств.

Состав цехов, устройств и сооружений завода определяется объемом выпуска продукции, характером технологических процессов, требованиями к качеству изделий и другими производственными факторами, а также в значительной мере степенью специализации производства и кооперирования завода с другими предприятиями и смежными производствами.

Специализация предполагает сосредоточение большого объема выпуска строго определенных видов продукции на каждом предприятии.

Кооперирование предусматривает обеспечение заготовками (отливками, поковками, штамповками), комплектующими агрегатами, различными приборами и устройствами, изготовляемыми на других специализированных предприятиях.

Если проектируемый завод будет получать отливки в порядке кооперирования, то в его составе не будет литейных цехов. Например, некоторые станкостроительные заводы получают отливки со специализированного литейного завода, снабжающего потребителей литьем в централизованном порядке.

Состав энергетических и санитарно-технических устройств завода также может быть различным в зависимости от возможности кооперирования с другими промышленными и коммунальными предприятиями по снабжению электроэнергией, газом, паром, сжатым воздухом, в части устройства транспорта, водопровода, канализации и т. д.

Дальнейшее развитие специализации и в связи с этим широкое кооперирование предприятий значительно отразятся на производственной структуре заводов. Во многих случаях в составе машиностроительных заводов не предусматриваются литейные и кузнечно-штамповочные цехи, цехи по изготовлению крепежных деталей и т. п., так как заготовки, метизы и другие детали поставляются специализированными заводами. Многие заводы массового производства в порядке кооперирования со специализированными заводами также могут снабжаться готовыми узлами и агрегатами (механизмами) для выпускаемых машин; например, автомобильные и тракторные заводы - готовыми двигателями и др.

1.2 Структура предприятия

Состав машиностроительного завода можно разделить на следующие группы:

1. Заготовительные цехи (чугунолитейные, сталелитейные, литейные цветных металлов, кузнечные, кузнечно-прессовые, прессовые, кузнечно-штамповочные и др. );

2. Обрабатывающие цехи (механические, термические, холодной штамповки, деревообрабатывающие, металлопокрытий, сборочные, окрасочные и др.);

3. Вспомогательные цехи (инструментальные, ремонтно-механические, электроремонтные, модельные, экспериментальные, испытательные и др. );

4. Складские устройства (для металла, инструмента, формовочных и шихтовых материалов и др.);

5. Энергетические устройства (электростанция, теплоэлектроцентраль, компрессорные и газогенераторные установки);

6. Транспортные устройства;

7. Санитарно-технические устройства (отопление вентиляция, водоснабжение, канализация);

8. Общезаводские учреждения и устройства (центральная лаборатория, технологическая лаборатория, центральная измерительная лаборатория, главная контора, проходная контора, медицинский пункт, амбулатория, устройства связи, столовая и др.).

Производство металлообрабатывающего оборудования, особенно станков, занимает важное место в машиностроении, обеспечивает его необходимыми основными производственными фондами. От наличного парка станков, их должного технологического уровня, оптимальной структуры по видовому составу и значимости в значительной степени зависят производственные возможности самого машиностроения, его соответствие современным требованиям и способности для технологического перевооружения всего производства и прежде всего машиностроения. Состояние и техникотехнологический уровень станкостроения, структура металлообрабатывающего устройства страны - один из основных показателей развития машиностроения, ее производственных возможностей.

1.3 Характеристика цеха

Цех механической сборки деталей предназначен для выпуска оборудования пищевой промышленности.

Цех является составной частью производства машиностроительного завода.

Цех предусматривает производственные, вспомогательные, служебные и бытовые помещения. Цех получает электроснабжение (ЭСН) от собственной цеховой трансформаторной подстанции (ТП) расположенной на расстоянии 1,5 км. От подстанции глубокого ввода (ПГВ) ЗАВОДА. Подводимое напряжение 6,10 или 35 кВ.

ПГВ подключено к энергосистеме (ЭНС), расположенной на расстоянии 8 км. Потребители ЭЭ относятся к 2 и 3 категории надежности ЭСН. Количество рабочих смен 2. Грунт в районе цеха - глина с температурой +50С. Каркас здания сооружен из блоков - секций длиной 6 и 8 м каждый. Размеры участка АхВхН=52х36х10м. Все помещения, кроме станочного отделения, двухэтажные.

Таблица 1- Перечень оборудования цеха

Номер на плане

Наименование оборудования

Установленная мощность (кВт)

1

2

3

1-3

Вертикально-фрезерный станок

3

4-5

Фрезерный станок

12

6-7

Универсально-фрезерный станок

9

8-11

Токарно-револьверный станок

2

12-13

Токарно-винторезный станок

10

14-21

Настольно-сверлильный станок

2

22-24

Резьбонарезной полуавтомат

0,5

25-26

Заточный станок

4

27

Листозагибочная машина

15

28-31

Точильно-шлифовальный станок

3

32-34

Вертикально-сверлильный станок

2

35-36

Радиально-сверлильный станок

3

37-38

Универсально-заточный станок

1

39

Плоскошлифовальный станок

10

40-41

Полировальный станок

8

42

Сварочная машина

5

43-48

Сварочная кабина

4

49-50

Вентиляторы

8

Размещено на http://www.allbest.ru/

1.4 Существующая схема электроснабжения

Для распределения электрической энергии внутри цехов промышленных предприятий служат электрические сети напряжением до 1000В.

Схема внутрицеховой сети определяется технологическим процессом производства, планировкой помещений цеха, взаимным расположением ЭП, ТП и вводов питания, расчетной мощностью, требованиями бесперебойности электроснабжения, условиями окружающей среды, технико-экономическими соображениями.

Питание ЭП цеха обычно осуществляется от цеховой подстанции ТП или ТП соседнего цеха.

Внутрицеховые сети делятся на:

· питающие

· распределительные.

Питающие сети отходят от центрального распределительного щита цеховой ТП к силовым распределительным шкафах СП, к распределительным шинопроводам ШРА или к отдельным крупным ЭП. В некоторых случаях питающая сеть выполняется по схеме БТМ ("Блок - трансформатор - магистраль").

Распределительные сети - это сети, идущие от силовых распределительных шкафов или шинопроводов непосредственно к ЭП. При этом ЭП подсоединяется к распределительным устройствам отдельной линией. Допускается подсоединять одной линией до 3-4 ЭП мощностью до З кВ, соединенные в цепочку.

По своей структуре схемы могут быть радиальными, магистральными и смешанными.

Радиальные схемы с использованием СП применяются при наличии сосредоточенных нагрузок с неравномерным их расположением по площади цеха, а также во взрыво- и пожароопасных цехах, в цехах с химически активной и пыльной средой. Они обладают высокой надежностью и применяются для питания ЭП любых категорий. Сети выполняются кабелями или изолированными проводами.

Магистральные схемы целесообразно применять для питания нагрузок распределительных относительно равномерно по площади цеха, а также для питания групп ЭП принадлежащих одной технологической линии. Схемы выполняются шинопроводами или кабелями. При нормальной среде для построения магистральных сетей можно использовать комплексные шинопроводы.

1.5 Выбор схемы электроснабжения

Важной технической задачей, которую нужно решать при проектировании электроснабжения, является выбор напряжения силовой и осветительной сети. От правильности выбора будут зависеть потери напряжения, электроэнергии и многие другие факторы. Выбор напряжения основывается на сравнении технико-экономических показателей различных вариантов. При выборе напряжения для питания силовых и осветительных потребителей следует отдавать предпочтение варианту с более высоким напряжением, так как чем больше величина U, тем меньше ток в проводах, тем меньше сечение, меньше потери мощности и энергии.

Выбор схемы электроснабжения приемников цеха зависит от многих факторов:

· мощности отдельных потребителей;

· расположения потребителей;

· площади цеха;

· технологического процесса цеха, определяющего категорию электроприемников по бесперебойности электроснабжения.

Система электроснабжения должна удовлетворять следующим требованиям:

· удобство и надежность обслуживания;

· надлежащее качество электроэнергии;

· бесперебойность и надежность электроснабжения как в нормальном, так и в аварийном режиме;

· экономичность системы, то есть наименьшие капитальные затраты и эксплуатационные издержки;

· гибкость системы, то есть возможность расширения производства без существенных дополнительных затрат.

Для передачи и распределения электроэнергии к цеховым потребителям применяем наиболее совершенную схему блока «трансформатор - магистраль», что удешевляет и упрощает сооружение цеховой подстанции. Такие схемы очень распространены и обеспечивают гибкость системы и ее надежность, а также экономичность в расходе материалов.

Для проектируемого цеха применяем систему трёхфазного переменного тока с напряжением 380/220 В с глухо заземлённой нейтралью, что позволяет питать от одних и тех же трансформаторов силовые и осветительные нагрузки. Силовые потребители питаются напряжением 380 В, а освещение напряжением 220В. Согласно требований Техники Безопасности питание цепей управления и местного освещения осуществляется пониженным напряжением: Цепи управления питаются напряжением 110 В, освещение 12 В или 24.

При питании силовой и осветительной сети от одно трансформаторной ТП возникает мигание света осветительных приборов, так как происходит запуск мощных двигателей и возникают большие пусковые токи. Поэтому питание осуществляют от двух трансформаторной КТП. Силовые приемники с большими и частыми пиковыми нагрузками нужно подключить к одному из трансформаторов КТП, а более «спокойную» нагрузку к другому трансформатору. В этом случае рабочее освещение необходимо запитывать от трансформатора со «спокойной» нагрузкой, а аварийное освещение от трансформатора с «неспокойной» нагрузкой, с тем чтобы обеспечить надлежащее качество рабочего освещения.

2. РАСЧЕТНАЯ ЧАСТЬ

2.1 Расчет освещения

Освещаемый объем помещения ограничивается ограждающими поверхностями, отражающими значительную часть светового потока, попадающего на них от источников света. В установках внутреннего освещения отражающими поверхностями являются пол, стены, потолок и оборудование, установленное в помещении. В тех случаях, когда поверхности, ограничивающие пространство, имеют высокие значения коэффициентов отражения, отраженная составляющая освещенности может иметь также большое значение и ее учет необходим, поскольку отраженные потоки могут быть сравнимы с прямыми и их недооценка может привести к значительным погрешностям в расчетах.

В процессе выполнения расчетной части необходимо:

а) выбрать систему освещения, источник света, тип светильника для заданного участка или рабочего помещения;

б) произвести расчет общего освещения рабочего помещения.

Цель расчета общего освещения - определить количество светильников необходимых для обеспечения Еmin и мощность осветительной установки, необходимых для обеспечения в цехе нормированной освещенности. Ниже рассмотрен расчет общего освещения методом коэффициента использования светового потока.

При расчете по указанному методу необходимый световой поток одной лампы определяется по формуле:

(1)

или количество светильников:

(2)

где Еmin - минимальная нормированная освещенность, лк;

k - коэффициент запаса (для ламп накаливания k=1,15, для люминесцентных и ламп ДРЛ,

S - освещаемая площадь, м2;

Z - коэффициент минимальной освещенности (коэффициент неравномерности освещения)(при расчете освещения от светильников с лампами накаливания и ДРЛ Z = 1,15)

N - число светильников;

n - число ламп в светильнике;

h - коэффициент использования светового потока в долях единицы.

Мощность осветительной установки Р определяется из выражения:

(3)

Где: Рi - потребляемая мощность одной лампы, кВт.

Рекомендуемый алгоритм расчета

Расчет общего освещения рекомендуется выполнять в следующей последовательности:

1.Выбрать систему освещения.

2. Обосновать нормированную освещенность на рабочих местах заданного объекта.

3. Выбрать экономичный источник света.

4. Выбрать рациональный тип светильника.

5. Оценить коэффициент запаса освещенности, k, и коэффициент неравномерности освещения, Z.

6. Оценить коэффициенты отражения поверхностей в помещении (потолка, стен, пола), r.

7. Рассчитать индекс помещения i.

8. Найти коэффициент использования светового потока, h.

9. Рассчитать требуемое количество светильников, N, или световой поток лампы, Фл, которые необходимы для обеспечения на объекте требуемой освещенности Еmin.

10. Выполнить эскиз расположения светильников на плане помещения с указанием размеров.

Принципы выбора основных элементов, необходимых для расчета

Выбор системы освещения:

В настоящей работе рассматривается только рабочее освещение, которое может быть общим и комбинированным. Устройство в производственных помещениях только местного освещения запрещено.

Выбор системы освещения зависит, прежде всего, от такого важнейшего фактора, как точность выполняемых зрительных работ (наименьший размер объекта различения), согласно действующим нормам при выполнении работ I - IV разрядов следует применять систему комбинированного освещения. В механических, инструментальных, сборочных и др., как правило, применяют систему комбинированного освещения. Выбор системы освещения производится одновременно с выбором нормированной освещенности.

Выбор нормированной освещенности:

Количественные и качественные показатели искусственного освещения определяют согласно действующим нормам.

В качестве количественной характеристики освещенности принята наименьшая освещенность рабочей поверхности Еmin, которая зависит от разряда зрительных работ, фона и контраста объекта с фоном и системы освещения.. Разряд зрительных работ определяется минимальным размером объекта различения, т.е. размером предмета, его части или дефекта на нем, которые необходимо обнаружить или различить в процессе производственной деятельности.

Качественные показатели освещения (коэффициент пульсации и показатель ослепления) в данной работе не рассматриваются.

Можно принять значение Еmin для точных работ III разряда 300-500 лк, для средней точности IV разряд 150 -300 лк, для работ малой точности V разряд 100 -150 лк. Меньшее значение освещенности в каждом разряде для светлого фона и большого контраста, большее для темного фона и малого контраста.

Определяющими параметрами при выборе экономичного источника света являются строительные параметры, архитектурно - планировочное решение, состояние воздушной среды, вопросы дизайна и экономические соображения.

Проектируя освещение, конструктор всегда принимает компромиссное решение.

Лампы накаливания - малоэкономичны, имеют светоодачу 7 -26 лм/Вт, они имеют искаженный спектр излучения, при работе сильно нагреваются. Но, с другой стороны они имеют низкую стоимость, просты в эксплуатации и могут быть рекомендованы для помещений с временным пребыванием людей, бытовых помещений и др.

В производственных помещениях высотой до 7 - 12 м целесообразно применять лампы типа ДРЛ, т.к. они более мощные и имеют большую светоотдачу до 90 лм/Вт.

Окончательный выбор источника света должен осуществляться одновременно с выбором типа светильника, частью которого он является.

Выбор светильников общего освещения производится на основе учета светотехнических, экономических требований, условий воздушной среды. Существует классификация светильников по светораспределению: прямого, преимущественно прямого, рассеянного, преимущественно отраженного и отражающего света.

Кроме этого существуют светильники с различными кривыми силы света: концентрированной, глубокой, косинусной, полу широкой, широкой, равномерной и синусной.

Согласно ГОСТ 14254-69 светильники классифицируют по степени защиты от пыли, воды и взрыва.

По конструктивному исполнению различают 7 эксплуатационных групп светильников. Ввиду чрезвычайного разнообразия светильников конкретный выбор светильника должен решаться совместно со специалистами по энергетике, экономистами, дизайнерами и с учетом требований по охране труда.

Коэффициент запаса k учитывает запыленность помещения, снижение светового потока ламп в процессе эксплуатации. Значения коэффициента k приведены в таблице.

Таблица 2 Значения коэффициента k

Помещения

Примеры помещений

Коэффициент запаса k

Лампы накаливания

Дым, копоть 1-5мг/м3

Сварочные цеха

1,5

Менее 1 мг/м3

Инструментальные, сборочные цеха

1,3

Коэффициент минимальной освещенности Z характеризует неравномерность освещения. Он является функцией многих переменных, точное его определение затруднительно, но в наибольшей степени он зависит от отношения расстояния между светильниками к расчетной высоте (L / h).

Выбирают способ размещения светильников, который может быть симметричным или локализованным. При симметричном размещении светильники располагаются как вдоль, так и поперек помещения на одинаковом расстоянии, по углам прямоугольника или в шахматном порядке. Симметричное размещение светильников обеспечивает одинаковое освещение оборудования, станков, рабочих мест и проходов, но требует большого расхода электроэнергии. При локализованном расположении светильники размещают с учетом местонахождения станков, машин, оборудования, мест контроля и рабочих мест. Такое расположение светильников, сокращающее расход электроэнергии, применяют в цехах с несимметричным размещением оборудования.

Далее определяют отношение расстояния между светильниками L к высоте их подвеса h. В зависимости от типа светильника это отношение L / h при расположении светильников прямоугольником может быть принято равным 1,4-2,0, а при шахматном расположении -1,7-2,5.

Высота расположения светильника над освещаемой поверхностью

Hc=H - hcв - hp (4)

где: Н - общая высота помещения, м;

hcв - высота от потолка до нижней части светильника, м;

hр - высота от пола до освещаемой поверхности, м.

Чтобы уменьшить ослепляющее действие светильников общего освещения, высоту подвеса их над уровнем пола устанавливают не менее 2,5-4 м при лампах мощностью до 200 Вт и не менее 3-6 м при лампах большей мощности.

Потребное число светильников (ламп) n= S/LІ (при La = Lb).

При расположении светильников в линию (ряд), если выдержано наивыгоднейшее отношение L / h, рекомендуется принимать Z = 1,15 для ламп накаливания и ДРЛ.

Рис.1 Схема расположения светильников в помещении

Для определения коэффициента использования светового потока h находят индекс помещения i и предполагаемые коэффициенты отражения поверхностей помещения: потолка rп, стен rс, пола rр.

Для пыльных производственных помещений:

rп = 30%,

rс = 10%,

rр = 10%.

Индекс помещения определяется по следующему выражению:

(5)

где: А, В, h - длина, ширина и расчетная высота (высота подвеса светильника над рабочей поверхностью) помещения, м.

(6)

где: H - геометрическая высота помещения;

hсв - свес светильника.

Обычно: hсв = 0,2 ...0,8 м;

hp - высота рабочей поверхности.

hp = 0,8 ...1,0 м.

Коэффициент использования светового потока есть сложная функция, зависящая от типа светильника, индекса помещения, коэффициента отражения потолка стен и пола.

Промежуточные значения коэффициента использования находятся методом интерполяции.

При заданном Фл, т.е. известно какие лампы будут использоваться, находим N, т.е. сколько светильников надо применить.

При заданном N или n, определяем Фл. По найденному Фл выбирают ближайшую, стандартную лампу в пределах допусков - 10 ё +20 %.

Таблица 3 Значение коэффициента использования h для светильников с люминесцентными лампами, %

I

rп , %30

rс ,%10

rр , %10

0,5

18

Таблица 4 Расчетные значения светового потока наиболее распространенных источников света Фл.

Тип лампы

ФЛ, лм

ДРЛ 250

11000

Пример расчета помещения методом коэффициента использования

Пример. В помещении с размерами А=52 м, В=36 м, H=10 м, hp=0,9 м и коэффициентами отражения потолка rп=30 %, стен rc=10 %, расчетной поверхности rр=10 % определить методом коэффициента использования светового потока освещение светильниками "Астра" с лампами накаливания для создания освещенности Е=50 лк.

Решение. В помещении с малым выделением пыли осветительную установку с лампами накаливания рассчитывают при коэффициенте запаса k=1,15. В светильнике "Астра" косинусное светораспределение. Поэтому оптимальное относительное расстояние между светильниками следует взять л=1,6. Приняв высоту света светильников hcв=0,5 м, получим расчетную высоту

hр=10-0,9-0,5=8,6 м

и расстояние между светильниками

L=8,6 Ч 1,6=13,76 м.

Число рядов светильников в помещении

Nb=36/13,76=2,6.

Число светильников в ряду

Na=52/13,76=3,77.

Округляем эти числа до ближайших больших Na=4 и Nb=3.

Общее число светильников

N= Na Ч Nb=4 Ч 3=12. (7)

Размещаем окончательно светильники.

По ширине помещения расстояние между рядами Lb=3,77 м, а расстояние от крайнего ряда до стены чуть больше 0,3L, а именно 1,13 м. В каждом ряду расстояние между светильниками примем также La=13,76 м, а расстояние от крайнего светильника до стены будет:

Это составляет 0,28 L=3,85

Индекс помещения

i=52 Ч 36/[8,6(52+36)]=1872/(8,6 Ч 88)=2,47.

По справочнику выбираем коэффициент использования светового потока з=0,6. Так как расстояние между светильниками практически равно оптимальному, то принимаем коэффициент минимальной освещенности z=1,15. Определяем необходимый световой поток лампы

Фл = 50 Ч 1,15 Ч 1872 Ч 1,15/(12 Ч 0,6) = 17192,5лм

Выбираем по таблице ближайшую стандартную лампу ДРЛ 250, имеющую поток Фл=11000 лм, что меньше расчетного значения

ДФ=(11000-17192,5)100/17192,5= - 3,6 %.

2.2 Расчет нагрузок и выбор силового трансформатора

При определении расчетных электрических нагрузок можно пользоваться основными методами:

1. упорядоченных диаграмм (метод коэффициента максимума);

2. удельного потребления электроэнергии на единицу продукции;

3. коэффициента спроса;

4. удельной плотности электрической нагрузки на 1 м2 производственной площади.

Расчет ожидаемых нагрузок приводится методом упорядоченных диаграмм, являющимся в настоящее время основным при разработке технических и рабочих проектов электроснабжения.

Расчетная максимальная мощность электроприемников определяется из выражения:

Pmax=Kmax * Kи * Pном = Kmax * Pсм, (8)

где: Kи - коэффициент использования;

Kmax - коэффициент максимума активной мощности;

Pсм - средняя активная мощность электроприемников за более загруженную схему.

Необходимо рассчитать коэффициент использования оборудования цеха механической сборки деталей за месяц по времени их работы. В цехе сорок два станка, персонал работает в две смены по восемь часов.

Определите плановый фонд рабочего времени за анализируемый перида с учетом установленного режима работы. Для его расчета можно использовать производственный табель-календарь, если предприятие работает по пятидневной рабочей неделе. Если на производстве установлены смены, то плановый фонд рабочего времени рассчитывается, исходя из утвержденных графиков сменности. В данном примере плановая загрузка одного станка по времени на месяц будет равна: 30 дней на 24 часа = 720 часов.

Определяем число часов фактической работы станков в цехе за период. Для этого нам потребуются данные табелей учета рабочего времени. Найдем общее количество часов, отработанных персоналом цеха. Пусть за месяц рабочими цеха механической сборки деталей отработано было отработано 14784 человеко-часов, что соответствует фактическому времени работы станков.

Рассчитаем коэффициент использования оборудования ткацкого цеха по формуле:

Ки= (Фр/С)/Фп, (9)

где: Фр - фактическое количество отработанного времени всеми станками, час,

С - количество станков в цехе, шт,

Фп - плановый фонд рабочего времени, час.

В данном примере коэффициент использования оборудования будет равен:

14784/42/720 = 0,5.

Следовательно, станки ткацкого цеха за месяц использовались на 50%. Остальные 50% - это его простои.

Для группы электроприемников за более загруженную смену режима работы средняя активная и реактивная нагрузки определяются по формуле:

Рсм = Кu * Рном (10)

Qсм = Pсм * tg ц, (11)

где tg ц - соответствует средневзвешенному cos ц для электроприемников данного режима работы.

Средневзвешенный коэффициент использования определяется по формуле:

КU.СР.ВЗ. = ?Рсм / ?Рном, (12)

где ?Рсм - суммарная мощность электроприемников и групп за наиболее загруженную смену;

?Рном - суммарная номинальная мощность электроприемников в группе.

Относительное число электроприемников определяется по формуле:

N* = n1/n, (13)

где n1 - число крупных приемников в группе;

n - число всех приемников в группе.

Относительная мощность наибольших по мощности электроприемников определяется из выражения:

Р* = ?Рn 1/?Рном, (14)

где ?Рn 1 - суммарная активная номинальная мощность крупных электроприемников группы;

?Рном - суммарная активная номинальная мощность электроприемников группы.

Основное эффективное число электроприемников в группе определяется по справочным таблицам, исходят из значений n* и Р*

n*э = f(n*; P*) (15)

Эффективное число электроприемников в группе определяется по формуле:

Nэ = n*э * n (16)

Коэффициент максимума определяется по справочным таблицам, исходя из значений nэ и КU.СР.ВЗ.:

Кmax = f(Nэ; КU.СР.ВЗ.) (17)

Расчетная максимальная активная мощность цепи:

Рмах = Кмах * ?Рсм (18)

Расчетная максимальная реактивная мощность в цепи:

Qmax = 1.1 ?Qсм (19)

Полная расчетная мощность группы определяется по формуле:

Smax = vPmax2 + Qmax2 (20)

Максимальный расчетный ток группы определяется по формуле:

Imax = Smax/(v3 * Uном) (21)

Расчет ожидаемых нагрузок цеха металлорежущих станков.

1. Определяем среднюю активную и реактивную мощности за более загруженную схему электроприемников.

Пример расчета для станков позиции 1-3

Рсм1-3 = Рном Ч Ки = 3 Ч 0,5 Ч 3 = 4,5 кВт (22)

Qсм1-3 = Рсм1-3 Ч tgц = 4,5 Ч 0,75 = 3,4 кВАр (23)

Остальные данные по расчету представлены в таблице 5

2. Определяем суммарную мощность по группе:

?Pном = 3Pсм1-3 + 2Pсм4,5 + 2Pсм6,7 + 4Pсм8-11 + 2Pсм12-13+ 8Pсм14-21 + 3Pсм22-24 + 2Pсм25-26 + 1Pсм27 + 4Pсм28-31+ 3Pсм32-34 + 2Pсм35-36 + 2Pсм37-38+ 1Pсм39 + 2Pсм40-41 + 1Pсм42 + 6Pсм43-48 + 2Pсм 49-50 = 216,5 кВт (24)

3. Суммируем активные и реактивные нагрузки:

?Pсм = Pсм1-3 + Pсм4,5 + Pсм6,7 + Pсм8-11 + Pсм12-13+ Pсм14-21 + Pсм22-24 + Pсм25-26 + Pсм27 + Pсм28-31+ Pсм32-34 + Pсм35-36 + Pсм37-38+ Pсм39 + Pсм40-41 + Pсм42 + Pсм43-48 + Pсм 49-50 = 108,25 кВт (25)

?Qсм = Qсм1-3 + Qсм4,5 + Qсм6,7 + Qсм8-11 + Qсм12-13+ Qсм14-21 + Qсм22-24 + Qсм25-26 + Qсм27 + Qсм28-31+ Qсм32-34 + Qсм35-36 + Qсм37-38+ Qсм39 + Qсм40-41 + Qсм42 + Qсм43-48 + Qсм 49-50 = 81,21 кВАр. (26)

4. Определяем средневзвешенное значение коэффициента использования:

Ки.ср.вз = 108,25 /216,5 = 0,5

5. Определяем относительное число электроприемников:

N* = 12/42 = 0,3

6. Определяем относительную мощность наибольших по мощности электроприемников:

Р* = 119/216,5 = 0,55 кВт

7. Основное эффективное число электроприемников в группе определяем исходя из значений N*и Р*:

n*э = 0,68

8. Определяем эффективное число электроприемников в группе:

Nэ = 0,68 Ч 42 = 28,56

9. Коэффициент максимума Кмах служит для перехода от средней нагрузки к максимальной. Коэффициент максимума активной мощности определяем исходя из значений nэ и Ки.ср.вз:

Кмах = 0,51

10. Определяем расчетную максимальную активную мощность цепи:

Рмах = 0,51 Ч 108,25 = 55,21 кВт

11. Определяем расчетную максимальную реактивную мощность цепи:

Qмах = 1,1 Ч 81,21 = 89,33 кВАр

12. Определяем полную расчетную мощность группы:

Sмах =105,01

13. Определяем максимальный расчетный ток группы:

Iмах = 105,01/(1,73 Ч 0,38) = 159,7 А

Таблица 5 Сводная ведомость электрических силовых нагрузок по цеху

Наименование

Рном кВт

Рсм, кВт

Qсм, кВАр

Кмах

Ки

Iмах, А

Максимальная нагрузка

Рмах, кВт

Qмах, кВАр

Sмах, кВА

1

2

3

4

5

6

7

8

9

10

11

1-3

Вертикально-фрезерный станок

3

4,5

3,4

0,5

4-5

Фрезерный станок

12

12

9

0,5

6-7

Универсально-фрезерный станок

9

9

6,75

0,5

8-11

Токарно-револьверный станок

2

4

3

0,5

12-13

Токарно-винторезный станок

10

10

7,5

0,5

14-21

Настольно-сверлильный станок

2

8

6

0,5

22-24

Резьбонарезной полуавтомат

0,5

0,75

0,56

0,5

25-26

Заточный станок

4

4

3

0,5

27

Листозагибочная машина

15

7,5

5,6

0,5

28-31

Точильно-шлифовальный станок

3

6

4,5

0,5

32-34

Вертикально-сверлильный станок

2

3

2,25

0,5

35-36

Радиально-сверлильный станок

3

3

2,25

0,5

37-38

Универсально-заточный станок

1

1

0,75

0,5

39

Плоскошлифовальный станок

10

5

3,75

0,5

40-41

Полировальный станок

8

8

6

0,5

42

Сварочная машина

5

2,5

1,9

0,5

43-48

Сварочная кабина

4

12

9

0,5

49-50

Вентиляторы

8

8

6

0,5

ИТОГО:

0,51

0,5

159,7

55,21

89,33

105,01

Выбор числа и мощности силовых трансформаторов для главных понизительных подстанций (ГПП) промышленных предприятий должен быть технически и экономически обоснован, так как это оказывает существенное влияние на рациональное построение схем промышленного электроснабжения. При выборе числа и мощности силовых трансформаторов используют методику технико-экономических расчетов, а также учитывают такие показатели, как надежность электроснабжения потребителей, расход цветного металла и потребная трансформаторная мощность. Для удобства эксплуатации систем промышленного электроснабжения стремятся к применению не более двух-трех стандартных мощностей трансформаторов, что ведет к сокращению складского резерва и облегчает взаимозаменяемость трансформаторов. Желательна установка трансформаторов одинаковой мощности, но такое решение не всегда выполнимо. Выбор трансформаторов следует производить с учетом схем электрических соединений подстанций, которые оказывают существенное влияние на капитальные вложения и ежегодные издержки по системе электроснабжения в целом, определяют ее эксплуатационные и режимные характеристики.

В целях удешевления подстанций (ГПП или ГРП) напряжением 35 -- 220 кВ широко применяют схемы без установки выключателей на стороне высшего напряжения (по схеме блока линия -- трансформатор), приведенные на рис. 1. Цеховые трансформаторы, как правило, не должны иметь распределительного устройства на стороне высшего напряжения (рис. 2). Следует широко применять непосредственное (глухое) присоединение питающего кабеля к трансформатору при радиальных схемах питания трансформатора (рис. 2, а) или присоединение через разъединитель или выключатель нагрузки при магистральных схемах питания (рис. 2,6, в, г). При магистральной схеме питания трансформатора мощностью 1000 кВ А и выше вместо разъединителя устанавливают выключатель нагрузки, так как при напряжении 6 -- 20 кВ разъединителем можно отключать XX трансформатора мощностью не более 630 кВ А. В настоящее время вновь сооружаемые цеховые трансформаторные подстанции выполняют комплектными (КТП), полностью изготовленными на заводах и крупными блоками монтируемыми на промышленных предприятиях.

Рис. 2 Конструктивно цеховые трансформаторные подстанции (ТП) подразделяют на внутрицеховые, которые размещают в многопролетных цехах; встроенные в контур цеха, но имеющие выкатку трансформаторов наружу; пристроенные к зданию; отдельно расположенные на территории предприятий, которые применяют при невозможности размещения внутрицеховых, встроенных или пристроенных подстанций по условиям производства.

Рис. 3. Основные схемы подключения цеховых ТП с высшим напряжением 6 -- 20 кВ: а -- глухое присоединение; б, в, г -- присоединение ТП через коммутационные аппараты (ВН -- выключатель нагрузки, Р -- разъединитель, ВНП -- выключатель нагрузки с предохранителем)

Выбор числа трансформаторов связан с режимом работы станции или подстанции. График нагрузки может быть таким, при котором по экономическим соображениям необходимо установить не один, а два трансформатора. Такие случаи, как правило, имеют место при плохом коэффициенте заполнения графика нагрузки (0,5 и ниже). В этом случае установка отключающих аппаратов необходима для оперативных действий (производящихся дежурным персоналом или происходящих автоматически) с силовыми трансформаторами при соблюдении экономически целесообразного режима их работы. Важными факторами, наиболее существенно влияющими на выбор номинальной мощности трансформатора и, следовательно, на его экономически целесообразный режим работы, являются температура охлаждающей среды в месте его установки и график нагрузки потребителя (изменения нагрузки в течение суток, недели, месяца, сезона и года).

Выбор типа трансформаторов производят с учетом условий их установки, температуры окружающей среды и т. п. Основное применение на промышленных предприятиях находят двухобмоточные трансформаторы. Трехобмоточные трансформаторы 110/35/6 -- 20 кВ на ГПП применяют лишь при наличии удаленных потребителей средней мощности, относящихся к данному предприятию. Трансформаторы с расщепленными обмотками 110/10--10 кВ или 110/6--10 кВ применяют на предприятиях с напряжениями 6 и 10 кВ при необходимости снижения тока КЗ и выделения питания ударных нагрузок.

Рис. 4. Однолинейные схемы электрических соединений ГПП с двумя трансформаторами без выключателей на стороне высшего напряжения: а --с короткозамыкателями и отделителями; б -- только с короткозамыкателями; в --с разъединителями и предохранителями типа ПСН.

Трансформаторы ГПП напряжением 35 -- 220 кВ изготовляют только с масляным охлаждением и обычно устанавливают на открытом воздухе. Для цеховых ТП с высшим напряжением 6 -- 20 кВ применяют масляные трансформаторы типов ТМ, ТМН, ТМЗ, сухие трансформаторы типа ТСЗ (с естественным воздушным охлаждением) и трансформаторы типа ТНЗ с негорючей жидкостью (совтол). Масляные трансформаторы цеховых ТП мощностью SHOM.T «S < 2500 кВ * А устанавливают на открытом воздухе и внутри зданий. Внутрицеховые ТП, в том числе и КТП, применяют только в цехах I и II степени огнестойкости с нормальной окружающей средой (категории Г и Д по противопожарным нормам). Число масляных трансформаторов на внутрицеховых подстанциях не должно быть более трех. Мощность открыто установленной КТП с масляными трансформаторами допускают до 2 х 1600 кВА. При установке на втором этаже здания допустимая мощность внутрицеховой подстанции должна быть не более 1000 кВ * А. Сухие трансформаторы мощностью SH0M T sg 1000 кВ- А применяют для установки внутри административных и общественных зданий, в лабораториях и других помещениях, к которым предъявляют повышенные требования в отношении пожаробезопасности (некоторые текстильные предприятия и т. п.). Сухие трансформаторы небольшой мощности (10 -- 400 кВА) размещают на колоннах, балках, фермах, так как они не требуют маслосборных устройств. Трансформаторы (совтоловые) типа ТНЗ предназначены для установки внутри цехов, где недопустима открытая установка масляных трансформаторов. Герметизированные совтоловые трансформаторы не требуют в условиях эксплуатации ни ревизии, ни ремонта. Их ремонт и ревизию производят на заводах-изготовителях.

Основными требованиями при выборе числа трансформаторов ГПП и цеховых ТП являются: надежность электроснабжения потребителей (учет категории приемников электроэнергии в отношении требуемой надежности), а также минимум приведенных затрат на трансформаторы с учетом динамики роста электрических нагрузок.

При проектировании подстанции учитывают требования, исходя из следующих основных положений. Надежности электроснабжения потребителей I категории достигают за счет наличия двух независимых источников питания, при этом обеспечивают резервирование питания и всех других потребителей. При питании потребителей I категории от одной подстанции необходимо иметь минимум по одному трансформатору на каждой секции шин, при этом мощность трансформаторов выбирают так, чтобы при выходе из строя одного из них второй (с учетом допустимой перегрузки) обеспечивал питание всех потребителей I категории. Резервное питание потребителей I категории вводится автоматически. Потребителей II категории обеспечивают резервом, вводимым автоматически или действиями дежурного персонала. При питании этих потребителей от одной подстанции следует иметь два трансформатора или складской резервный трансформатор для нескольких подстанций, питающий потребителей II категории, при условии, что замена трансформатора может быть произведена в течение нескольких часов. На время замены трансформатора вводят ограничение питания потребителей с учетом допустимой перегрузки оставшегося в работе трансформатора. Потребители III категории получают питание от однотрансформаторной подстанции при наличии «складского» резервного трансформатора.

При выборе числа трансформаторов исходят из того, что сооружение однотрансформаторных подстанций не всегда обеспечивает наименьшие затраты. Если по условиям резервирования питания потребителей необходима установка более чем одного трансформатора, то стремятся, чтобы число трансформаторов на подстанции не превышало двух. Двухтрансформаторные подстанции экономически более целесообразны, чем подстанции с одним или большим числом трансформаторов. При сооружении двух- трансформаторных подстанций ГПП выбирают наиболее простую схему электрических соединений со стороны высшего напряжения. Все остальные решения (подстанции с тремя и большим числом трансформаторов) являются обычно более дорогими. Однако они могут быть необходимы, когда приходится строить подстанции для питания потребителей, требующих разных напряжений. Главные понизительные подстанции, подстанции глубоких вводов (ПГВ) и цеховые ТП выполняют с числом трансформаторов не более двух. Для потребителей III и частично II категорий рассматривают вариант установки одного трансформатора с резервным питанием от соседней трансформаторной подстанции. В этом случае резервная подстанция является второй подстанцией и должна иметь запас мощности. На цеховых подстанциях с двумя трансформаторами рабочие секции шин низшего напряжения целесообразно держать в работе раздельно. При таком режиме ток КЗ уменьшается в 2 раза и облегчаются условия работы аппаратов напряжением до 1 кВ. При отключении одного работающего трансформатора второй принимает на себя нагрузку отключившегося в результате включения секционного автоматического выключателя.
В настоящее время цеховые ТП выполняют комплектными (КТП). Правильное определение числа КТП и мощности трансформаторов на них возможно только на основе технико-экономических расчетов (ТЭР) с учетом компенсации реактивных нагрузок на напряжении до 1 кВ. Число цеховых трансформаторов изменяется от минимально возможного Nmm (при полной компенсации реактивных нагрузок) до максимального Nmax (при отсутствии компенсирующих устройств) при среднем для всех ТП значении коэффициента загрузки Kt T. На двух- трансформаторных цеховых подстанциях при преобладании нагрузок I категории К-,. , принимают в пределах 0,65 -- 0,7; при преобладании нагрузок II категории 0,7--0,8, а при нагрузках III категории 0,9 -- 0,95. Минимальное и максимальное число цеховых трансформаторов определяют по выражениям

(27)

где: Ртах, Smax -- расчетная нагрузка цеха; SHom,t -- номинальная мощность цехового трансформатора.

Изменение числа цеховых трансформаторов (при т = const) приводит к изменению приведенных затрат на РУ 6 -- 20 кВ, на цеховые сети 0,4 кВ, на распределительные сети 6-20 кВ. При выборе числа трансформаторов на цеховых ТП учитывают, что предельная мощность трансформаторов, изготавливаемых в настоящее время заводами-изготовителями на напряжение 0,4-0,66 кВ, составляет 2500 кВ А.

Мощность силовых трансформаторов в нормальных условиях должна обеспечивать питание всех приемников электроэнергии промышленных предприятий. Мощность силовых трансформаторов выбирают с учетом экономически целесообразного режима работы и соответствующего обеспечения резервирования питания потребителей при отключении одного трансформатора и того, что нагрузка трансформаторов в нормальных условиях не должна (по нагреву) вызывать сокращения естественного срока его службы. Промышленные предприятия страны увеличивают свою производственную мощность за счет строительства новых цехов, освоения новых или более рационального использования существующих площадей. Поэтому предусматривают возможность расширения подстанций за счет замены установленных трансформаторов более мощными. В связи с этим аппаратуру и ошиновку в цепях трансформаторов выбирают по расчетным параметрам с учетом установки в перспективе трансформаторов следующей по шкале ГОСТ номинальной мощности. Например, если на подстанции устанавливают два трансформатора мощностью по 16000 кВ А, то их фундаменты и конструкции предусматривают установку двух трансформаторов мощностью по 25 000 кВ * А без существенных переделок подстанции.


Подобные документы

  • Расчет электрических нагрузок цеха методом коэффициента максимума. Выбор сечения и марки проводов. Определение токов короткого замыкания, заземляющего устройства. Мероприятия по организации электромонтажных работ. Направления развития капстроительства.

    курсовая работа [185,9 K], добавлен 18.04.2011

  • Система электроснабжения металлургических предприятий. Основное оборудование на подстанции. Характеристика работающего электрооборудования. Расчет токов короткого замыкания в сети. Расчет и выбор коммутационных аппаратов и силового трансформатора.

    курсовая работа [615,8 K], добавлен 08.05.2013

  • Электроснабжение ремонтно-механического цеха. Установка компрессии буферного азота. Расчет электрических нагрузок систем электроснабжения. Выбор числа и мощности трансформаторов. Расчет токов короткого замыкания и релейной защиты силового трансформатора.

    методичка [8,1 M], добавлен 15.01.2012

  • Разработка схемы электроснабжения промышленного предприятия. Расчет электрических нагрузок и токов короткого замыкания. Определение числа и мощности трансформаторов. Подбор высоковольтного электрооборудования, аппаратов защиты и заземляющего устройства.

    курсовая работа [565,9 K], добавлен 16.04.2014

  • Расчет электрических нагрузок. Выбор схемы электроснабжения и напряжения. Расчет и выбор мощности трансформаторов. Расчет токов короткого замыкания. Релейная защита силового трансформатора. Расчет защитного заземления. Перенапряжения и молниезащита.

    дипломная работа [458,3 K], добавлен 20.02.2015

  • Характеристика монтажного участка электромеханического цеха. Расчет электрических нагрузок, освещения, потерь мощности в трансформаторе, токов короткого замыкания. Выбор элементов питающей и распределительной сетей. Расчет заземляющего устройства.

    курсовая работа [249,2 K], добавлен 24.11.2014

  • Эксплуатация, испытания, техническое обслуживание, ремонт и утилизация силового трансформатора. Расчёт кривой жизни электрооборудования и заземляющего устройства для защиты персонала. Организация строительных, электромонтажных и пуско-наладочных работ.

    курсовая работа [3,5 M], добавлен 10.04.2012

  • Детальная разработка электроснабжения цеха ЗРДТ "КЭЦ". Определение нагрузок на воздушную линию электропередачи, номинальных токов и токов короткого замыкания. Выбор электрооборудования понизительной подстанции. Расчет схемы заземления и молниезащиты.

    дипломная работа [596,0 K], добавлен 07.07.2015

  • Расчет токов короткого замыкания для выбора и проверки параметров электрооборудования, уставок релейной защиты. Характеристика потребителей электроэнергии. Выбор числа и мощности силовых трансформаторов. Расчет силовой и осветительной нагрузок цеха.

    контрольная работа [274,1 K], добавлен 23.11.2014

  • Общая характеристика здания цеха и потребителей электроэнергии. Анализ электрических нагрузок. Расчет и выбор компенсирующего устройства, мощности трансформаторов, сетей, аппаратов защиты, высоковольтного электрооборудования и заземляющего устройства.

    реферат [515,8 K], добавлен 10.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.