Определение тепловых потерь теплоизолированного трубопровода
Определение наружного диаметра изоляции стального трубопровода с установленной температурой внешней поверхности, температуры линейного коэффициента теплопередачи от воды к воздуху; потери теплоты с 1 м трубопровода. Анализ пригодности изоляции.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 28.03.2010 |
Размер файла | 106,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования Российской федерации
Иркутский Государственный Технический Университет
Энергетический факультет
Кафедра теплоэнергетики
Контрольная работа №2
«Определение тепловых потерь теплоизолированного трубопровода»
Иркутск 2009
Задание:
По горизонтальному стальному трубопроводу, внутренний и наружный диаметры которого и соответственно, движется вода со средней скоростью . Средняя температура воды . Трубопровод покрыт теплоизоляцией и охлаждается посредством естественной конвекции сухим воздухом с температурой .
Выполнить следующие действия:
1. определить наружный диаметр изоляции, при котором на внешней поверхности изоляции устанавливается температура .
2. определить линейный коэффициент теплопередачи от воды к воздуху, Вт/(мК)
3. потери теплоты с 1 м. трубопровода , Вт/м
4. определить температуру наружной поверхности стального трубопровода ,°С
5. провести анализ пригодности изоляции.
При решении задачи принять следующие предложения:
1. течение воды в трубопроводе является термически стабилизированным
2. между наружной поверхностью стального трубопровода и внутренней поверхностью изоляции существует идеальный тепловой контакт
3. теплопроводность стали Вт/(мК) и изоляции не зависит от температуры.
Наружный диаметр изоляции должен быть рассчитан с такой точностью, чтобы температура на наружной поверхности изоляции отличалась от заданной температуры не более чем на 0,5 °С.
Алгоритм выполнения:
Определяем:
- теплофизические параметры воды при
- теплофизические параметры воздуха при
полагаем
Определяем:
- теплофизические параметры среды при
- коэффициент теплоотдачи
- коэффициент теплоотдачи
-
-
-
-
Если переход на следующий уровень
Если то конец
Исходные данные:
,м |
,м |
,м/с |
,°С |
,°С |
,°С |
Асбозурит , Вт/(мК) |
|
0,02 |
0,025 |
0,05 |
100 |
20 |
40 |
0,213 |
Обработка данных:
Теплофизические параметры воды при =100,°С:
, Вт/(мК) |
, Пас |
, м2/с |
Pr |
|
68,310-2 |
283,510-6 |
0,29510-6 |
1,75 |
Теплофизические параметры воздуха при =20,°С:
, Вт/(мК) |
, Пас |
, м2/с |
Pr |
|
2,5910-2 |
18,110-6 |
15,0610-6 |
0,703 |
Полагаем, что
Первое приближение:
Теплофизические параметры воды при =100,°С:
, Вт/(мК) |
, Пас |
, м2/с |
Pr |
|
68,310-2 |
283,510-6 |
0,29510-6 |
1,75 |
Определяем число Рейнольдса:
- переходный режим течения.
Отсюда Число Нуссельта:
Число Грасгофа:
Коэффициент объемного расширения:
Коэффициент теплоотдачи:
Второе приближение:
Теплофизические параметры воды при =98,476,°С:
, Вт/(мК) |
, Пас |
, м2/с |
Pr |
|
68,25410-2 |
287,43710-6 |
0,30010-6 |
1,78 |
Определяем число Рейнольдса:
- переходный режим течения.
Отсюда Число Нуссельта:
Число Грасгофа:
Коэффициент объемного расширения:
Коэффициент теплоотдачи:
Третье приближение:
Теплофизические параметры воды при =98,611,°С:
, Вт/(мК) |
, Пас |
, м2/с |
Pr |
|
68,25810-2 |
28710-6 |
0,299310-6 |
1,778 |
Определяем число Рейнольдса:
- переходный режим течения.
Отсюда Число Нуссельта:
Число Грасгофа:
Коэффициент объемного расширения:
Коэффициент теплоотдачи:
Таблица расчетных данных:
Приближение |
, |
|||||
Первое |
0,133 |
0,194 |
48,733 |
98,476 |
||
Второе |
0,154 |
0,1764 |
44,31 |
98,611 |
||
Третье |
0,155 |
0,1717 |
43,131 |
98,649 |
98,618 |
Анализ пригодности изоляции:
Сравним
0,09627>0,025
Отсюда делаем вывод, изоляция плохая.
Вывод:
Методом приближений определили наружный диаметр изоляции при условии, что температура на наружной поверхности изоляции отличалась от заданной температуры не более чем на 0,5 .
В данной работе мы определили диаметр изоляции так, что точность между температурами приблизительно 0,1 °С, при этом толщина изоляции из асбозурита равна примерно 6,75 см, а тепловые потери равны 43,131.
Подобные документы
Потери теплоты в теплотрассах. Конвективная теплоотдача при поперечном обтекании цилиндра при течении жидкости в трубе. Коэффициент теплопередачи многослойной цилиндрической стенки. Расчет коэффициента теплопередачи. Определение толщины теплоизоляции.
курсовая работа [133,6 K], добавлен 06.11.2014Расчет затрат тепла на отопление, вентиляцию и горячее водоснабжение. Определение диаметра трубопровода, числа компенсаторов, потерь напора в местных сопротивлениях, потерь напора по длине трубопровода. Выбор толщины теплоизоляции теплопровода.
контрольная работа [171,4 K], добавлен 25.01.2013Построение графиков регулирования отпуска теплоты. Определение расходов сетевой воды аналитическим методом. Потери напора в домовой системе теплопотребления. Гидравлический расчет трубопровода тепловых сетей. Подбор подпиточного и сетевого насоса.
курсовая работа [112,4 K], добавлен 14.05.2015Расчет простого трубопровода, методика применения уравнения Бернулли. Определение диаметра трубопровода. Кавитационный расчет всасывающей линии. Определение максимальной высоты подъема и максимального расхода жидкости. Схема центробежного насоса.
презентация [507,6 K], добавлен 29.01.2014Строение простых и сложных трубопроводов, порядок их расчета. Расчет короткого трубопровода, скорости потоков. Виды гидравлических потерь. Определение уровня воды в напорном баке. Расчет всасывающего трубопровода насосной установки, высота ее установки.
реферат [1,7 M], добавлен 08.06.2015Расчёт расхода сетевой воды для отпуска тепла. Определение потерь напора в тепловых сетях. Выбор опор трубопровода, секционирующих задвижек и каналов для прокладки трубопроводов. Определение нагрузки на отопление, вентиляцию и горячее водоснабжение.
курсовая работа [988,5 K], добавлен 02.04.2014Задачи расчёта трубопроводов с насосной подачей: определение параметров установки, выбор мощности двигателя. Определение величины потерь напора во всасывающей линии и рабочей точке насоса. Гидравлический расчет прочности нагнетательного трубопровода.
курсовая работа [1,1 M], добавлен 26.02.2012Определение поверхности теплопередачи выпарных аппаратов. Расчёт полезной разности температур по корпусам. Определение толщины тепловой изоляции и расхода охлаждающей воды. Выбор конструкционного материала. Расчёт диаметра барометрического конденсатора.
курсовая работа [545,5 K], добавлен 18.03.2013Методика расчёта гидравлических сопротивлений на примере расчёта сложного трубопровода с теплообменными аппаратами, установленными в его ветвях. Определение потерь на отдельных участках трубопровода, мощности насоса, необходимой для перемещения жидкости.
курсовая работа [158,3 K], добавлен 27.03.2015Характеристика принципа измерения степени увлажнённости изоляции методом коэффициента абсорбции. Определение примерной зависимости коэффициента абсорбции от температуры. Анализ соединения обмоток трансформатора при помощи комбинированного прибора.
лабораторная работа [147,8 K], добавлен 27.03.2019