Определение тепловых потерь теплоизолированного трубопровода

Определение наружного диаметра изоляции стального трубопровода с установленной температурой внешней поверхности, температуры линейного коэффициента теплопередачи от воды к воздуху; потери теплоты с 1 м трубопровода. Анализ пригодности изоляции.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 28.03.2010
Размер файла 106,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования Российской федерации

Иркутский Государственный Технический Университет

Энергетический факультет

Кафедра теплоэнергетики

Контрольная работа №2

«Определение тепловых потерь теплоизолированного трубопровода»

Иркутск 2009

Задание:

По горизонтальному стальному трубопроводу, внутренний и наружный диаметры которого и соответственно, движется вода со средней скоростью . Средняя температура воды . Трубопровод покрыт теплоизоляцией и охлаждается посредством естественной конвекции сухим воздухом с температурой .

Выполнить следующие действия:

1. определить наружный диаметр изоляции, при котором на внешней поверхности изоляции устанавливается температура .

2. определить линейный коэффициент теплопередачи от воды к воздуху, Вт/(мК)

3. потери теплоты с 1 м. трубопровода , Вт/м

4. определить температуру наружной поверхности стального трубопровода ,°С

5. провести анализ пригодности изоляции.

При решении задачи принять следующие предложения:

1. течение воды в трубопроводе является термически стабилизированным

2. между наружной поверхностью стального трубопровода и внутренней поверхностью изоляции существует идеальный тепловой контакт

3. теплопроводность стали Вт/(мК) и изоляции не зависит от температуры.

Наружный диаметр изоляции должен быть рассчитан с такой точностью, чтобы температура на наружной поверхности изоляции отличалась от заданной температуры не более чем на 0,5 °С.

Алгоритм выполнения:

Определяем:

- теплофизические параметры воды при

- теплофизические параметры воздуха при

полагаем

Определяем:

- теплофизические параметры среды при

- коэффициент теплоотдачи

- коэффициент теплоотдачи

-

-

-

-

Если переход на следующий уровень

Если то конец

Исходные данные:

,м/с

,°С

,°С

,°С

Асбозурит , Вт/(мК)

0,02

0,025

0,05

100

20

40

0,213

Обработка данных:

Теплофизические параметры воды при =100,°С:

, Вт/(мК)

, Пас

, м2

Pr

68,310-2

283,510-6

0,29510-6

1,75

Теплофизические параметры воздуха при =20,°С:

, Вт/(мК)

, Пас

, м2

Pr

2,5910-2

18,110-6

15,0610-6

0,703

Полагаем, что

Первое приближение:

Теплофизические параметры воды при =100,°С:

, Вт/(мК)

, Пас

, м2

Pr

68,310-2

283,510-6

0,29510-6

1,75

Определяем число Рейнольдса:

- переходный режим течения.

Отсюда Число Нуссельта:

Число Грасгофа:

Коэффициент объемного расширения:

Коэффициент теплоотдачи:

Второе приближение:

Теплофизические параметры воды при =98,476,°С:

, Вт/(мК)

, Пас

, м2

Pr

68,25410-2

287,43710-6

0,30010-6

1,78

Определяем число Рейнольдса:

- переходный режим течения.

Отсюда Число Нуссельта:

Число Грасгофа:

Коэффициент объемного расширения:

Коэффициент теплоотдачи:

Третье приближение:

Теплофизические параметры воды при =98,611,°С:

, Вт/(мК)

, Пас

, м2

Pr

68,25810-2

28710-6

0,299310-6

1,778

Определяем число Рейнольдса:

- переходный режим течения.

Отсюда Число Нуссельта:

Число Грасгофа:

Коэффициент объемного расширения:

Коэффициент теплоотдачи:

Таблица расчетных данных:

Приближение

,

Первое

0,133

0,194

48,733

98,476

Второе

0,154

0,1764

44,31

98,611

Третье

0,155

0,1717

43,131

98,649

98,618

Анализ пригодности изоляции:

Сравним

0,09627>0,025

Отсюда делаем вывод, изоляция плохая.

Вывод:

Методом приближений определили наружный диаметр изоляции при условии, что температура на наружной поверхности изоляции отличалась от заданной температуры не более чем на 0,5 .

В данной работе мы определили диаметр изоляции так, что точность между температурами приблизительно 0,1 °С, при этом толщина изоляции из асбозурита равна примерно 6,75 см, а тепловые потери равны 43,131.


Подобные документы

  • Потери теплоты в теплотрассах. Конвективная теплоотдача при поперечном обтекании цилиндра при течении жидкости в трубе. Коэффициент теплопередачи многослойной цилиндрической стенки. Расчет коэффициента теплопередачи. Определение толщины теплоизоляции.

    курсовая работа [133,6 K], добавлен 06.11.2014

  • Расчет затрат тепла на отопление, вентиляцию и горячее водоснабжение. Определение диаметра трубопровода, числа компенсаторов, потерь напора в местных сопротивлениях, потерь напора по длине трубопровода. Выбор толщины теплоизоляции теплопровода.

    контрольная работа [171,4 K], добавлен 25.01.2013

  • Построение графиков регулирования отпуска теплоты. Определение расходов сетевой воды аналитическим методом. Потери напора в домовой системе теплопотребления. Гидравлический расчет трубопровода тепловых сетей. Подбор подпиточного и сетевого насоса.

    курсовая работа [112,4 K], добавлен 14.05.2015

  • Расчет простого трубопровода, методика применения уравнения Бернулли. Определение диаметра трубопровода. Кавитационный расчет всасывающей линии. Определение максимальной высоты подъема и максимального расхода жидкости. Схема центробежного насоса.

    презентация [507,6 K], добавлен 29.01.2014

  • Строение простых и сложных трубопроводов, порядок их расчета. Расчет короткого трубопровода, скорости потоков. Виды гидравлических потерь. Определение уровня воды в напорном баке. Расчет всасывающего трубопровода насосной установки, высота ее установки.

    реферат [1,7 M], добавлен 08.06.2015

  • Расчёт расхода сетевой воды для отпуска тепла. Определение потерь напора в тепловых сетях. Выбор опор трубопровода, секционирующих задвижек и каналов для прокладки трубопроводов. Определение нагрузки на отопление, вентиляцию и горячее водоснабжение.

    курсовая работа [988,5 K], добавлен 02.04.2014

  • Задачи расчёта трубопроводов с насосной подачей: определение параметров установки, выбор мощности двигателя. Определение величины потерь напора во всасывающей линии и рабочей точке насоса. Гидравлический расчет прочности нагнетательного трубопровода.

    курсовая работа [1,1 M], добавлен 26.02.2012

  • Определение поверхности теплопередачи выпарных аппаратов. Расчёт полезной разности температур по корпусам. Определение толщины тепловой изоляции и расхода охлаждающей воды. Выбор конструкционного материала. Расчёт диаметра барометрического конденсатора.

    курсовая работа [545,5 K], добавлен 18.03.2013

  • Методика расчёта гидравлических сопротивлений на примере расчёта сложного трубопровода с теплообменными аппаратами, установленными в его ветвях. Определение потерь на отдельных участках трубопровода, мощности насоса, необходимой для перемещения жидкости.

    курсовая работа [158,3 K], добавлен 27.03.2015

  • Исследование распределения температуры в стенке и плотности теплового потока. Дифференциальное уравнение теплопроводности в цилиндрической системе координат. Определение максимальных тепловых потерь. Вычисление критического диаметра тепловой изоляции.

    презентация [706,5 K], добавлен 15.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.