Метрологические аспекты измерений свойств физических величин
Понятие и сущность физических величин, их качественное и количественное выражение. Характеристика основных типов шкал измерений: наименований, порядка, разностей (интервалов) и отношений, их признаки. Особенности логарифмических и биофизических шкал.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 13.11.2013 |
Размер файла | 206,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Национальный исследовательский ядерный университет «МИФИ»
Реферат по курсу:
«Метрология»
Тема: «Метрологические аспекты измерений свойств физических величин»
Выполнила: студентка группы Ф7-07
Н.А. Макарчикова
Проверил: В.И. Занько
Оглавление
- 1. Введение 3
- 2. Шкалы измерений. 4
- 2.1 Шкалы наименований. 4
- 2.2 Шкалы порядка. 4
- 2.3 Шкалы разностей 5
- 2.4 Шкалы отношений 6
- 2.5 Абсолютные шкалы. 6
- 2.6 Логарифмические шкалы 6
- 2.7 Биофизические шкалы. 7
- 3. Основные признаки классификации шкал измерений. 9
- 4. Особенности реализации шкал измерений. 10
- 5. Основные термины и определения. 11
- Заключение 15
- Список литературы. 16
1. Введение
При изучении объекта исследования необходимо выделить для измерений физические величины, учитывая цель измерений, которая сводится к изучению или оценке каких-либо свойств объекта. Поскольку реальные объекты обладают бесконечным множеством свойств, то для получения результатов измерений, адекватных цели измерений, выделяют в качестве измеряемых величин определенные свойства объектов, существенные при выбранной цели, т.е. выбирают модель объекта. В результате выбора модели устанавливают измеряемые величины, в качестве которых принимают параметры модели или их функционалы. За истинное значение измеряемой величины принимают такое значение параметра модели, которое можно было бы получить в результате мысленного эксперимента, свободного от каких-либо погрешностей.
Физическая величина - одно из свойств физического объекта, в качественном отношении общее для многих физических объектов, а в количественном - индивидуальное для каждого из них; например, все тела обладают массой и температурой, но для каждого из них эти параметры различны.
Измеряемые ФВ могут быть выражены количественно в виде определенного числа установленных единиц измерения. Величины, для которых по тем или иным причинам не может быть введена единица измерения, могут быть только оценены.
2. Шкалы измерений
В соответствии с логической структурой проявления свойств в теории измерений различают пять основных типов шкал измерений: наименований, порядка, разностей (интервалов), отношений и абсолютные шкалы. Каждый тип шкалы обладает определенными признаками, основные из которых рассматриваются ниже.
2.1 Шкалы наименований
Это самые простые шкалы. Они отражают качественные ( а не количественные) свойства. Их элементы характеризуются только соотношением эквивалентности (равенства) и сходства конкретных качественных проявлений свойств. Примерами таких шкал являются шкала классификации (оценки) цвета объектов по наименованиям (красный, оранжевый, желтый, зеленый и т.д), опирающиеся на стандартизированные атласы цветов, систематизированных по сходству. Измерения в шкале цветов выполняются путем сравнений образцов цвета из атласа с цветом исследуемого объекта и установления эквивалентности их цветов.
В шкалах наименования нельзя ввести понятия единицы измерения, в них отсутствует и нулевой элемент.
2.2 Шкалы порядка
Шкалы порядка описывают свойства, для которых имеют смысл не только соотношения эквивалентности, но и соотношения порядка по возрастанию или убыванию. Эти шкалы принципиально нелинейные.
Характерным примером шкал порядка являются существующие шкалы чисел твердости тел, шкалы баллов землетрясений, шкалы баллов ветра, шкала оценки событий на АЭС и т.п. Узкоспециализированные шкалы порядка широко применяются в методах испытаний различной продукции. В этих шкалах также нет возможности ввести единицы измерений из-за того, что они не только принципиально нелинейны, но и вид нелинейности может быть различен и неизвестен на разных ее участках. Результаты измерений в шкалах твердости, например, выражаются в числах твердости по Бринеллю, Виккерсу, Роквеллу, Шору, а не в единицах измерений. Шкалы порядка допускают монотонные преобразования, в них может быть или отсутствовать нулевой элемент.
2.3 Шкалы разностей
ШКАЛЫ РАЗНОСТЕЙ (ИНТЕРВАЛОВ) - отличаются от шкал порядка тем, что для описываемых ими свойств имеют смысл не только соотношения эквивалентности и порядка, но и суммирования интервалов (разностей) между различными количественными проявлениями свойств. Характерный пример - шкала интервалов времени.
Интервалы времени (например, периоды работы, периоды учебы) можно складывать и вычитать, но складывать даты каких-либо событий бессмысленно.
Другой пример, шкала длин (расстояний) пространственных интервалов определяется путем совмещения нуля линейки с одной точкой, а отсчет делается у другой точки. К этому типу шкал относятся и шкалы температур по Цельсию, Фаренгейту, Реомюру.
Шкалы разностей имеют условные (принятые по соглашению) единицы измерений и нули, опирающиеся на какие-либо реперы.
В этих шкалах допустимы линейные преобразования, в них применимы процедуры для отыскания математического ожидания, стандартного отклонения, коэффициента асимметрии и смещенных моментов.
2.4 Шкалы отношений
ШКАЛЫ ОТНОШЕНИЙ. К множеству количественных проявлений в этих шкалах применимы соотношения эквивалентности и порядка - операции вычитания и умножения (шкалы отношений 1-го рода - пропорциональные шкалы), а во многих случаях и суммирования (шкалы отношений 2-го рода - аддитивные шкалы).
В шкалах отношений существуют условные (принятые по соглашению) единицы и естественные нули. Примерами шкал отношений являются шкалы массы (2-го рода), термодинамическая температурная шкала (1-го рода).
Массы любых объектов можно суммировать, но суммировать температуры разных тел нет смысла, хотя можно судить о разности и отношении их термодинамических температур. Шкалы отношений широко используются в физике и технике, в них допустимы все арифметические и статистические операции.
2.5 Абсолютные шкалы
АБСОЛЮТНЫЕ ШКАЛЫ - обладают всеми признаками шкал отношений, но дополнительно в них существует естественное однозначное определение единицы измерений. Такие шкалы используются для измерений относительных величин (отношений одноименных величин: коэффициентов усиления, ослабления, КПД, коэффициентов отражений и поглощений, амплитудной модуляции и т.д.).
физическая величина измерение шкала
2.6 Логарифмические шкалы
ЛОГАРИФМИЧЕСКИЕ ШКАЛЫ - логарифмическое преобразование шкал, часто применяемое на практике, приводит к изменению типа шкал. Практическое распространение получили логарифмические шкалы на основе применения систем десятичных и натуральных логарифмов, а также логарифмов с основанием два.
Логарифм есть число безразмерное, поэтому перед логарифмированием преобразуемая размерная величина в начале обращается в безразмерную путем ее деления на принятое по соглашению произвольное (опорное) значение той же величины, после чего выполняется операция логарифмирования.
В зависимости от типа шкалы, подвергнутой логарифмическому преобразованию, логарифмические шкалы могут быть двух видов. При логарифмическом преобразовании абсолютных шкал получаются абсолютные логарифмические шкалы, называемые иногда логарифмическими шкалами с плавающим нулем, т.к. в них не фиксируется опорное значение. Примерами таких шкал являются шкалы усиления (ослабления) сигнала в дБ. Для значений величин в абсолютных логарифмических шкалах допустимы операции сложения и вычитания.
При логарифмическом преобразовании шкал отношений и интервалов получается логарифмическая шкала интервалов с фиксированным нулем, соответствующим принятому опорному значению преобразуемой шкалы. В радиотехнике в качестве опорного чаще всего принимают значения 1 мВт, 1 В, 1 мкВ; в акустике - 20 мкПа и др. К этим шкалам в общем случае нельзя прямо применять ни одно арифметическое действие; сложение и вычитание величин, выраженных в значениях таких шкал, должно проводиться путем нахождения их антилогарифмов, выполнения необходимых арифметических операций и повторного логарифмирования результата.
2.7 Биофизические шкалы
БИОФИЗИЧЕСКИЕ ШКАЛЫ. В метрологической практике существует ряд шкал, которыми описываются реакции биологических объектов, прежде всего человека, на воздействующие на них физические факторы. К ним относятся шкалы световых и цветовых измерений, шкалы восприятия звуков, шкалы эквивалентных доз ионизирующих излучений и др. Будем называть такие шкалы биофизическими.
Биофизическая шкала - шкала измерений свойств физического фактора (стимула), модифицированная таким образом, чтобы по результатам измерений этих свойств можно было прогнозировать уровень или характер реакции биологического объекта на действие этого фактора. Такие шкалы строятся по моделям так модифицирующим (трансформирующим) результаты измерений свойства стимула, чтобы было однозначное соответствие между результатом измерений и характеристикой биологической реакции (гомоморфное отображение множества стимулов на множество реакций). При этом некоторому подклассу множества стимулов могут соответствовать эквивалентные реакции.
Такая модифицированная шкала стимулов, естественно, по логической структуре приближается к структуре шкалы реакций и приобретает некоторую прогностическую ценность. Однако, как правило, биофизическая шкала стимулов и шкала соответствующих реакций являются шкалами разных типов, поэтому на прогностические суждения о реакциях, вызываемых стимулами, нельзя прямо переносить логические соотношения шкалы стимулов. Так, например, шкала яркостей с точки зрения стимулов является неограниченной аддитивной шкалой отношений, а с точки зрения восприятия человеком - шкалой порядка в ограниченном снизу и сверху диапазоне значений стимулов.
3. Основные признаки классификации шкал измерений
Практическая реализация шкал измерений достигается путем стандартизации как самих шкал и единиц измерений, так и, в необходимых случаях, способов и условий (спецификаций) их однозначного воспроизведения. Шкалы наименований и порядка могут реализовываться и без эталонов (шкала-классификация Линнея, шкала запахов, шкала Бофорта), но если создание эталонов необходимо, то они воспроизводят весь применяемый на практике участок шкалы (пример - эталоны твердости). Внесение любых изменений в спецификацию, определяющую шкалу наименований или порядка, практически означает введение новой шкалы.
Шкалы разностей и отношений (метрические шкалы), соответствующие SI, как правило воспроизводятся эталонами. Эталоны этих шкал измерений могут воспроизводить одну точку шкалы (эталон массы), некоторый участок шкалы (эталон длины) или практически всю шкалу (эталон времени).
4. Особенности реализации шкал измерений
5. Основные термины и определения
Спецификация шкалы измерений
Принятый по соглашению документ, в котором дано определение шкалы и (или) описание правил и процедур воспроизведения данной шкалы (или единицы шкалы, если она существует).
Примечания:
1. Некоторые метрические шкалы, например, шкалы массы и длины, полностью специфицируются стандартизованными определениями единиц измерений.
2. Спецификации многих, даже метрических шкал, кроме определения единиц измерений содержат дополнительные положения. Например, спецификация шкалы световых измерений содержит не только определение единицы измерений яркости - канделы, но и табулированную функцию относительной спектральной световой эффективности монохроматического излучения для дневного зрения.
Элементы шкал измерений
Основные понятия, необходимые для определения шкал: класс эквивалентности, нуль, условный нуль, условная единица измерений, естественная (безразмерная) единица измерений, диапазон шкалы измерений.
Нуль шкалы
Элемент шкал порядка (некоторых), интервалов, отношений и абсолютных, их начальная точка.
Примечание. Различают естественный и условный нули шкал.
Естественный нуль шкалы
Начальная точка шкалы, соответствующая стремящемуся к нулю количественному проявлению измеряемого свойства.
Условный нуль шкалы
Точка шкалы разностей (интервалов) или шкалы порядка, которой по соглашению присвоено нулевое значение измеряемого свойства (величины).
Примечание. Шкала может простираться по обе стороны от точки условного нуля. Например, в наиболее распространенной календарной шкале за условный ноль принят день Рождества Христова. Поэтому общепринято обозначение "... лет до Рождества Христова".
Диапазон шкалы измерений
Пределы изменений значений измеряемого свойства, охватываемые данной конкретной реализации шкалы.
Измеряемое свойство
Проявления общего для объектов деятельности (тел, веществ, явлений, процессов) свойства, выделенного для познания и использования.
Примечание. Измеряют количественные и качественные свойства не только физических, но и нефизических объектов (биологических, психологических, социальных, экономических и др.).
Измеряемая величина (величина)
Измеряемое свойство, характеризуемое количественными различиями.
Примечание. Понятие "величина" не применимо к качественным свойствам, описываемым шкалами наименований, поэтому понятие "свойство" является более общим по сравнению с понятием "величина".
Размер величины
Количественная определенность измеряемой величины, присущая конкретному объекту деятельности.
Значение величины
Оценка размера величины по соответствующей ей шкале в виде некоторого числа принятых для нее единиц, чисел, баллов или иных количественных знаков (обозначений).
Примечание. Для качественных свойств аналогичным термином является "оценка свойства".
Оценка свойства
Нахождение местоположения качественного свойства конкретного объекта деятельности на соответствующей шкале наименований.
Истинное значение величины
Значение величины, которое идеальным образом отражает положение на соответствующей ей шкале реализации количественного свойства конкретного объекта деятельности.
Примечание. Для качественных свойств аналогичным термином является "истинная оценка свойства".
Истинная оценка свойства
Оценка свойства, которая идеальным образом отражает положение на соответствующей шкале наименований реализации качественного свойства конкретного объекта деятельности.
Действительное значение величины
Значение величины, настолько близкое к истинному значению, что для данной цели может быть использовано вместо нее.
Действительная оценка свойства
Оценка свойства, настолько близкая к истинной оценке, что для данной цели может быть использована вместо нее.
Единица измерений
Величина фиксированного размера, для которой условно (по определению) принято числовое значение, равное 1.
Примечания:
1. Термин "единица величины" является синонимом термина "единицы измерений".
2. Термин "единица физической величины", обозначающий более узкое понятие, применять не рекомендуется, так как невозможно определить границы его применения.
3. Понятие "единица измерений" не имеет смысла для свойств, описываемых шкалами наименований и порядка.
Система единиц (измерений)
Совокупность основных и производных единиц измерений, образованная в соответствии с принятыми по договоренности правилами (принципами).
Примечание. Термин "система единиц физических величин" не вполне корректен, так как известные системы единиц, например, Международная (SI), охватывают не только физические величины, но и геометрические (плоский и телесный углы), световые и др.
Основные единицы системы
Единицы величин, размеры и размерности которых в данной системе единиц приняты за исходные при образовании размеров и размерностей производных единиц.
Примечание. Определения и процедуры воспроизведения некоторых основных единиц могут опираться на другие основные и производные единицы, а также на размерные и безразмерные константы.
Системные единицы
Единицы, входящие в одну из принятых систем единиц.
Внесистемные единицы
Единицы, не входящие в рассматриваемую систему единиц.
Примечание. Единица, внесистемная по отношению к некоторой системе, может быть системной по отношению к другой системе.
Заключение
Существуют различные физические объекты, обладающие разнообразными физическими свойствами, количество которых неограниченно. Человек в своем стремлении познать физические объекты -- объекты познания -- выделяет некоторое ограниченное количество свойств, общих для ряда объектов в качественном отношении, но индивидуальных для каждого из них в количественном отношении. Такие свойства получили название физических величин. Понятие «физическая величина» в метрологии, как и в физике, физическая величина трактуется как свойство физических объектов (систем), общее в качественном отношении многим объектам, но в количественном отношении индивидуальное для каждого объекта, т.е. как свойство, которое может быть для одного объекта в то или иное число раз больше или меньше, чем для другого (например, длина, масса, плотность, температура, сила, скорость). Количественное содержание свойства, соответствующего понятию «физическая величина», в данном объекте -- размер физической величины. Размер физической величины существует объективно, вне зависимости от того, что мы знаем о нем.
Список литературы
1. Информационно-правовой портал BestPravo
http://www.bestpravo.ru/rossijskoje/ys-normy/p9g.htm
2. ГСИ. Шкалы измерений. Основные положения.Термины и определения МИ 2365-96.
3.Метрология,стандартизация, сертификация /Учебник Ю.И. Борисов, А.С. Сигов и др. под ред. А.С. Сигова,2005 г.
4.Википедия - свободная энциклопедия
5.www.metrob.forum.ru - Форум для метрологов. Все о прикладной метрологии.
Размещено на Allbest.ru
Подобные документы
Системы физических величин и их единиц, роль их размера и значения, специфика классификации. Понятие о единстве измерений. Характеристика эталонов единиц физических величин. Передача размеров единиц величин: особенности системы и используемых методов.
реферат [96,2 K], добавлен 02.12.2010Суть физической величины, классификация и характеристики ее измерений. Статические и динамические измерения физических величин. Обработка результатов прямых, косвенных и совместных измерений, нормирование формы их представления и оценка неопределенности.
курсовая работа [166,9 K], добавлен 12.03.2013Понятие о физической величине как одно из общих в физике и метрологии. Единицы измерения физических величин. Нижний и верхний пределы измерений. Возможности и методы измерения физических величин. Реактивный, тензорезистивный и терморезистивный методы.
контрольная работа [301,1 K], добавлен 18.11.2013Обработка результатов измерений физических величин. Среднеквадратическое отклонение, ошибка определения объема. Коэффициент проникновения ультразвука внутрь ткани. Энергия для поддержания разности давления. Средняя квадратичная скорость молекулы.
контрольная работа [119,5 K], добавлен 26.07.2012Обработка ряда физических измерений: систематическая погрешность, доверительный интервал, наличие грубой погрешности (промаха). Косвенные измерения величин с математической зависимостью, температурных коэффициентов магнитоэлектрической системы.
контрольная работа [125,1 K], добавлен 17.06.2012Сущность понятия "измерение". Единицы физических величин и их системы. Воспроизведение единиц физических величин. Эталон единицы длины, массы, времени и частоты, силы тока, температуры и силы света. Стандарт ома на основе квантового эффекта Холла.
реферат [329,6 K], добавлен 06.07.2014Прямые и косвенные виды измерения физических величин. Абсолютная, относительная, систематическая, случайная и средняя арифметическая погрешности, среднеквадратичное отклонение результата. Оценка погрешности при вычислениях, произведенных штангенциркулем.
контрольная работа [86,1 K], добавлен 25.12.2010Ознакомление с методом компенсации в практике измерений физических величин. Погрешности при введении в электрическую цепь амперметра или вольтметра. Компенсационные методы и их суть. Мост постоянного тока Уитстона.
лабораторная работа [83,9 K], добавлен 18.07.2007Классификация средств измерений. Понятие о структуре мер-эталонов. Единая общепринятая система единиц. Изучение физических основ электрических измерений. Классификация электроизмерительной аппаратуры. Цифровые и аналоговые измерительные приборы.
реферат [22,1 K], добавлен 28.12.2011Физическая величина как свойство физического объекта, их понятия, системы и средства измерения. Понятие нефизических величин. Классификация по видам, методам, результатам измерения, условиям, определяющим точность результата. Понятие рядов измерений.
презентация [1,6 M], добавлен 26.09.2012