Выбор сечения проводов и жил кабелей
Выбор сечения проводников по нагреву расчетным током. Выбор сечений жил кабеля по нагреву током короткого замыкания. Выбор сечения проводников по потере напряжения. Особенности расчета сетей осветительных электроустановок. Изменение уровня напряжения.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 13.07.2013 |
Размер файла | 210,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Контрольная работа
Электроснабжение промышленных предприятий
Тема 1.
Выбор сечения проводов и жил кабелей
Содержание
1. Выбор сечения проводников по нагреву расчётным током.
2. Выбор сечений жил кабеля по нагреву током короткого замыкания.
3. Выбор сечения проводников по потере напряжения.
4. Выбор сечений проводников по экономическим соображениям.
5. Особенности расчёта сетей осветительных электроустановок.
Литература
Сечение проводов и жил кабелей должны выбираться в зависимости от ряда технических и экономических факторов.
Технические факторы:
1. нагрев от длительного выделения тепла рабочим током,
2. нагрев проводников токами короткого замыкания в аварийном режиме,
3. электродинамические усилия при протекании тока,
4. потери напряжения в линиях от проходящего по ним тока в нормальном и аварийном режимах,
5. механическая прочность,
6. коронирование.
Рис. 8.1 Определение экономически целесообразного сечения.
1, 2, 3 зависимости З=f(s) для различной стоимости электроэнергии
Выбор экономически целесообразного сечения по экономической плотности тока в зависимости от материала проводника и использования максимума нагрузки:
, (8.1)
где Ip - расчётный ток, Jэ - экономическая плотность тока, которая выбирается исходя из передаваемой мощности и длины линии.
Эта методика не в полной мере соответствует другим положениям об экономических соображениях при решении электротехнических вопросов, нуждающихся в экономической оценке. На самом деле, если рассмотреть условия передачи некоторой постоянной расчётной мощности при постоянной длине, то она может быть осуществлена при помощи КЛ, либо ВЛ разных сечений. При этом затраты будут явно изменяться и не может быть речи о каком-то постоянном целесообразном сечении.
Если учесть, что стоимость электроэнергии изменяется, то зависимости З=f(s) примут вид, как показано на рис. 8.1 (кривые 1, 2, 3). На этом же рисунке показана зависимость целесообразного сечения от цены s=f(c). Экономически целесообразное сечение, полученное по формуле (8.1) изображено прямой линией sэ. без особых пояснений видно, что существуют существенные различия между сечением, полученным по выражению (8.1) и реальных значениях sэ1 , sэ2 , sэ3. Поэтому приняты несколько методик расчёта сечения проводников, в зависимости от приоритета.
1. Выбор сечения проводников по нагреву расчётным током
Проводники электрических сетей от проходящего по ним тока нагреваются по закону Джоуля-Ленца:
Q=0,24I2Rt (8.2)
Нарастание температуры происходит до тех пор, пока не наступит тепловое равновесие между теплом, выделяемом в проводнике, и отдачей в окружающую среду.
Чрезмерно высокая температура нагрева проводника может привести к уменьшению срока жизни изоляции, пожарной опасности. При перегреве с высокой температурой изоляция кабеля может оплавиться, что приведёт к необходимости замены всей кабельной линии, а в некоторых случаях может возникнуть взрыв (во взрывоопасной среде).
Длительно протекающий по проводнику ток, при котором устанавливается наибольшая длительная температура нагрева, называется предельно допустимым током по нагреву.
Значения максимально допустимых токов определены из условия допустимого теплового износа материала изоляции, марки проводника, температуры окружающей среды, способа прокладки линии. В настоящее время существуют многочисленные справочные таблицы, по которым можно определить сечение проводника исходя из вышеперечисленных условий.
При расчёте сети по нагреву сначала выбирают марку проводника, условия прокладки, условия охлаждения.
Для выбора сечения проводника сравнивают расчётный максимальный Iр и допустимый токи Iд , при этом должно соблюдаться условие:
(8.3)
Значения допустимых длительных токовых нагрузок в справочной литературе, указаны, как правило, для нормальных условий охлаждения. Если условия охлаждения отличаются от нормальных, например, при прокладке нескольких кабелей в траншее, что приводит к повышению температуры кабеля при протекании тока по соседним кабелям, то вводится поправочный коэффициент, который можно найти в справочной литературе, например ПУЭ.
Токи нагрузки электроприёмников повторно-кратковременного режима работы нагревают проводники в меньшей степени, чем токи длительного режима, поэтому их следует пересчитать на условный приведённый длительный ток нагрузки. Тогда выбор проводника должен производиться по условию:
, (8.4)
где ПВ - продолжительность включения (лекция 1), IПВ - ток повторно-кратковременного режима.
Пересчёт производится только при ПВ?0,4. Для сечения медных проводов выше 6 мм2, и для алюминиевых - выше 10 мм2 токовые нагрузки по нагреву принимают как для установки с длительным режимом работы.
Весьма распространённым видом анормального режима работы электроустановки являются перегрузки, сопровождаемые прохождением по проводникам повышенных токов, вызывающих их нагрев свыше допустимых значений.
От перегрузок необходимо защищать сети, выполненные внутри помещений открыто проложенными изолированными проводниками с горючей изоляцией, силовые сети, когда по условиям технологического процесса могут возникнуть длительные перегрузки и сети во взрывоопасной и горючей среде.
При выборе аппарата защиты необходимо соблюдать ряд требований, укажем их кратко:
1) Номинальный ток и напряжение аппарата должны соответствовать расчётному длительному току и напряжению цепи.
2) Время действия аппарата должно быть минимальным, с учётом селективности.
3) Аппараты защиты не должны отключать установку при перегрузках, возникающих в условиях эксплуатации, например при пусковых токах электродвигателей.
4) Аппараты защиты должны обеспечивать надёжное отключение повреждённого участка цепи при любых видах КЗ и режимах работы нейтрали.
Надёжное отключение токов КЗ в сети напряжением до 1 кВ обеспечивается в том случае, когда отношение наименьшего расчётного тока КЗ к номинальному току плавкой вставки, либо току срабатывания автоматического выключателя будет не менее трёх.
В зависимости от вида защиты наряду с проверкой по допустимому нагреву устанавливают определённые соотношения между токами защитных аппаратов и допустимым током провода. Сечение проводника, соответствующее длительно допустимому току нагрева следует сравнивать с током срабатывания аппарата защиты. В сетях, которые должны быть защищены от перегрузки, эти соотношения, зачастую являются определяющими для выбора сечения проводников.
2. Выбор сечений жил кабеля по нагреву током короткого замыкания
В эксплуатации электрической сети возможны нарушения нормального режима работы: перегрузки и короткие замыкания, при которых ток в проводниках резко возрастает.
Токи КЗ могут достигать значений, в десятки раз превышающих номинальные токи присоединённых электроприёмников и допустимые токи проводников. Для предотвращения чрезмерного нагрева проводников и смежного оборудования каждый участок сети должен быть снабжён защитным аппаратом, отключающим повреждённый элемент сети за минимально возможное время.
При рассмотрении режима короткого замыкания необходимо кроме расчёта проводников по температуре производить расчёт электродинамических усилий, возникающих в проводниках. Поскольку данный вопрос рассматривался в курсе «Электрические и электронные аппараты», то здесь ограничимся лишь упоминанием о необходимости такой проверки. Особенно необходимо производить такую проверку для шинопроводов, выполненных из шин.
Для выбора термически стойкого сечения жил кабеля необходимо знать максимальный установившийся ток короткого замыкания из соответствующего расчёта Iкз и возможное время прохождения этого тока через кабель, определяемое аппаратом защиты tзащ:
, (8.5)
где С - коэффициент, зависящий от материала проводов, принимаемый для меди С=180, для алюминия С=100. Необходимо отметить, что вышеуказанная формула является эмпирической, поэтому в различных источниках она может принимать различный вид, а так же коэффициент С в различных источниках различается.
Для защиты электрических сетей от аварийных режимов применяются плавкие предохранители, автоматические выключатели, релейная защита.
Кабели, защищённые плавкими предохранителями, на термическую стойкость к токам КЗ не проверяются, поскольку время срабатывания предохранителя мало (10-20 мс) и выделившееся тепло не в состоянии нагреть кабель до опасной температуры.
3. Выбор сечения проводников по потере напряжения
Выбранные по длительно допустимому току и согласованные с током защиты аппаратов сечения проводников должны быть проверены на потерю напряжения. При эксплуатации электрических сетей, зная уровень напряжения на выводах у наиболее удалённого электроприёмника и рассчитав потерю напряжения, можно определить напряжение на вторичной стороне питающего трансформатора и выбрать устройства для регулировки напряжения.
На рис. 8.2 изображена схема сети с равномерно распределённой нагрузкой по её длине и график распределения напряжения по линии. У питающего трансформатора номинальное напряжение выбрано на 5% выше номинального для компенсации падения напряжения в сети. При этом электроприёмники 1-4 будут получать питание на напряжении выше номинального, а приёмники 6-10 - ниже номинального.
Разность между напряжением источника питания и напряжением у приёмника называется потерей напряжения, а падением напряжения называется геометрическая разность векторов напряжений в начале Uф1 и конце Uф2 участка сети:
Uф1-Uф2=IZ=I(r+jx) (8.6)
ток сечение проводник кабель
Рассмотрим схему одной фазы линии трёхфазного тока с симметричной нагрузкой на конце, заданным током нагрузки I и коэффициентом мощности cosц2. Напряжение в конце линии Uф2 известно. Следует определить напряжение в начале линии Uф1 и cosц1 с помощью векторной диаграммы.
Рис. 8.2 Изменение уровня напряжения вдоль линии.
Поскольку нагрузка на предприятии является, в большинстве случаев, индуктивной, то вектор тока будет находиться под углом ц2 к вектору напряжения в сторону отставания.
Чтобы определить напряжение в начале линии нужно от конца вектора Uф2 отложить параллельно вектору тока I вектор падения напряжения на активном сопротивлении линии Ir, и под углом 90_ к нему в сторону опережения - вектор падения напряжения на реактивном сопротивлении jIx (треугольник ABC). Соединив полученную точку С с началом координат 0, получим искомый вектор напряжения в начале линии Uф1.
Рис. 8.3 Схема замещения (а) и векторная диаграмма (б) одной фазы трёхфазной линии переменного тока с нагрузкой на конце.
Отрезок АС, численно равный модулю вектора IZ представляет собой величину полного падения напряжения. Это падение напряжения можно разделить на продольную составляющую ?Uф=U1-U2 (отрезок AD) и поперечную дUф (отрезок DC). Тогда можно записать:
IZ=?Uф+j дUф (8.7)
Отсюда продольная составляющая:
?Uф=Ircos ц2+Ixsin ц2 (8.8)
Зная, что
(8.9)
получаем:
(8.10)
и (8.11)
Следовательно, напряжение в начале линии:
(8.12)
Для двухпроводной линии однофазного тока получим падение напряжения:
(8.13)
Здесь Р - активная мощность, l - длина линии.
Для трёхфазной линии переменного тока , тогда
(8.14)
Потеря напряжения в линии с несколькими нагрузками определяется как сумма потерь напряжения на отдельных участках сети. Тогда для n присоединённых нагрузок:
(8.15)
Если потери напряжения для различных сетей приводят к отклонениям напряжения на выводах электроприёмников более допустимых значений, то выбирают проводники большего на одну ступень сечения и повторяют проверочный расчёт.
В эксплуатации производят измерения полного сопротивления «фаза-ноль», включающее в себя сопротивление проводов (прямого и обратного, сопротивления контактных соединений, а также сопротивление вторичной обмотки питающего трансформатора, для контроля контактных соединений, а также для проверки выбора защитных аппаратов. При протяжённой длине линии и небольшом сечении проводов происходит значительное падение напряжения, поэтому измерение сопротивления «фаза-ноль» может служить оценочным показателем для проверки падения напряжения в конце линии.
4. Выбор сечений проводников по экономическим соображениям
Рис. 8.4 Зависимость затрат от изменения сечения провода
При передаче мощности S на расстояние l при стоимости электроэнергии с и определённом напряжении U капиталовложения К и эксплуатационные расходы Сэ зависят от сечения проводов и кабелей s, принимаемого для передачи электроэнергии. Изменяя в приведённых выше условиях сечения проводов, получаем соответствующие им приведённые затраты (рис. 8.4).
Как видно из этого рисунка минимальные затраты соответствуют точке s3,min. Сечение провода, соответствующее этим затратам и будет экономически целесообразным, в общем случае оно будет нестандартным. Как же перейти к стандартному сечению?
Любая зависимость, в данном случае З=f(s), если известны n её точек может быть выражена аналитически с определённым приближением по формуле Ньютона:
З=З1+А1(s-s1)+B1(s-s1)(s-s2)+C1(s-s1)(s-s2)(s-s3)+… (8.16)
В нашем случае s=16, 25, 35, 50 мм2 и т. д. Каждому стандартному сечению должны соответствовать определённые затраты. При определении экономически целесообразного сечения необходимо рассматривать только близлежащие точки, и всего брать 3, 4 варианта. Рассуждая так же, как при выборе рационального напряжения получаем:
(8.17)
Интерполяционная методика Лагранжа при выборе экономически целесообразного сечения даёт более точные результаты, чем методика Ньютона. Однако разница в результатах очень незначительна и поэтому для уменьшения времени расчётов рекомендуется методика Ньютона.
5. Особенности расчёта сетей осветительных электроустановок
Особенностями осветительных электрических сетей являются: значительная протяжённость и разветвлённость, небольшие мощности отдельных электроприёмников и участков сети, наличие установок рабочего и аварийного освещения.
Рабочее освещение обеспечивает надлежащую освещённость всего помещения и рабочих поверхностей, аварийное освещение должно обеспечить безаварийную остановку рабочего процесса и безопасную эвакуацию людей из помещения при отключении рабочего освещения. Причём аварийное освещение должно иметь автономный источник питания для того, чтобы при выходе из строя источника питания рабочего освещения (например, перегорание предохранителей) аварийное освещение продолжало функционировать. В данном случае под автономным источником питания может пониматься отдельная ячейка распределительного пункта, отдельный фидер питания от РП и т.п., которые имеют свои защитные аппараты.
Участки осветительной сети от источников питания до групповых щитков освещения называют питающими, а от групповых щитков до светильников - групповыми. Групповые щитки стараются устанавливать в центрах электрических нагрузок в местах удобных для обслуживания.
Протяжённость трёхфазных четырёхпроводных групповых линий при напряжении 380/220 В не должна превышать 100 м, а двухпроводных - 40 м.
Схемы осветительных сетей предприятий весьма разнообразны. Основные требования к построению таких сетей: обеспечение необходимого уровня освещённости рабочих мест, обеспечение бесперебойности питания, удобство и безопасность обслуживания осветительных приборов. Выполнение этих требований в основном зависит от принятой схемы осветительной сети.
В осветительных сетях предприятий применяются открытые электропроводки на изолирующих опорах, подвешенные на тросах, проложенные в каналах, коробах и скрытые проводки, вмурованные в стены. Сечения проводников, в большинстве случаев, выбирают по условиям механической прочности.
При расчёте осветительных сетей производят оценку потери напряжения с последующей проверкой на нагрев. Сечение проводников групповой осветительной сети из (8.15) составит:
, (8.18)
где г - удельная проводимость материала провода, м/(Ом мм2), ?Uдоп% - допустимая потеря напряжения, %.
Допустимая потеря напряжения в осветительных сетях предприятий выбирается так, чтобы отклонение напряжения у осветительных приборов находилось в пределах +5- -2,5 %.
После выбора сечения проводов осветительной сети по допустимым потерям напряжения следует принятые значения проверить по допустимым токовым нагрузкам. При этом следует учесть то, что в четырёхпроводной сети, при питании ламп накаливания, сечение нулевого проводника у кабелей принимается равным не менее 50% сечения фазных проводников, а при питании люминесцентных ламп сечения фазных и нулевых проводников принимаются равными.
Литература
Л.К. Осика, И.Г. Макаренко. Промышленные потребители на рынке электроэнергии. Принципы организации деловых отношений. - М.: Энас, 2010. - 320 с.
Э.А. Киреева. Электроснабжение и электрооборудование цехов промышленных предприятий. - М.: КноРус, 2013. - 368 с.
А.В. Разуваев. Ресурсосбережение в машиностроении. - М.: ООО "ТНТ", 2012. - 184 с.
Е.Ф. Щербаков, Д.С. Александров, А.Л. Дубов. Электроснабжение и электропотребление на предприятиях. - М.: Форум, 2010. - 496 с.
Электротехника и электроника. - Ростов-на-Дону: Феникс, 2010. - 784 с.
Ю.Д. Сибикин. Электроснабжение промышленных и гражданских зданий. - М.: Академия, 2011. - 368 с.
Кобус Страусс. Системы автоматики и коммуникации в сетях электроснабжения. - М.: Группа ИДТ, 2007. - 256 с.
А.Н. Назарычев, Д.А. Андреев, А.И. Таджибаев. Справочник инженера по наладке, совершенствованию технологии и эксплуатации электрических станций и сетей. - М.: Инфра-Инженерия, 2006. - 928 с.
Л.Е. Старкова. Справочник цехового энергетика. - М.: Инфра-Инженерия, 2009. - 352 с.
Г.Н. Дубинский, Л.Г. Левин. Наладка устройств электроснабжения напряжением до 1000 В. - М.: Солон-Пресс, 2011. - 400 с.
Совремнные проблемы горной науки. Том 67. Выпуск 1. - СпБ.: Ленинградский Горный институт, 1975. - 320 с.
Размещено на Allbest.ru
Подобные документы
Выбор систем освещения помещений цеха и источников света. Расчет электрического освещения. Выбор напряжения и источника питания. Расчет нагрузки электрического освещения, сечения проводников по нагреву и потере напряжения, потерь напряжения в проводниках.
курсовая работа [589,0 K], добавлен 22.10.2015Выбор конфигурации сети 0,38 кВ и сечения проводов. Выбор сечения провода для мастерских в аварийном режиме и проверка по допустимой потере напряжения. Расчет сечения проводов воздушной линии 10 кВ. Общая схема замещения питающей сети и её параметры.
контрольная работа [468,7 K], добавлен 07.08.2013Расчет электрических нагрузок методом расчетного коэффициента. Выбор числа и мощностей цеховых трансформаторов с учётом компенсации реактивной мощности. Подбор сечения жил кабелей цеховой сети по нагреву длительным расчетным током предохранителей.
курсовая работа [605,5 K], добавлен 30.03.2014Выбор конфигурации районной электрической сети, номинального напряжения, трансформаторов для каждого потребителя. Расчет потокораспределения, определение тока короткого замыкания на шинах низшего напряжения подстанции. Выбор сечения проводников.
курсовая работа [1,6 M], добавлен 07.08.2013Составление схемы питания потребителей. Определение мощности трансформаторов. Выбор номинального напряжения, сечения проводов. Проверка сечений в аварийном режиме. Баланс реактивной мощности. Выбор защитных аппаратов и сечения проводов сети до 1000 В.
курсовая работа [510,3 K], добавлен 24.11.2010Расчёт напряжения воздушной линий электропередач с расстоянием 30 км. Выбор числа, мощности и типа силовых трансформаторов ГПП. Критические пролёты линии. Выбор сечения воздушной линии по допустимому нагреву. Определение мощности короткого замыкания.
курсовая работа [799,3 K], добавлен 04.06.2015Расчет схемы электроснабжения нетяговых железнодорожных потребителей. Выбор сечения проводов и кабелей по допустимой потере напряжения, экономической плотности тока. Выбор предохранителей для защиты оборудования, определение электрических нагрузок.
курсовая работа [223,0 K], добавлен 09.11.2010Номинальное напряжение на шинах. Определение по методу коэффициента максимума электрической нагрузки цехового трансформатора. Выбор марки проводов и кабелей всех линий и определение их сечений по нагреву расчетным током. Потери мощности и электроэнергии.
курсовая работа [339,5 K], добавлен 03.02.2013Расчет электрических нагрузок промышленного предприятия методом коэффициента спроса. Выбор типа и числа трансформаторов, сечения проводников. Проверка номинального напряжения и ударных токов, работоспособности системы защиты от короткого замыкания.
курсовая работа [615,6 K], добавлен 09.12.2014Определение расчетных нагрузок и выбор мощности трансформаторов трансформаторного пункта. Выбор конфигурации и проводов сети. Определение возможности обеспечения уровня напряжения на шинах понизительной районной подстанции. Выбор сечения проводов линии.
курсовая работа [264,2 K], добавлен 07.08.2013