Проектирование системы электроснабжения цеха машиностроительного завода

Определение расчетных электрических нагрузок. Выбор и расчет низковольтной электрической сети, защитных коммутационных аппаратов. Выбор числа и мощности силовых трансформаторов для цеховых подстанций. Устройства автоматического включения резерва.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 22.08.2009
Размер файла 432,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Шинопроводы проверяются на электродинамическую стойкость по условию:

iуд< iуд.доп,

где iуд.доп - допустимая электродинамическая стойкость, кА.

Таблица 22. Проверка шинопроводов на электродинамическую стойкость

Шинопровод

iуд, кА

i уддоп, кА

Условие проверки

ШРА1 73-400-У3

17,516

25

iуд< iуд.доп,

ШРА2 73-400-У3

17,516

25

iуд< iуд.доп,

ШРА3 73-400-У3

8,536

25

iуд< iуд.доп,

ШРА4 73-630-У3

7,33

35

iуд< iуд.доп,

ШРА5 73-250-У3

8,815

15

iуд< iуд.доп,

ШРА673-250-У3

8,834

15

iуд< iуд.доп,

ШРА7 73-250-У3

9,071

15

iуд< iуд.доп,

ШМА68-НУЗ-1600

50,51

70

iуд< iуд.доп,

Так как ударный ток шинопроводов меньше амплитудного значения электродинамической стойкости табл. 7.3. и 7.4. [2], то условие на электродинамическую стойкость соблюдается.

Выбранные аппараты защиты необходимо проверять во-первых по согласованию теплового расцепителя с сечением выбранных элементов сети, во-вторых по чувствительности к токам КЗ.

1. Проверка по согласованию теплового расцепителя с сечением выбранных элементов сети осуществляется по условию:

Iном.расц < 1,5 ? Iдл.доп,

где Iном.расц - номинальный ток расцепителя, А;

Iдл.доп - длительно допустимый ток элемента сети, А.

Проверка по согласованию теплового расцепителя с сечением выбранных элементов сети для выбранного варианта представлены в таблице 23.

Таблица 23. Проверка автоматических выключателей по согласованию теплового расцепителя с сечением выбранных элементов сети

Элемент сети

Тип выключателя

Iдл.доп, А

Iном. расц, А

Iном.расц < 1,5 ? Iдл.доп

ШМА

АВМ-20Н

1600

1200

1200 < 2400

ШРА1

АВМ-4С

400

400

400 < 600

ШРА2

АВМ-4С

400

400

400 < 600

ШРА3

АВМ-4С

400

400

400 < 600

ШРА4

АВМ-10Н

630

600

600 < 945

ШРА5

АВМ-4С

250

250

100 < 375

ШРА6

АВМ-4С

250

150

120 < 375

ШРА7

АВМ-4С

250

400

100 < 375

СП1

АВМ-4С

260

400

100 < 390

ШОС

АВМ-4Н

100

100

100 < 150

В соответствии с приведенными условиями все автоматические выключатели по согласованию тепловых расцепителей соответствуют выбранным сечениям элементов сети.

2. Проверка по чувствительности к токам КЗ осуществляется по условию:

I(1)кзmin > 1,25 ? Iср.эл,

где I(1)кзmin - минимальный ток однофазного КЗ, А;

Iср.эл - ток срабатывания электромагнитного расцепителя, определяется по паспортным данным в зависимости от пределов регулирования времени срабатывания, Iср.эл= 10 ? Iном. расц, А.

Таблица 24. Проверка автоматических выключателей по чувствительности к токам КЗ

Элемент сети

Тип выключателя

I(1)кзmin, А

Iср.эл, А

I(1)кзmin > 1,25 ? Iср.эл,

ШМА

АВМ-20Н

18390

12000

18390> 18000

ШРА1

АВМ-4С

5520

4000

5520> 5000

ШРА2

АВМ-4С

5520

4000

5520> 5000

ШРА3

АВМ-4С

8119

4000

8119> 5000

ШРА4

АВМ-10Н

9050

6000

9050 > 9000

ШРА5

АВМ-4С

5574

2500

5574 >3750

ШРА6

АВМ-4С

5907

1500

5907> 2250

ШРА7

АВМ-4С

6028

4000

6028 > 5000

СП1

АВМ-4С

6253

4000

6253 > 5000

ШОС

АВМ-4Н

1500

1000

1500 > 1500

Таким образом, выбранные автоматические выключатели чувствительны к расчетным токам короткого замыкания.

1. Проверка по согласованию выбранной вставки с сечением выбранного кабеля осуществляется по условию:

I в < 3 ? Iдл.доп,

где I в - номинальный ток плавкой вставкой, А;

Iдл.доп - длительно допустимый ток ка, А.

Соответствие плавких вставок предохранителей по согласованию с сечениями выбранных кабелей, питающих электроприемники, представлены в табл. 25.

Таблица 25. Проверка плавких вставок предохранителей

Типы ЭП

Тип предохранителя

Iпл.вст

Iдлдоп, А

I в < 3 ? Iдл.доп

1. Круглошлифовальный

ПН-2-400

250

90

250 < 270

2. Токарно - револьверный

ПН-2-250

150

55

150 < 165

3. Вертикально-сверлильный

ПН-2-400

300

125

300< 375

4. Токарный полуавтомат

ПН-2-250

120

55

120< 165

5. Горизонтально-проточный

ПН-2-250

200

75

200< 225

6. Токарный с ЧПУ

ПН-2-250

120

55

120 < 165

7. Горизонтально-расточный

ПН-2-250

120

42

120 < 126

8. Горизонтально-фрезерный

ПН-2-250

200

75

200< 225

9. Токарно-винторезный

ПН-2-250

150

55

150< 165

10. Радиально-сверлильный

ПН-2-250

120

42

120 <126

11. Вертикально-фрезерный

ПН-2-250

150

55

150 < 165

12. Бесцентро-шлифовальный

ПН-2-400

400

145

400 < 435

13. Шлифовальный

ПН-2-250

200

75

200 < 225

14. Горизонтально-шлифовальный

ПН-2-400

300

125

300 < 375

15. Вертикально-фрезерный

ПН-2-400

250

125

250 < 375

16. Радиально-сверлильный

ПН-2-250

150

55

150 < 165

17. Вентустановка

ПН-2-100

100

42

100< 126

18. Токарный с ЧПУ

ПН-2-250

200

75

200 <225

19. Токарно - револьверный

ПН-2-250

200

75

200 <225

20. Токарный полуавтомат

ПН-2-250

120

42

200< 126

21. Плоскошлифовальный

ПН-2-100

100

42

100< 126

22. Вертикально-фрезерный

ПН-2-100

100

42

100< 126

23. Точильно-фрезерный

ПН-2-400

300

125

300 <375

24. Электромаслянная ванна

ПН-2-100

100

42

100 <126

25. Нагревательная электропечь

ПН-2-100

100

42

100 < 126

26. Термическая печь

ПН-2-250

200

75

200 < 225

27. Электротермическая печь

ПН-2-250

150

55

150< 165

28. Электропечь

ПН-2-250

120

42

120 <126

29. Вентустановка

ПН-2-100

100

55

100 < 165

30. Точечные стационарные

ПН-2-800

800

380

800 < 1140

31. Сварочные стыковые

ПН-2-600

500

220

500 <660

32. Сварочные шовные роликовые

ПН-2-400

400

180

400 <540

33. Сварочные точечные

ПН-2-600

600

300

600 <900

34. Сварочные стационарные

ПН-2-400

300

220

300 < 660

35. Вентустановка

ПН-2-100

100

42

100 < 126

Следовательно, выбранные предохранители соответствуют условию проверки и выбраны верно.

9. Построение карты селективности

Карта селективности строится в логарифмическом масштабе: по оси абсцисс откладываются токи - расчетные, пиковые и кз; по оси ординат - времена продолжительности пиковых токов и времена срабатывания защит по защитным характеристикам. Схема питания ЭД представлена на рис. 4. Проверим выбранную коммутационную аппаратуру по условию селективности.

Исходная схема для расчета токов КЗ

Рисунок 6

Схема замещения для определения ТКЗ в точках к, к0 и к1.

Рисунок 7

Определяем сопротивление системы:

хС= Uср2/Sкз= 0,382/200=0,72 мОм

Полное сопротивление силового трансформатора:

zTP= uK Uнн2/Sном.тр = 5,5•0,382•104/1000=7,94 мОм

Активное сопротивление СТ

Индуктивное сопротивление СТ

Определяем активные и индуктивные сопротивления элементов сети:

r = L ? rуд, мОм и x = L ? xуд, мОм

Сопротивление автоматического выключателя QF1

Храсц=0,094 мОм; rрасц=0,12 мОм; rконт=0,25 мОм.

Сопротивление QF2= QF3

Храсц=0,55 мОм; rрасц=0,74мОм; rконт=0,65 мОм.

Сопротивление шин КТП: Rшктп=0,1, Xшктп=0,06

Сопротивление ШМА: Хшмао·lшма= 0,017·60 = 1,02 мОм

rшма=r0·lшма= 0,031·60 = 1,86 мОм

rф-о=0,072 мОм/м, rф-о=0,072·60=4,32 мОм

Хф-о=0,098 мОм/м, Хф-о = 0,098·60=5,88 мОм

Сопротивление ШРА1: Хшрао · lшра= 0,13 · 66 =8,58 мОм

rшра= r0 · lшра= 0,1· 66= 6,6 мОм

Сопротивление кабеля к ШРА1: Хкл=0,06·6 = 0,36 мОм

rкл=0,258·6 = 1,548 мОм

rф-о=1,25 мОм/м, rф-о=1,25·6=7,5 мОм

Хф-о=0,0622 мОм/м, Хф-о = 0,0622·6=0,373 мОм

Сопротивление кабеля 1 к ЭП: r0=0,206 мОм/м Х0=0,0596 мОм/м

Хкл=0,0596·5 = 0,3 мОм

rкл=0,206·5 = 1,03 мОм

Определим токи 3х-фазного К3 в указанных точках.

Точка К

Суммарное сопротивление цепи до точки К

r1У = rТР + rQ1 + rшктп+ rконт = 1,734 +0,12 +0,1+0,25=2,204 мОм

х1У = хсТР + хQ1шктп = 0,72+7,74+0,094+0,06=8,614 мОм

= 8,891 мОм

Ток трехфазного КЗ при металлическом КЗ

кА

Ток трехфазного КЗ при учете переходного сопротивления в месте КЗ

1У = r1У + rперех= 2,204 + 15 =17,204 мОм

мОм

I(3)к1 =380/1,73·19,37=11,33 кА

Точка К0

Суммарное сопротивление цепи до точки К0

r2У = r1У + rQ2 + rконт+ rшма +rперех= 2,204+0,74 +0,65 +1,86 +20=25,454 мОм

х2У = х1У + хQ2 + хшма = 8,614+0,55+1,02 +1,06=11,244 мОм

= 27,83 мОм

Ток трехфазного КЗ

кА

Точка К1

Суммарное сопротивление цепи до точки КЗ

r3У = r2У + rQ3 + rконт+ rшра +rкл = 25,454+0,74 +0,65 +6,6 +1,548=34,992 мОм

х3У = х2У + хQ3 + хшракл= 11,244+0,55+8,58 +0,36=20,734 мОм

= 40,67 мОм

Ток трехфазного КЗ при металлическом КЗ

кА

Точка К1

Суммарное сопротивление цепи до точки КЗ

r4У = rґ3У + rклэп + rконт+ rперех = 14,992+1,03 +1,1 +25=42,122 мОм

где rґ3У= r3У - rперехК3=34,992-20=14,992 мОм

х4У = х3У + хклэп+ хконт= 20,734+0,3+0,5=21,534 мОм

= 47,31 мОм

Ток трехфазного КЗ при металлическом КЗ

кА

Расчет токов 1 - но фазного КЗ

Для расчета однофазного кз при наличии ШМА учитывается сопротивление петли фаза-нуль, тогда

Iк= Uн / (Zп+ Zтр/3),

где Zп -полное сопротивление петли фаза-нуль,

Zтр= Zтр1 +Zтр2 + Zтр0 - сопротивление трансформатора, учитывающее прямую, обратную и нулевую последовательность.

Система: Х = 0,72 мОм; Х = Х

СТ: Х1тр = Х2тр = 7,74 мОм; Х0тр = Х1тр - для данной схемы соединения обмоток СТ

Для остальных элементов Х1 = Х2 = Х0; r1 = r2 = r0

Точка К

Суммарное сопротивление цепи до точки К1

r1У = 3rТР +3 rQ1 +3 rшктп= 3·2,204 =6,612 мОм

х1У =2 хс +3хТР + 3хQ1+3 хшктп = 2 ·0,72+3·8,614 =27,282 мОм

= 28,072 мОм

Ток однофазного КЗ при металлическом КЗ

кА

Ток при учете переходного сопротивления дуги в месте КЗ

1У = 3r1У= 3 (2,204 +15)=51,612

кА

Точка К0

Суммарное полное сопротивление петли фаза-нуль т. к. есть ШМА

r2п = r Q1 + rшктп+ rQ2 + rшмаф-0+ rперех = 0,12+0,1+0,74+4,32+20 =25,28 мОм

х2п = х Q1 + хшктп+ хQ2 + хшмаф-0= 0,094+0,06+0,55+5,88=6,584 мОм

= 26,123мОм

кА

Точка К1

r3п = r2п + rшраф-0+rклф-0 = 25,28+66·0,1+ 7,5 =39,38 мОм

х3п = х2п + хшраф-0клф-0 = 6,584+66·0,129+0,373 =15,471 мОм

= 42,31 мОм

кА

Точка К2

r4п = r3п + rконт+rклэпф-0+ rперех = 39,28+1,1+ 1,3+1,25+ 10=52,93 мОм

х4п = х3п + хконтклэпф-0 = 15,471+0,5+0,3 =16,271 мОм

Так как в качестве нулевой жилы кабеля используется труба, то сопротивление трубы определим по формуле

мОм

= 55,374 мОм

кА

Потери напряжения определяют по выражению:

Таблица 26. Проверка выбранных шинопроводов по потере напряжения

Элемент сети

Ip, А

L, м

cosцср.взв/sinц

Сечение, мм

rуд, мОм/м

xуд, мОм/м

ДU, %

ШМА

1101

60

6

0,5 / 0,866

300х160

3х240

0,031

0,129

0,017

0,0587

0,86

0,87

ШРА 1

КЛШРА1

284,15

66

6

0,5 / 0,866

284х95

3х120

0,1

0,258

0,13

0,06

1,32

0,392

Комплектные шинопроводы проверяют на электродинамическую стойкость по условию:

iуд < iуд доп

где - iуд доп = 70 кА

Ударный ток КЗ для ШМА:

где

кА < 70 кА

Таблица 27. Проверка шинопроводов на электродинамическую стойкость

Шинопровод

iуд, кА

i уддоп, кА

Условие проверки

ШРА1 73-400-У3

17,516

25

iуд< iуд.доп,

ШМА73УЗ-1600

50,51

70

iуд< iуд.доп,

Следовательно, выбранные шинопроводы соответствуют условиям проверки.

Для осуществления проверки по согласованию ШМА с защитой, т.е. с QF2 и ШРА с защитой, т.е. с QF3 необходимо выбрать этот автомат. Выбираем автомат типа АВМ-20Н с номинальным током расцепителя 1200 А. Номинальный ток теплового расцепителя, защищающего от перегрузки выбирается по расчетному току защищаемой линии В соответствии с требованиями автоматические выключатели проверяется по условиям:

Iном. расц > Iр.max и Iср.эл. > (1,25-1,35) Iп

где Iном. расц - номинальный ток расцепителя, А;

Iр.max - наибольший расчетный ток нагрузки, А; Iп - пиковый ток, А

Iср.эл - ток срабатывания электромагнитного расцепителя, равный

Iср.эл = 10 ? Iном. расц,

Iп = Iр + (Кп-1) Iном.max,

где Iном. max - наибольший из токов группы ЭП, А;

Iр - расчетный ток группы ЭП, А.

Iнрасц ? Iр 1200 ? 1101 А

Ток срабатывания (отсечки) электромагнитного расцепителя проверяется по максимальному кратковременному току ШМА.

Iср.эл ? Iпик·k где k = 1,25

Iпик рассчитывается при пуске двигателя и нормальной работе остальных потребителей

= 1101+(7-1) 85=1611 А

Для ШРА: = 284,15+(7-1) 85=794,15 А

Проверяем электромагнитный расцепитель по паспортным данным его тока срабатывания

Iср.эл = 10Iн.расц = 12000 А

Iср.эл = 10Iн.расц =4000 А

Проверяем по условию 12000>1821·1,25=2276,3 А - выполняется.

Для ШРА: 4000>794,15·1,25=992,69 А - выполняется.

Таблица 28. Проверка автоматических выключателей по чувствительности к токам КЗ

Элемент сети

Тип выключателя

I(1)кзmin, А

Iср.эл, А

I(1)кзmin > 1,25 ? Iср.эл,

ШМА

АВМ-20Н

18390

12000

18390> 18000

ШРА1

АВМ-4С

5520

4000

5520> 5000

Проверяем по согласованию теплового расцепителя с сечением ШМА Iн расц ? 1,5Iдл.доп

Таблица 29. Проверка автоматических выключателей по согласованию теплового расцепителя с сечением выбранных элементов сети

Элемент сети

Тип выключателя

Iдл.доп, А

Iном. расц, А

Iном.расц < 1,5 ? Iдл.доп

ШМА

АВМ-20Н

1600

1200

1200 < 2400

ШРА1

АВМ-4С

400

400

400 < 600

Для защиты ответвлений к одиночным двигателям при редких и легких пусках выбираем предохранитель серии ПН-2

А,

Выбираем вставку с IВ=250 А, IНОМ = 400 А.

Проверяем согласование выбранной вставки с сечением кабеля 3х16 IВ?3·IДЛ.ДОП 250?3·90=270 А - условие соблюдается

Проверяем предохранитель по чувствительности к КЗ

3465>3·250=600 А - условие соблюдается, следовательно предохранитель выбран верно.

Построим карту селективности по следующим данным:

Iном ЭП=85 А, Iрасч ШМА=1101 А, Iпик ШМА=1611 А, I(1)к = 18,39 кА, I(1)к0 = 6,44 кА

I(1)к1 = 4,366 кА, I(1)к2 =3,465 кА, Iпуск ЭП=595 А

Карта селективности

Рисунок 8: 1 - номинальный ток двигателя; 2 - пусковой ток двигателя; 3 и 4 - расчетный и пиковый токи ШМА; 5, 6, 7,8 - токи КЗ в точках К1, К2 и К4; 9 - характеристика автомата с расцепителем 400 А, 10 - характеристика автомата с расцепителем 1200 А, 11 - характеристика плавкой вставки 250 А предохранителя

При токах КЗ в точках к1 и к0 защита должна работать селективно с необходимым интервалом времени при отказе защиты нижней ступени. При защите предохранителями автомат у трансформатора может иметь независимую выдержку времени не более 0,25 с.

10. Описание работы АВР на напряжение 0,4 кВ

Если предприятие питается от энергосистемы двумя независимыми линиями, то на всех ступенях системы электроснабжения предприятия (на ГПП, в распределительной сети ВН, на цеховых подстанциях, в цеховых сетях) при отключении основного питания предусматривают автоматическое переключение на соседние работающие независимые источники (на другой трансформатор двухтрансформаторной подстанции, на соседние подстанции и т.п.).

Необходимый для такого переключения запас мощности или пропускной способности отдельных элементов системы электроснабжения называют скрытым (неявным) резервом.

Автоматическое включение резерва происходит срабатывания защиты минимального напряжения и отключение этой защитой основного питания. Во избежание одновременного срабатывания устройств АВР различных ступеней системы электроснабжения выдержка времени защиты минимального напряжения низших ступеней отстраивается от времени срабатывания аналогичной защиты высших ступеней, т.е.

tС (i+1) tС i+ tотс,

где. tС i - время срабатывания защиты минимального напряжения, используемой в качестве пускового органа АВР на i - й ступени системы электроснабжения, tС (i+1) - время срабатывания аналогичной защиты на следующей (по удалению источника питания) ступени системы электроснабжения, tотс - время отстройки принимаемое в пределах от 0,5 др 0,7 с.

Устройства АВР реализуют на электромеханических и электронных реле, а также в сети 0,4 кв на механических устройствах ручных пружинных приводов автоматических выключателей НН.

Основными требованием, предъявляемым у устройствам АВР, является однократность действия, т.е. исключение повторного срабатывания при неуспешном АВР.

Устройства АВР выпускают виде стандартных комплектов, и поэтому разработка схем АВР во время проектирования системы электроснабжения предприятий не требуется

Выбор устройств АВР производится с учетом требований к степени бесперебойности электроснабжения приемников и к допустимой длительности перерыва в электроснабжении, типа выключателя и привода, для включения которых предусмотрено устройство АВР, и ожидаемого экономического эффекта от повышения надежности электроснабжения. АВР применяют только в тех случаях, когда параллельная работа независимых источников питания невозможна или экономически нецелесообразна.

Заключение

В представленном курсовом проекте спроектирована и рассчитана система электроснабжения механического цеха.

В проекте произведены расчеты электрических нагрузок для выбора трансформаторов КТП (на первом этапе), расчеты электрических нагрузок для выбора цеховой сети (на втором этапе).

Выбор числа и мощности трансформаторов КТП осуществлялся в соответствии с расчетами с учетом компенсации реактивной мощности при сравнении затрат на установку одного и двух трансформаторов и расчета мощности компенсирующих устройств. На основании сравнения затрат на ЦТП выбран вариант КТП с двумя трансформаторами ТМ-1000/10.

Оценка выбора оптимального варианта цехового электроснабжения осуществлялась по приведенным затратам на проектируемую сеть после выбора сечений проводников сети, коммутационной аппаратура.

В курсовом проекте производится расчет токов короткого замыкания. По току КЗ проверяются сечения элементов сети и защитная коммутационная аппаратура.

Основными критериями при проектировании являются техническая применимость и экономичность проекта. На основании экономической оценки принимается схема электроснабжения варианта 1. Эта система электроснабжения включает:

В качестве главной магистрали, длиной 60 м, устанавливаемого на высоте 4 м принят шинопровод марки ШМА-1600.

Разводка сетей цеха производится с помощью ШРА длиной по 66 и 30 м, устанавливаемых на высоте 3 м и РШ питаемых от ШМА. ЭП подключаются через кабельные спуски, прокладываются в траншеях на глубине - 0,2 м.

Защита производится автоматическими выключателями (для ШМА, ШРА и РШ) и предохранителями (непосредственно для электроприемников).

Список использованных источников

1. Указания по расчету электрических нагрузок. ВНИПИ «Тяжпромэлектропроект» №358-90 от 1 августа 1990 г.

2. Фёдоров А.А., Старкова Л.Е. «Учебное пособие для курсового и дипломного проектирования». - М.: «Энергоатомиздат», 1987.

3. Неклепаев Б.Н. «Электрическая часть электростанций». - М.: «Энергоатомиздат», 1989.

4. Блок В.М.: «Пособие к курсовому и дипломному проектированию». - М.: «ВШ», 1990.

5. ПУЭ, М.: «Энергоатомиздат», 2000.

6. Справочник по проектированию электрических сетей и электрооборудования под ред. Барыбина Ю.Г., Федорова Л.Е. и др. - М.: «Энергоатомиздат», 1991.

7. А.Е. Трунковский «Обслуживание электрооборудования промышленных предприятий» - М: Высшая школа, 1977.

8. Барыбин Ю.Г. «Справочник по проектированию электроснабжения», М.: «Энергоатомиздат», 1990.

9. Справочник электромонтера. Под ред. А.Д. Смирнова. Смирнов Л.П. Монтаж кабельных линий. - М.: Энергия, 1968.


Подобные документы

  • Технологический процесс и электрооборудование цементного завода, расчет силовых электрических нагрузок цеха. Выбор схемы питающей и распределительной сети, числа и мощности трансформаторов цеховых подстанций, коммутационного оборудования завода.

    дипломная работа [2,3 M], добавлен 25.09.2012

  • Характеристика проектируемого цеха и потребителей электроэнергии. Особенности выбора электродвигателей, их коммутационных и защитных аппаратов. Определение электрических нагрузок. Выбор цеховых трансформаторов и расчет компенсации реактивной мощности.

    дипломная работа [883,1 K], добавлен 19.03.2013

  • Определение осветительной нагрузки цехов, расчетных силовых нагрузок. Выбор числа и мощности цеховых трансформаторов с учетом компенсации реактивной мощности. Определение потерь мощности и электроэнергии. Выбор параметров схемы сети электроснабжения.

    курсовая работа [4,4 M], добавлен 14.06.2015

  • Определение электрических нагрузок от силовых электроприёмников. Выбор количества и мощности трансформаторов цеховых подстанций. Выбор напряжения и схемы электроснабжения. Расчёт токов короткого замыкания. Выбор и проверка оборудования и кабелей.

    курсовая работа [817,1 K], добавлен 18.06.2009

  • Характеристика предприятия и источников электроснабжения. Определение расчетных электрических нагрузок цеха; числа и мощности трансформаторов на цеховых подстанциях. Компенсация реактивной мощности. Выбор схемы внешнего и внутреннего электроснабжения.

    дипломная работа [1,5 M], добавлен 25.06.2012

  • Технология производства и режим электропотребления приемников. Расчет электрических нагрузок. Выбор числа, мощности и расположения цеховых трансформаторных подстанций и компенсирующих устройств. Выбор схемы и расчет низковольтной электрической сети.

    курсовая работа [1,9 M], добавлен 31.03.2018

  • Определение расчетных силовых электрических нагрузок. Выбор схемы электроснабжения предприятия, мощности силовых трансформаторов. Разработка схемы электроснабжения и сетевых элементов на примере ремонтно-механического цеха. Проверка защитных аппаратов.

    курсовая работа [579,4 K], добавлен 26.01.2015

  • Краткая характеристика металлопрокатного цеха, расчет электрических и осветительных нагрузок. Выбор схемы цеховой сети, числа и мощности цеховых трансформаторов. Определение напряжения внутризаводского электроснабжения. Расчет картограммы нагрузок.

    курсовая работа [1,2 M], добавлен 22.04.2012

  • Расчет электрических нагрузок. Выбор числа и мощности цеховых трансформаторных подстанций. Разработка системы внутризаводского электроснабжения. Расчет электрических нагрузок на головных участках магистралей. Выбор измерительных трансформаторов.

    курсовая работа [1,4 M], добавлен 29.09.2009

  • Проектирование электроснабжения сборочного цеха. Схема цеховой сети и расчет электрических нагрузок. Компенсация реактивной мощности и выбор мощности цеховых трансформаторов. Установка силовых распределительных пунктов. Подбор сечения проводов и кабелей.

    курсовая работа [1,5 M], добавлен 05.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.