Вопросы реконструкции линии 10 кВ подстанции "Василево", с заменой масляных выключателей на вакуумные, выбором разъединителей и трансформаторов тока
Разработка защиты потребительских трансформаторов от утечки масла, на примере трансформатора ТМ 100/10. Анализ состояния безопасности на трансформаторной подстанции "Василево". Технико-экономическое обоснование защиты трансформаторов от потери масла.
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 29.04.2010 |
Размер файла | 2,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
84
Содержание
- Введение
- 1. Реконструкция линии 10 кВ.
- 1.1 Определение нагрузок на участках сети
- 1.2 Выбор сечения проводов на участках линии и определение потерь напряжения
- 1.3 Расчёт токов короткого замыкания
- 1.4 Выбор электрических аппаратов на линии
- 2. Патентный поиск
- 2.1 Способы защиты трехфазного силового трансформатора от перегрузки
- 2.2 Устройство для защиты силового трансформатора от перегрузки
- 2.3 Устройство для защиты от перегрузки обмотки электрического аппарата
- 2.4 Устройство для защиты электрического маслонаполненного аппарата от внутренних повреждений
- 3. Разработка защиты потребительских трансформаторов от утечки масла, на примере трансформатора ТМ 100/10
- 3.1 Обоснование разработки защиты
- 3.2 Процессы нагревания и охлаждения трансформаторов
- 3.3 Тепловой расчет трансформатора
- 3.3.1 Расчет геометрических размеров бака трансформатора ТМ100/10
- 3.3.2 Тепловой расчет трансформатора при номинальной загрузке без утечки масла
- 3.3.3 Тепловой расчет трансформатора при номинальной загрузке при уровне масла ниже патрубков коллекторов радиаторов
- 3.3.4 Схема защиты трансформатора от утечки масла
- 4. Безопасность и экологичность проекта
- 4.1 Анализ состояния безопасности на трансформаторной подстанции
- 4.2 Характеристика опасных факторов при эксплуатации оборудования подстанции
- 4.3 Расчет заземления трансформаторной подстанции 10/0,4 кВ
- 4.4 Пожарная безопасность
- 4.5 Организационно-правовые меры по безопасности и экологичности проекта
- 5. Технико-экономическое обоснование защиты трансформа торов от потери масла
- 5.1 Расчёт капитальных вложений
- 5.2 Расчёт эксплуатационных издержек
- 5.3 Расчет срока окупаемости
- Выводы по дипломному проекту
- Список использованной литературы
Введение
Сельскохозяйственное производство все в большей мере базируется на современных технологиях, широко использующих электрическую энергию. В связи с этим возрастают требования к надежности электроснабжения сельскохозяйственных объектов, к качеству электрической энергии, к ее экономичному использованию и рациональному расходованию материальных ресурсов при сооружении систем электроснабжения.
Самый важный показатель системы электроснабжения - надежность подачи электроэнергии. С ростом электрификации сельскохозяйственного производства, особенно с созданием в сельском хозяйстве животноводческих комплексов промышленного типа, птицефабрик, тепличных комбинатов и др., всякое отключение - плановое (для ревизии и ремонта) и особенно неожиданное аварийное - наносит огромный ущерб потребителю и самой энергетической системе. Поэтому необходимо применять эффективные и экономически целесообразные меры по обеспечению оптимальной надежности электроснабжения сельскохозяйственных потребителей.
Абсолютное большинство сельскохозяйственных потребителей получают электроэнергию от централизованного источника - энергосистемы. При этих условиях основой системы являются электрические сети. Систему сельского электроснабжения необходимо спроектировать таким образом, чтобы она имела наилучшие технико-экономические показатели, то есть чтобы при минимальных затратах денежных средств, оборудования и материалов она обеспечивала требуемые надежность электроснабжения и качество электроэнергии. Задача обеспечения электроэнергией потребителей при проектировании систем сельского электроснабжения должна решаться комплексно, с учетом развития в рассматриваемой зоне всех отраслей хозяйства, в том числе и не сельскохозяйственных. Проектирование сельских электрических сетей необходимо проводить в соответствии как с общими директивными и нормативными документами (Правила устройства электроустановок, Правила технической эксплуатации и др.), так и со специально разработанными для сельских сетей материалами.
Существует мощный энергетический комплекс, обеспечивающий сельскохозяйственные потребители электроэнергией - система сельских электрических сетей напряжением 0,4 - 110 кВ, однако рост нагрузок при появлении новых потребителей в зонах, уже охваченных централизованным электроснабжением, и при освоении новых сельскохозяйственных районов, необходимость повышения надежности электроснабжения и качества электроэнергии, изменение планировки населенных пунктов и т.д. требуют дальнейшего развития электрических сетей. Оно включает как новое строительство, так и расширение, и реконструкцию сетей.
При этом, под новым строительством подразумевают сооружение новых линий электропередач и подстанций, под расширением - установку на одно-трансформаторных подстанциях второго трансформатора с соответствующим оборудованием, под реконструкцией - замену проводов линий электропередачи, перевод сетей с напряжения 6 кВ на напряжение 10 кВ, замену трансформаторов, установку средств компенсации реактивной мощности, секционирования, автоматизации, регулирования напряжения и т.п.
Таким образом, реконструкция действующих электрических сетей связана в первую очередь с изменением электрических параметров линий и подстанций при частичном или полном сохранении строительной части объектов, а также с установкой дополнительных аппаратов и оборудования. Реконструкция позволяет повысить пропускную способность действующих сетей, надежность электроснабжения и качества электроэнергии у потребителей.
1. Реконструкция линии 10 кВ.
1.1 Определение нагрузок на участках сети
Рассмотрим линию 10кВ отходящую от трансформаторной подстанции Василево 110/35/10кВ фидера 10 - 08 (Рисунок 1).
Рисунок 1. - Расчётная схема линии.
Нагрузку трансформаторных пунктов определяют с учётом коэффициента загрузки по формулам:
SЗ=KЗ*SТП [1]
где SЗ - нагрузка трансформаторных пунктов в зимнее время, кВА;
КЗ - коэффициент загрузки трансформаторных пунктов в зимнее время; SТП - мощность трансформаторной подстанции, кВ*А.
Для трансформаторной подстанции номер 1:
SТП1=30 кВ*А;
KЗ=0,8;
Для всех остальных трансформаторных подстанций расчёты сводим в таблицу 1.
Таблица 1. - Существующие нагрузки трансформаторных подстанций.
№ ТП |
SТП, кВА |
Тип нагрузки |
КЗ |
SЗ, кВА |
Cos |
РТП. З, кВт |
QТП. З, кВАр |
|
1 |
30 |
Косино |
0,8 |
24 |
0,9 |
22 |
10 |
|
2 |
30 |
Захарово |
0,8 |
24 |
0,9 |
22 |
10 |
|
3 |
250 |
Ферма |
0,8 |
200 |
0,8 |
150 |
132 |
|
4 |
100 |
Бакшейка |
0,8 |
80 |
0,9 |
72 |
35 |
|
5 |
30 |
Палкино |
0,9 |
27 |
0,9 |
24 |
12 |
|
6 |
30 |
Емельянка |
0,9 |
27 |
0,9 |
24 |
12 |
|
7 |
180 |
Коряково |
0,7 |
126 |
0,9 |
113 |
55 |
|
8 |
160 |
Коряково |
0,7 |
112 |
0,9 |
101 |
49 |
|
9 |
250 |
ВНС |
0,5 |
125 |
0,9 |
113 |
54 |
|
10 |
400 |
КНС |
0,5 |
200 |
0,9 |
180 |
87 |
|
11 |
250 |
Котельная |
0,8 |
200 |
0,8 |
160 |
120 |
|
12 |
250 |
Котельная |
0,8 |
200 |
0,8 |
160 |
120 |
|
1960 |
1345 |
1141 |
697 |
Установленная мощность трансформаторов, подключенных к фидеру 10 - 08 составляет 1960 кВА в рабочем режиме.
Максимальная нагрузка зимняя: РЗ=1141 кВт, QЗ=697 кВАр.
Максимальную расчётную мощность на участках сетей 6…20кВ определяют с учётом коэффициентов одновременности если суммарные нагрузки не отличаются одна от другой более чем в четыре раза, и табличным методом если отличаются более чем в четыре раза.
Расчётную мощность участка линии при суммировании с учётом коэффициента одновременности определяют по формулам
Р=KOРi;
Q=KOQi [1]
гдеP, Q - расчётная активная и реактивная нагрузки на участке линии или на шинах трансформаторной подстанции, кВт, кВАр; КО - коэффициент одновременности; Pi, Qi - активная и реактивная нагрузки на вводе i - го потребителя или i - го элемента сети, кВт, кВАр.
При суммировании нагрузок табличным методом к большей нагрузке прибавляют добавку от меньшей, которую берут из таблиц.
Расчёт ведём по максимальной нагрузке, которая наблюдается в зимнее время.
Отпайка Т12-10, для неё:
Р12=160 кВА,Q12=120 кВАр;
Р11=160 кВА,Q11=120 кВАр;
Участок Т15-7
РТ12-11= Р12=160 кВА;
QТ12-11= Q15=120 кВАр;
Участок 6 - 7
Р11-10= КО* (РТ11+ РТ12);
Q11-10= КО* (QТ11+ QТ12);
КО=0,9 [1]
Р11-10=0,9* (160+160) =288 кВА;
Q11-10=0,9 (120+120) =216 кВАр.
Расчёт нагрузок на остальных отпайках и на магистрали аналогичен, поэтому его сводим в таблицу 2.
Таблица 2. - Расчёт нагрузок на магистрали и отпайках линии.
Участок |
Рn-1,кВт |
Qn-1,кВАр |
Рn-2,кВт |
Qn-2,кВАр |
КО |
P, кВт |
Q, кВАр |
Рn, кВт |
Qn, КВАр |
Sn, кВА |
Iуч, А |
|
Отпайка Т12 - 10 |
||||||||||||
Т12-11 |
- |
- |
- |
- |
- |
- |
- |
160 |
120 |
200 |
11,56 |
|
Т11-11 |
- |
- |
- |
- |
- |
- |
- |
160 |
120 |
200 |
11,56 |
|
11-10 |
160 |
120 |
160 |
120 |
0,9 |
- |
- |
288 |
216 |
360 |
20,81 |
|
Отпайка Т4 - 3 |
||||||||||||
Т4-4 |
- |
- |
- |
- |
- |
- |
- |
72 |
35 |
80 |
4,62 |
|
4-3 |
72 |
35 |
150 |
132 |
0,9 |
- |
- |
199,8 |
150,3 |
250 |
14,45 |
|
Отпайка Т4 - 3 |
||||||||||||
Т2-2 |
- |
- |
- |
- |
- |
- |
- |
22 |
10 |
24 |
1,39 |
|
Т1-2 |
- |
- |
- |
- |
- |
- |
- |
22 |
10 |
24 |
1,39 |
|
2-1 |
22 |
10 |
22 |
10 |
0,9 |
- |
- |
39,6 |
18 |
43,5 |
2,51 |
|
Магистраль Т10 - 0. |
||||||||||||
Т10-10 |
- |
- |
- |
- |
- |
- |
- |
180 |
87 |
200 |
11,56 |
|
10-9 |
180 |
87 |
288 |
216 |
0,9 |
- |
- |
339,6 |
232,9 |
334,12 |
19,31 |
|
9-8 |
339,6 |
232,9 |
113 |
54 |
0,9 |
- |
- |
407,34 |
258,21 |
482,3 |
27,88 |
|
8-7 |
407,34 |
258,21 |
101 |
49 |
- |
69,5 |
33,2 |
476,84 |
82,2 |
483,87 |
27,97 |
|
7-6 |
476,84 |
82,2 |
113 |
55 |
- |
79 |
37,5 |
555,84 |
92,5 |
563,5 |
32,57 |
|
6-5 |
555,84 |
92,5 |
24 |
12 |
- |
15 |
7,3 |
570,84 |
104,5 |
580,33 |
33,54 |
|
5-3 |
570,84 |
104,5 |
150 |
132 |
0,9 |
- |
- |
648,76 |
212,85 |
682,78 |
39,47 |
|
3-1 |
648,76 |
212,85 |
199,8 |
150,3 |
0,9 |
- |
- |
763,7 |
363,15 |
845,65 |
48,88 |
|
1-0 |
763,7 |
363,15 |
39,6 |
18 |
- |
26,2 |
11,2 |
789,9 |
374,35 |
873,21 |
50,47 |
|
Нагрузка на головном участке |
789,9 |
374,35 |
873,21 |
50,47 |
1.2 Выбор сечения проводов на участках линии и определение потерь напряжения
Сечение проводов в сельских воздушных линиях напряжением 10кВ выбираем в соответствии с магистральным принципом построения сетей напряжением 10кВ, принятых в проектных организациях. При этом магистраль воздушной линии выполняют из сталеалюминевых проводов сечением не менее 70мм2, а отпайки к трансформаторным подстанциям напряжением 10/0,4кВ - сечением не менее 35мм2. [5]
Принимаем к выполнению магистраль воздушной линии 10кВ проводом АС - 70, а отпайки проводом АС - 35.
Определяем потери напряжения на участках линии 10кВ.
, [5]
Где Ui - потеря напряжения на i м участке, %; Рi, Qi - расчётная активная и реактивная мощности передаваемые по участку, ВА, ВАр; Rio, Xio - удельное активное и реактивное сопротивление линии, Ом/км; Li - длина i го участка, км; Uном - номинальное напряжение линии, В.
Участок линии Т12 - 11 выполнен проводом АС - 35, которому соответствует:
RoТ12-11=0,77 Ом/км,XoТ12-11=0,37 Ом/км [5]
РТ12-11=160 кВт,QТ12-11=120 кВт,
LТ12-11=0,3 км,Uном=10000 В.
=0,05%
Расчёт потерь напряжения на отпайках и на магистрали аналогичен, поэтому его сводим в таблицу 3.
Таблица 3. - Потери напряжения на магистрали и на отпайках линии.
Участок |
Руч, КВт |
Qуч, КВАр |
Iуч, А |
Провод |
RO, Ом/км |
XO, Ом/км |
Lуч, км |
Rуч, км |
Xуч, км |
Uуч, % |
|
Отпайка Т12-10 |
|||||||||||
Т12-11 |
160 |
120 |
11,56 |
АС-35 |
0,77 |
0,37 |
0,3 |
0,23 |
0,11 |
0,05 |
|
Т11-11 |
160 |
120 |
11,56 |
АС-35 |
0,77 |
0,37 |
0,225 |
0,17 |
0,08 |
0,04 |
|
11-10 |
288 |
216 |
20,81 |
АС-35 |
0,77 |
0,37 |
0,15 |
0,12 |
0,06 |
0,05 |
|
Отпайка Т4-3 |
|||||||||||
Т4-4 |
72 |
35 |
4,62 |
АС-35 |
0,77 |
0,37 |
0,75 |
0,58 |
0,28 |
0,05 |
|
4-3 |
199,8 |
150,3 |
14,45 |
АС-35 |
0,77 |
0,37 |
0,15 |
0,12 |
0,06 |
0,03 |
|
Отпайка Т2-1 |
|||||||||||
Т2-2 |
22 |
10 |
1,39 |
АС-35 |
0,77 |
0,37 |
1,95 |
1,5 |
0,72 |
0,04 |
|
Т2-1 |
22 |
10 |
1,39 |
АС-35 |
0,77 |
0,37 |
0,09 |
0,07 |
0,03 |
0,002 |
|
2-1 |
39,6 |
18 |
2,51 |
АС-35 |
0,77 |
0,37 |
1,28 |
0,99 |
0,47 |
0,05 |
|
Магистраль Т10-0 |
|||||||||||
Т10-10 |
180 |
87 |
11,56 |
АС-70 |
0,42 |
0,34 |
0,75 |
0,32 |
0,26 |
0,08 |
|
10-9 |
339,6 |
232,9 |
19,31 |
АС-70 |
0,42 |
0,34 |
0,68 |
0,29 |
0,23 |
0,15 |
|
9-8 |
407,34 |
258,21 |
27,88 |
АС-70 |
0,42 |
0,34 |
0,225 |
0,09 |
0,08 |
0,06 |
|
8-7 |
476,84 |
82,2 |
27,97 |
АС-70 |
0,42 |
0,34 |
1,43 |
0,6 |
0,49 |
0,33 |
|
7-6 |
555,84 |
92,5 |
32,57 |
АС-70 |
0,42 |
0,34 |
1,58 |
0,66 |
0,54 |
0,42 |
|
6-5 |
570,84 |
104,5 |
33,54 |
АС-70 |
0,42 |
0,34 |
1,8 |
0,76 |
0,61 |
0,5 |
|
5-3 |
648,76 |
212,85 |
39,47 |
АС-70 |
0,42 |
0,34 |
0,9 |
0,38 |
0,31 |
0,31 |
|
3-1 |
763,7 |
363,15 |
48,88 |
АС-70 |
0,42 |
0,34 |
0,9 |
0,38 |
0,31 |
0,4 |
|
1-0 |
789,9 |
374,35 |
50,47 |
АС-70 |
0,42 |
0,34 |
1,43 |
0,6 |
0,49 |
0,66 |
|
Потеря напряжения на магистрали |
2,89 |
||||||||||
Потеря напряжения на удалённом трансформаторе |
2,89 |
||||||||||
Суммарная длина магистрали |
9,7 |
1.3 Расчёт токов короткого замыкания
Расчет токов к. з. необходим для выбора аппаратуры и проверки элементов электроустановок (шин, изоляторов, автоматов, кабелей) на электродинамическую и термическую устойчивость, настройки релейной защиты, выбора и расчета токоограничивающих и заземляющих устройств.
Определение токов короткого замыкания будем вести методом именованных единиц (практических). В этом случае параметры схемы выражают в именованных единицах - Ом, А, В и т.д. .
Этот метод применяют при расчете токов короткого замыкания сравнительно простых электрических схем с небольшим числом ступеней трансформации. В частности этот метод удобно использовать при определении токов короткого замыкания сельских электрических сетей, питающихся от районных энергосистем или от изолированно работающих электростанций, а также сетей напряжением 380/220 В.
Произведем расчет токов короткого замыкания на примере фидера 10-01.
Для расчета минимальных токов короткого замыкания необходимо определить наиболее удаленную от источника питания трансформаторную подстанцию и считать местом замыкания ввод этой подстанции. Для фидера 10-08 подстанции “Василево" этим местом является показанная на рисунке 1.1 трансформаторная подстанция номер 10.
Расчет максимального тока короткого замыкания производим на шинах 10 кВ подстанции “Василево".
По расчетной схеме составляем упрощенную схему сети и схему замещения на рисунке 2. (а, б) На этих схемах изображаем все элементы, влияющие на величину тока короткого замыкания и точки короткого замыкания.
Определяем значение сопротивлений до места короткого замыкания:
Определяем величину сопротивления трансформатора.
Сопротивление трансформатора определяется по формуле:
[1]
Где uk - напряжение короткого замыкания в процентах;
Uном - номинальное напряжение трансформатора;
Sном - номинальная мощность трансформатора.
а)
б)
Риcунок 2. - Схемы сети 10 кВ. а). упрощенная схема сети 10 кВ; б). схема замещения.
На подстанции установлен трансформатор ТМ 10000/110, для него:
Sном=10000 кВА
uk=17.5%
Uном=11 кВ
Zт =2,12 Ом
Определяем значение сопротивления линии 10 кВ. Линия выполнена проводом А-70, длина линии 7,32 км. Для данной марки провода по справочнику выбираем значения относительных сопротивлений
Ro=0,42 Ом/км, Хо=0.34 Ом/км [5]
Полное сопротивление линии определится по формуле
где: L - длина линии, км;
Ro, Xo - относительные активное и индуктивное сопротивления, Ом/км.
=5,24 Ом
Определяем сопротивление линии 110 кВ.
Линия выполнена проводом АС-70, длина линии 10,5 км. Для данной марки провода по справочнику выбираем значения относительных сопротивлений:
Ro=0,42 Ом/км, Хо=0,34 Ом/км [5]
=5,67 Ом
Приводим сопротивление линии 110 кВ к ступени 10 кВ.
[5]
где: Кт - коэффициент трансформации трансформатора, Кт = 11
= 0.043 Ом
Для подстанции “Василево" по данным Костромских электрических сетей полное сопротивление системы Zс=4.38 Ом
Определяем значения тока короткого замыкания.
Ток трехфазного короткого замыкания определится по формуле
[5]
где: - суммарное сопротивление в точке короткого замыкания, Ом.
В точке К1 величина тока ограничивается только величиной сопротивлений трансформатора, системы и линии 110 кВ.
= 970,6 А
В точке К2 величина тока короткого замыкания ограничивается также ещё и величиной сопротивления линии 10 кВ.
;
= 539 А
Определяем значение тока двухфазного короткого замыкания.
Величина тока двухфазного короткого замыкания определяется по формуле:
IK (2) = 0,87IK (3) [5]
= 468,93 А
Расчёт ударного тока.
[1]
Где iУД - ударный ток, кА; КУД - ударный коэффициент; IК (3) - установившееся значение тока короткого замыкания, кА.
Для точки К1:
КУД = 1,5 [1]
IК1 (3) = 970,6 А
Для точки К2:
КУД = 1,5 [1]
IК2 (3) = 539 А
Расчёт теплового импульса.
Тепловой импульс возникает в результате протекания тока КЗ и рассчитывается по формуле:
BK = IК22 (tРЗ + Ta) [1]
гдеBK - тепловой импульс, кА2*с; tРЗ - время срабатывания релейной защиты, с; Ta - время затухания апериодической составляющей тока короткого замыкания, с.
При напряжении 10…0,4 кВ время действия релейной защиты принимается 0,1 с, время затухания апериодической составляющей 0,01с. [3]
Тепловой импульс для точки К1:
BK1 = (2,059) 2 (0,1+0,01) = 0,47 кА2*с.
Тепловой импульс для точки К2:
BK2 = (1,133) 2 (0,1+0,01) = 0,14 кА2*с.
1.4 Выбор электрических аппаратов на линии
Выбор выключателей.
Выключатель - это контактный коммутационный аппарат, способный выключать, проводить, отключать рабочие токи и токи короткого замыкания. В зависимости от дугогасительной среды различают масляные, воздушные, электромагнитные и вакуумные выключатели.
Выбор выключателей производится по следующим параметрам [3]
по напряжению установки
Uуст Uном (1.1)
гдеUуст - напряжение установки, В; Uном - номинальное напряжение выключателя, В.
по длительному току
Iраб Iном (1.2)
Где Iраб - рабочий ток линии, А; Iном- номинальный ток выключателя, А.
по отключающей способности
IКЗ (3) Iоткл. ном. (1.3)
Где IКЗ (3) - расчётный ток короткого замыкания, А; Iоткл. ном. - номинальный ток отключения выключателя.
по электродинамической стойкости
iу (3) iдин (1.4)
где iу (3) - расчётный ударный ток короткого замыкания, А; iдин - ток динамической стойкости выключателя, А.
по термической стойкости
BK Iтерм2tтерм (1.5)
Где BK - расчётный тепловой импульс, кА2с, Iтерм - ток термической стойкости выключателя, кА, tтерм - время термической стойкости выключателя, с.
В соответствии с перечисленными условиями (1.1 - 1.5) выбираем на стороне 10 кВ выключатель вакуумный ВНВП - 10/320
Условия выбора сводим в таблицу 4.
Таблица 4. - Выбор выключателя на стороне 10 кВ.
Расчётные данные |
Каталожные параметры выключателя |
Условия выбора |
|
Выключатель вакуумный ВНВП - 10/320 |
|||
Uуст = 10 кВ |
Uном = 10 кВ |
Uуст Uном |
|
Iраб = 50,47 А |
Iном = 320 А |
Iраб Iном |
|
IКЗ (3) = 0,97 кА |
Iоткл. ном. = 2 кА |
IКЗ (3) Iоткл. ном. |
|
iу (3) = 2,059 кА |
iдин = 40 кА |
iуд (3) iдин |
|
BК = 0,47 кА2с |
Iтерм2tтерм = 2020,3 = 120 кА2с |
BК Iтерм2 tтерм |
Выбор разъединителей.
Разъединители используют для включения и отключения обесточенных участков электрической цепи под напряжением.
Выбор разъединителей производится по тем же параметрам что и выключатели, кроме условия по отключающей способности. [3]
В соответствии с перечисленными условиями (1.1 - 1.5) выбираем на стороне 10 кВ разъединитель РЛНД - 10/200
Условия выбора сводим в таблицу 5.
Таблица 5. - Выбор разъединителя на стороне 10 кВ.
Расчётные данные |
Каталожные параметры разъединителя |
Условия выбора |
|
Разъединитель РЛНД - 10/200 |
|||
Uуст = 10 кВ |
Uном = 10 кВ |
Uуст Uном |
|
Iраб = 50,47 А |
Iном = 200 А |
Iраб Iном |
|
iу (3) = 2,059 кА |
Iдин = 20 кА |
Iуд (3) iдин |
|
BК = 0,47 кА2с |
Iтерм2tтерм = 5210 = 250 кА2с |
BК Iтерм2 tтерм |
Выбор измерительных трансформаторов тока.
Выбор трансформаторов тока производят по следующим параметрам [1]
по напряжению установки
; (1.6)
по току
; , (1.7)
Номинальный ток должен быть как можно ближе к рабочему току установки, так как недогрузка первичной обмотки трансформатора тока приводит к увеличению погрешностей.
по конструкции и классу точности;
по электродинамической стойкости;
,, (1.8)
Где iy - расчётный ударный ток КЗ;
kэд - кратность электродинамической стойкости, по каталогу; I1ном - номинальный первичный ток трансформатора тока; iдин - ток электродинамической стойкости;
Электродинамическая стойкость шинных трансформаторов тока определяется устойчивостью самих шин распределительного устройства, в следствии этого такие трансформаторы по этому условию не проверяются.
по термической стойкости
; , (1.9)
Где Вк - расчётный тепловой импульс;
kт - кратность термической стойкости, по каталогу;
tтер - время термической стойкости, по каталогу;
Iтер - ток термической стойкости;
по вторичной нагрузке
Z2 Z2НОМ (1.10)
Где Z2 - вторичная нагрузка трансформатора тока;
Z2ном - номинальная допустимая нагрузка трансформатора тока в выбранном классе точности.
В соответствии с перечисленными условиями (1.6 - 1.10) выбираем трансформаторы тока на стороне 10 кВ [3]
Условия выбора сводим в таблицу 6.
Таблица 6. - Выбор трансформаторов тока на стороне 10 кВ.
Расчётные данные |
Каталожные Параметры трансформатора тока |
Условия выбора |
|
Трансформатор тока ТПЛ 10 - 0,5/Р - 75/5 |
|||
Uуст = 10 кВ |
Uном = 10 кВ |
Uуст Uном |
|
Iраб = 50,47 А |
Iном1 = 75 А |
Iраб Iном1 |
|
BК = 0,47 кА2с |
Iтерм2tтерм = 3,423=34,2кА2с |
BК Iтерм2 tтерм |
Проверим условие согласования по вторичной нагрузке трансформатора тока.
Нагрузка вторичной стороны состоит из:
,
Где rприб - сопротивление прибора, Ом;
rпр - сопротивление соединительных проводов, Ом;
rкон. - переходное сопротивление контактов, 0.05 Ом [1].
Сопротивление приборов определяется по выражению
;
Где Sприб. - мощность, потребляемая приборами, ВА;
I2 - вторичный номинальный ток прибора, А.
По таблице 7. определяем мощность вторичной нагрузки на вторичную обмотку трансформатора тока.
Таблица 7. Вторичная нагрузка трансформатора тока на стороне 10 кВ.
Прибор |
Тип |
Нагрузка, ВА, фазы |
|||
А |
В |
С |
|||
Амперметр Ваттметр Варметр Счетчик активной энергии Счетчик реактивной энергии |
Э-335 Д-335 Д-335 САЗ-И675 СР4-И689 |
0.5 0.5 0.5 2.5 2.5 |
- |
0.5 0.5 0.5 2.5 2.5 |
|
Итого |
6.5 |
6.5 |
Из таблицы видно, что наиболее загружены трансформаторы тока фаз А и С.
Сопротивление соединительных проводов зависит от их длины и сечения. Чтобы трансформатор тока работал в выбранном классе точности, необходимо выполнить условие:
rПРИБ + rПР + rК Z2НОМ
ГДЕZ2НОМ - номинальная допустимая нагрузка трансформатора, Ом.
Z2НОМ = 0,4 Ом [3]
rПР = Z2НОМ - rПРИБ rК,
rПР = 0,4 - 0,26 -0,05 = 0,09 Ом
Определяем сечение соединительных проводов
Где LРАСЧ - расчётная длина соединительных проводов, зависящая от схемы соединения трансформаторов тока, м; - удельная проводимость материала провода, для алюминия = 0,0283, Оммм/м2.
Принимаем длину равной 6 м. Трансформаторы тока включены по схеме неполной звезды, тогда LРАСЧ = 1,73L.
Принимаем контрольный кабель АКРВГ с жилами сечением 4 мм2 [3].
2. Патентный поиск
2.1 Способы защиты трехфазного силового трансформатора от перегрузки
Рисунок 3. - Схема защиты трехфазного силового трансформатора от перегрузки.
Формула изобретения [15]:
Способ защиты трехфазного силового трансформатора от перегрузки, основанный на измерении параметра, характеризующего перегрузку, преобразовании этого параметра в электрический сигнал, сравнении этого сигнала с установкой ив случае превышения сигнала над установкой формирования сигнала воздействия на шунтирующий элемент, включении шунтирующего элемента и отключении трансформатора коммутирующим элементом в результате увеличения проходящего через него тока, отличающийся тем, что с целью обеспечения бесперебойности электроснабжения потребителей, шунтирующий элемент шунтирует нагрузку трансформатора, а коммутирующий элемент устанавливают на низкой стороне трансформатора.
Способ по п.1 отличающийся тем, что в качестве параметра, характеризующего перегрузку трансформатора, измеряют температуру обмоток трансформатора.
2.2 Устройство для защиты силового трансформатора от перегрузки
Рисунок 4. - Устройство для защиты силового трансформатора от перегрузки.
Формула изобретения [12]:
Устройство для защиты силового трансформатора от перегрузки, содержащее датчик тока, соединенный через преобразователь тока и блок с зависимой установкой срабатывания с реле времени с независимой выдержкой, и датчик температуры верхних слоев масла, который через температурный преобразователь подключен к зависимому от сигнала реле времени, отличающееся тем, что с целью повышения надежности, в него дополнительно введены сумматор напряжений пропорциональных току и температуре верхних слоев масла трансформатора, и логическая схема И, причем на один вход сумматора включен выход температурного преобразователя, на другой - выход преобразователя тока, а выход сумматора подключен к одному из входов схемы И, другой вход которой соединен с выходом датчика тока, а выход с зависимым реле времени.
2.3 Устройство для защиты от перегрузки обмотки электрического аппарата
Рисунок 5. - Устройство для защиты от перегрузки обмотки электрического аппарата.
Содержит датчик температуры, выход которого через преобразователь температуры в напряжение подключен к первому входу сумматора, датчик тока нагрузки, выход которого через функциональный преобразователь тока нагрузки связан с вторым входом сумматора, через первый пороговый орган-с органом выдержки времени, выход которого подключен к выходному органу, отключающееся тем, что с целью повышения точности работы путем учета зависимости повышения зависимости повышения температуры обмотки над температурой охлаждающего масла от продолжительности протекания тока, в него введены блок инерционного звена, управляемый генератором импульсов, второй пороговый орган и элемент ИЛИ, а функциональный преобразователь тока нагрузки выполнен на квадраторе, при этом выход функционального преобразователя тока нагрузки через блок инерционного звена подключен к второму входу сумматора, выход которого через второй пороговый орган подсоединен к первому элемента ИЛИ, выход которого подключен к входу органа выдержки времени, а к второму элемента или подключен выход первого порогового органа.
Устройство по п.1, отличающееся тем, что к выходу сумматора подключен измерительный прибор [14].
2.4 Устройство для защиты электрического маслонаполненного аппарата от внутренних повреждений
Рисунок 6. - Устройство для защиты электрического маслонаполненного аппарата от внутренних повреждений.
Содержит корпус, установленный в разрез трубопровода, соединяющего бак аппарата с расширителем, датчик в виде электрического конденсатора, установленный в верхней части корпуса, и два исполнительных органа, связанных с выходом датчика, отличающееся тем, что с целью повышения надежности путем повышения быстродействия и чувствительности, оно дополнительно содержит два пороговых и один реагирующий элементы, вход последнего из которых подключен к выходу датчика, а выход соединен с входом каждого исполнительного органа через пороговый элемент, а датчик выполнен с подвижными одна относительно другой обкладками.
Устройство по п.1, отличающееся тем, что оно дополнительно содержит компенсирующий элемент в виде электрического конденсатора, установленного в нижней части корпуса, а измерительный орган дополнительно снабжен компенсационным входом, на который включен компенсирующий элемент [13].
Устройство по пп.1 и 2, отличающееся тем, что оно дополнительно содержит два интегрирующих элемента и пороговыми элементами, а в качестве реагирующего элемента использован мультивибратор, во времязадающие цепи которого включены датчик и компенсирующий элемент.
3. Разработка защиты потребительских трансформаторов от утечки масла, на примере трансформатора ТМ 100/10
3.1 Обоснование разработки защиты
Одним из видов неисправностей трансформаторов является течь масла из бака трансформатора, что приводит к аварийной работе трансформатора с последующим выходом его из строя. Причинами течи масла могут быть: нарушение плотности сварных швов бака, волнистых стенок бака с дном, в местах заделки труб в стенку бака, радиаторов в местах сварки и пр. [9] Также трансформатор может выйти из строя при намеренном сливе масла.
В трансформаторах больших мощностей при значительном снижении уровня масла в баке или интенсивном выделении воздуха из масла срабатывает газовая защита трансформатора. Газовая защита, как известно, является чувствительной защитой от внутренних повреждений или ненормального режима трансформатора. Эта защита в зависимости от интенсивности газообразования срабатывает либо на сигнал, либо на отключение, либо одновременно на то и другое. В трансформаторах небольших мощностей газовая защита не устанавливается, поэтому в данном проекте предлагается защита основанная на расчетах изменения теплового режима трансформатора при снижении уровня масла и как следствие повышения его температуры.
3.2 Процессы нагревания и охлаждения трансформаторов
При работе трансформатора часть энергии преобразуемой им, теряется, поэтому полезная мощность трансформатора, отдаваемая в нагрузку, меньше мощности, потребляемой им из сети источника энергии. Потеря энергии происходит как в магнитопроводе трансформатора, так и в его обмотках. Обмотки трансформатора нагреваются протекающими по ним токами. Потеря энергии в обмотках трансформатора Pk и пропорциональна квадрату плотности тока j и весу обмоточного провода Gm.
В магнитопроводе трансформатора возникают потери энергии за счет перемагничивания стали и вихревых токов. Потери в стали магнитопровода зависят от частоты, магнитной индукции, магнитных свойств материала и толщины стальных листов, из которых собран магнитопровод. Потери в стали Pст пропорциональны весу магнитопровода Gст и квадрату максимальной магнитной индукции Bт в магнитопроводе.
Электромагнитные нагрузки трансформатора (магнитную индукцию и плотность тока) нельзя безгранично увеличивать. Магнитную индукцию в магнитопроводе нельзя увеличивать сколь угодно, так как при превышении известной меры намагничивающий ток может оказаться чрезмерно большим. Плотность тока в проводах обмоток так же нельзя увеличивать неограниченно, так как падение напряжения в сопротивлении обмоток при этом возрастает, понижая вторичное напряжение трансформатора при нагрузке.
В еще большей мере электромагнитные нагрузки ограничены допустимыми потерями энергии в активных материалах трансформатора, т.е. в стали магнитопровода и проводах обмоток. При увеличении магнитной индукции растут потери в стали, а при увеличении плотности тока - потери в проводах обмоток. Потери энергии, выделяющиеся в трансформаторе при его работе, превращаются в тепло и нагревают его. Это тепло излучается от поверхности трансформатора в окружающую среду.
Охлаждение нагретых частей трансформатора происходит за счет теплоизлучения, теплопроводности и конвекции. Тепло отводится в окружающую среду главным образом со свободных частей трансформатора (наружная цилиндрическая поверхность обмотки и поверхность ярма). Для увеличения поверхности охлаждения делают вентиляционные каналы в магнитопроводе и обмотках.
Внутренние части магнитопровода и обмоток отдают свое тепло поверхностным частям благодаря теплопроводности. Количество тепла, излучаемого в окружающую среду, зависит как от поверхности охлаждения, так и от разности температур нагретых частей трансформатора и окружающей среды.
Температура трансформатора сначала повышается быстро, так как мала разность температур трансформатора и окружающей среды. Следовательно количество тепла, излучаемого в окружающую среду, также мало и потеря энергии в трансформаторе расходуется в основном на его нагрев.
По мере повышения температуры трансформатора увеличивается количество тепла, излучаемого в окружающую среду, и трансформатор нагревается медленнее. Температура повышается до определенного установившегося значения Туст, при котором количество тепла, выделяющегося в трансформаторе, полностью выделяется в окружающую среду.
Если трансформатор отключить после его работы, его нагретые части начнут охлаждаться. Когда разность температур трансформатора и окружающей среды достаточно велика, трансформатор охлаждается быстро. По мере понижения температуры трансформатора разность температур его и окружающей среды уменьшается и процесс охлаждения замедляется.
Если при работе трансформатор нагревается хотя бы в какой-нибудь точке до температуры, выше допустимой для какого-либо материала, из которого изготовлен трансформатор, то трансформатор может выйти из строя. Таким образом, электромагнитные нагрузи ограничиваются тем материалом, который наиболее чувствителен к нагреву.
Применяемые в трансформаторах изоляционные материалы по разному реагируют на повышение температуры. В большинстве случаев выходит из строя бумажная изоляция, являющаяся наименее нагревостойким материалом из используемых в трансформаторостроении изоляционных материалов. Бумажная изоляция в масле длительно выдерживает температуру 105 °С без существенного снижения своих изоляционных свойств. При нагреве до температуры выше допустимой происходит интенсивное старение изоляции, т.е. она быстро теряет свою электрическую и механическую прочность, что ведет к выходу из строя трансформатора.
Технические условия ГОСТ 11677-85 регламентируют нормы предельного повышения температуры обмоток над температурой воздуха в наиболее жаркое время года 105-110 °С. При номинальной нагрузке трансформатора температура верхних слоев масла не должна превышать +95°С для масляных трансформаторов с естественной циркуляцией масла. При соблюдении этих условий изоляция трансформатора не подвергается ускоренному старению и может надежно работать в течении очень долгого времени.
Трансформатор представляет собой неоднородное тело и отдельные его части нагреваются в различной мере. Необходимо, чтобы температура его наиболее нагретых частей была не выше допустимой.
Нагрев трансформатора зависит от потерь энергии и интенсивности охлаждения. Чем интенсивнее охлаждение трансформатора, тем большими будут допустимые потри энергии. Для трансформаторов различных мощностей условия охлаждения различны. Чем больше номинальная мощность трансформатора, тем сложнее осуществить его охлаждение. Так, для трансформаторов малых мощностей (десятки или сотни вольтампер) естественное воздушное охлаждение оказывается достаточным. Для трансформаторов больших мощностей (десятки, сотни, тысячи и т.д. киловольтампер) применяют специальные меры для повышения интенсивности охлаждения (масляное охлаждение, вентиляционные каналы, обдув бака и т.д.).
Это объясняется тем, что с увеличением номинальной мощности трансформатора увеличиваются его линейные размеры. Если для трансформаторов различных номинальных мощностей использовать одинаковые активные материалы (сталь магнитопровода и обмоточный провод) и допустить одинаковые электромагнитные нагрузки (магнитную индукцию и плотность тока), то потери энергии в трансформаторе ?P будут пропорциональны весу G активного материала или его объемуV. Объем V пропорционален третьей степени линейного размера l; поверхность охлаждения Sохл пропорциональна второй степени линейного размера l.
Таким образом с увеличением номинальной мощности трансформатора (с увеличением его размеров) потери энергии в нем увеличиваются в большей мере, чем поверхность охлаждения, т.е. количество тепла, выделяющегося в трансформаторе, растет быстрее, чем количество тепла, излучаемого в окружающую среду. Чтобы избежать перегрева трансформаторов с увеличением их мощности, повышают интенсивность их охлаждения [7].
В сухих трансформаторах наружные нагретые поверхности обмоток и магнитопровода отдают тепло омывающему их воздуху путем конвекции и излучения. В масляных трансформаторах передача тепловой энергии в окружающую среду осуществляется специальным трансформаторным маслом, заливаемым в бак, в который помещен трансформатор. Масло, омывающее магнитопровод и обмотки трансформатора, путем конвекции отводит выделяющееся из них тепло и отдает его стенкам бака.
Частицы масла, уровень которого значительно выше верхнего уровня магнитопровода, соприкасаются с горячими наружными поверхностями обмоток и магнитопровода и нагреваются. Нагретые частицы масла устремляются вверх и отдают свое тепло в окружающую среду через стенки и крышку бака. Охлажденные частицы масла движутся вниз, уступая место более нагретым. Внешняя поверхность стенок и крышки бака, омываемая воздухом, отдает тепло в окружающую среду путем конвекции и излучения. В некоторых случаях для повышения интенсивности теплоотдачи применяют искусственную усиленную циркуляцию масла или воздуха при помощи насосов или вентиляторов.
Рисунок 7. - Схема охлаждения масляного трансформатора.
Трансформаторное масло является не только хорошей охлаждающей средой. Оно представляет собой также хороший изоляционный материал, который обеспечивает высокую электрическую прочность трансформатора при сравнительно малых изоляционных промежутках. Это свойство трансформаторного масла позволяет создавать компактные конструкции обмоток магнитопровода, а масляное охлаждение дает возможность применять сравнительно высокие электромагнитные нагрузки активных материалов (плотность тока и магнитная индукция) и производить трансформаторы с относительно малым весом этих материалов. В силовых трансформаторах наиболее широко используют масляное охлаждение.
Трансформаторное (минеральное) масло должно обладать следующими свойствами:
Масло должно быть безопасным для активного материала, т.е. не должно содержать кислот и серы, так как даже небольшие количества этих веществ крайне опасны для изоляции обмоток.
Масло должно достаточно хорошо отводить тепло от нагретых частей трансформатора. Поэтому оно должно обладать высокой теплоемкостью и теплопроводностью, а также малой вязкостью, чтобы не препятствовать охлаждающему потоку. Вязкость масла не остается постоянной при изменении температуры. Для трансформаторов больших мощностей желательно применять масло вязкость которого резко изменяется при изменениях температуры.
Масло должно иметь высокую электрическую прочность. Если электрическая прочность воздуха примерно 30 кв/см, то для трансформаторного масла она может достигать 150 кв/см. Наличие воды даже в незначительных количествах резко снижает электрическую прочность масла, обесценивая его диэлектрические свойства. Поэтому трансформаторное масло должно быть “сухим", т.е. не содержать влаги. Воду из трансформаторного масла удаляют нагреванием его примерно до 110 С. В процессе эксплуатации трансформатора влага может проникать внутрь бака с воздухом. Кроме влаги с воздухом внутрь трансформатора могут проникать пылинки и продукты распада.
Недостатком масла является его старение, т.е. ухудшение его изоляционных свойств со временем. Поэтому в условиях эксплуатации периодически очищают масло и бак, а также меняют масло. Для удаления посторонних веществ нечистое масло пропускают через центрифугу, а для сушки его прогревают. Масляные баки трансформаторов больших мощностей снабжают кранами, к которым присоединяют маслоочистительный аппарат. Это дает возможность очищать масло в процессе работы трансформатора без его отключения. Прогревают масло также в процессе работы трансформатора посредством усиленной его нагрузки.
4. Температура воспламенения масла должна быть значительно выше рабочей температуры трансформатора, чтобы при работе трансформатора не возник пожар. Обычно трансформаторное масло имеет температуру воспламенения не ниже 180 С. Допускается использование масел с температурой воспламенения не ниже 150 С. Таким образом, помимо старения трансформаторное масло обладает еще одним очень существенным недостатком - оно является горючим материалом. Поэтому установка масляных трансформаторов во многих случаях требует принятия специальных мер пожарной безопасности.
В тех случаях, когда применение масляных трансформаторов недопустимо по соображениям пожарной безопасности, используют сухие трансформаторы, а также трансформаторы с негорючими наполнителями (совол, совтол, пиранол, кварцевый кристаллический песок).
Сухие трансформаторы имеют защитные кожухи с отверстиями, закрытыми сетками. Применение в качестве изоляции обмоток стекловолокна или асбеста позволяет значительно повысить рабочую температуру обмоток и получить практически пожаробезопасную установку. Это свойство сухих трансформаторов дает возможность применять их для установки внутри сухих помещений в тех случаях, когда обеспечение пожарной безопасности установки является решающим фактором. Так как в сухих трансформаторах охлаждающей средой является воздух, который возобновляется непрерывно, то исключается старение масла и необходимость периодической чистки и замены его.
Однако воздух является менее совершенной изолирующей и охлаждающей средой, чем трансформаторное масло. Поэтому в сухих трансформаторах все изоляционные промежутки и вентиляционные каналы делают большими, чем в масляных.
Электромагнитные нагрузки активных материалов в сухих трансформаторах приходится уменьшать по сравнению с электромагнитными нагрузками масляных трансформаторов, что приводит к увеличению сечения проводов обмоток и магнитопровода. Вследствие этого вес и стоимость активных материалов у сухих трансформаторов больше, чем у масляных.
Увеличение стоимости активных материалов сухих трансформаторов по сравнению с масляными сказывается особенно сильно с ростом мощности трансформатора и увеличением напряжений его обмоток. В настоящее время производят сухие трансформаторы мощностью до 2500 ква и напряжением обмоток до 15 кв.
Так как обмотки сухих трансформаторов непосредственно соприкасаются с воздухом и увлажняются, эти трансформаторы устанавливают только в сухих помещениях. Для уменьшения гигроскопичности обмотки пропитывают специальными лаками. Применение новых нагревостойких и негорючих материалов, обладающих высокой теплопроводностью, позволяет увеличить электромагнитные нагрузки и уменьшить стоимость активных материалов.
В тепловом отношении трансформатор представляет собой неоднородное тело. Стальные листы магнитопровода обладают высокой теплопроводностью, а изоляционные прослойки между листами стали - малой. Обмотки также состоят из меди и алюминия с высокой теплопроводностью и изоляционного материала, плохо проводящего тепло. При работе трансформатора более нагретые внутренние части магнитопровода и обмоток отдают тепло наружным поверхностям, от которых оно отводится маслом или воздухом. Между нагретыми частями трансформатора (обмотками и магнитопроводом) и маслом или воздухом устанавливается определенная разность температур. Однако температура всех частей трансформатора и масла в разных точках по высоте неодинакова; она увеличивается по мере перехода от нижних частей к верхним. Изменение температуры обмоток, магнитопровода, масла и бака по высоте показано на рисунке 8., распределение температуры в горизонтальном сечении масляного трансформатора - на рисунке 9.
Рисунок 8. - Изменение температуры обмоток, магнитопровода, масла и бака по высоте.
Рисунок 9. - Распределение температуры в горизонтальном сечении масляного трансформатора.
Масло для заливки трансформатора приготовляют заранее в нужном количестве, высушивают и проверяют химическим анализом и на электрическую прочность.
При заливке масло должно иметь температуру не ниже 10 С.
Его заливают через нижний кран бака при помощи насоса фильтр пресса.
После заливки берут пробу масла для химического анализа и испытания электрической прочности [7].
3.3 Тепловой расчет трансформатора
3.3.1 Расчет геометрических размеров бака трансформатора ТМ100/10
Конструкция трансформатора ТМ-100/10 и его общий вид предоставлены на листе 2 графического материала.
Геометрические размеры:
Высота бака, H 0,94 м
Длина бака, L 0,99 м
Ширина бака, Sh 0,427 м
Длина прямой части, l 0,563 м
Радиус закругления, R 0,2135м
Площадь поверхности труб радиатора, Skt 1,492 м
Площадь поверхности коллекторов радиатора, Sk 0,3 м
Периметр бака:
М
Поверхность бака:
МІ
Поверхность крышки:
мІ
Эффективная теплоотдающая поверхность бака [4]:
мІ
Эффективная теплоотдающая боковая поверхность бака [4]:
мІ
3.3.2 Тепловой расчет трансформатора при номинальной загрузке без утечки масла
По ГОСТ 11677-85 установлена предельная среднесуточная температура не выше + 30 С, по этому расчет для наиболее тяжелого режима будем производить именно для этой температуры.
Все расчеты будем производить при номинальной загрузке трансформатора.
Исходные данные для расчета:
Температура окружающего воздуха, t. окр. в 30 °С
Коэффициент загрузки трансформатора, K. з 1
Потери холостого хода трансформатора, ДP. хх 465 Вт
Потери короткого замыкания трансформатора, ДP. кз 2270 Вт
Толщина крышки бака, дкр 0,005 м
Коэффициент теплопроводности крышки, лкр 55 Вт/м·К
Коэффициент учитывающий конструкцию бака трансформатора, и 1,2
Коэффициент учитывающий систему охлаждения трансформатора, К11.
В установившемся режиме работы трансформатора потери энергии переходят в теплоту и от нагретого масла через стенку бака передаются окружающему воздуху.
При этом часть тепловой энергии от наружной поверхности бака рассеивается за счет лучистого теплообмена.
Суммарный поток тепловой энергии зависит от нагрузки трансформатора и в любом режиме его работы может быть определен через суммарные потери мощности в трансформаторе.
Суммарные потери мощности в трансформаторе [4]:
Вт
Тепловой поток отдаваемый поверхностью бака воздуху [4]:
Вт
Площадь лучистого теплообмена [4]:
мІ
Площадь конвективного теплообмена [4]:
мІ
Среднее превышение температуры стенки бака над воздухом [4]:
°С
Среднее превышение температуры масла над температурой стенки бака [4]:
°С
Превышение температуры масла в верхних слоях над температурой окружающего воздуха [4]:
°С
Температура масла в верхних слоях [4]:
°С
Рассчитываем температуру стенки бака для этого рассчитываем эффективность теплоотдачи, посредством критериев Грасгофа (характеризует режим движения при свободной конвекции, являясь отношением подъемной силы, возникающей вследствие разности плотностей жидкости, и сил вязкости в изотермическом потоке) и Нуссельта (характеризует увеличение теплообмена (массообмена) за счет конвекции по сравнению с чисто молекулярным переносом).
Коэффициент теплоотдачи внутри бака [10]:
Критерий Грасгофа.
Определяющая температура (в данном случае температура масла):
К
Температурный коэффициент объемного расширения:
К-1
Температурный напор:
К
Кинематическая вязкость среды (масла):
м2?с
Критерий Прандля (критерий физических свойств среды (масла)):
Определяющий размер, в данном случае определяющий размером является высота бака:
м
Режим движения среды в пограничном слое:
Критерий Нуссельта.
Значение постоянных с и n определяются режимом движения среды и условиями теплопередачи:
Коэффициент теплопроводности среды (масла):
Вт/м?К
Коэффициент теплоотдачи:
Вт/м2?К
Коэффициент теплоотдачи снаружи бака [10]:
Критерий Грасгофа.
Расчет ведется аналогично приведенному выше только для другой среды - воздуха.
К
К-1
К
м
м2?с
Критерий Нуссельта.
Вт/м?К
Вт/м2?К
Коэффициент теплопередачи через стенку бака [10]:
Поток теплоты через стенку бака трансформатора [10]:
Температура стенки бака [10]:
°С
Среднее значение температуры масла в баке [10]:
°С
Рассчитываем температуру крышки бака [10]:
Коэффициент теплоотдачи внутри бака [10]:
Критерий Грасгофа.
Определяющая температура (в данном случае средняя температура масла):
К
К-1
Температурный напор рассчитывается через среднюю температуру между окружающим воздухом и средней температурой масла в баке:
°С
К
Определяющим размером является ширина крышки бака, так как процесс теплопередачи идет через горизонтальную поверхность:
м
м2?с
Критерий Нуссельта.
Коэффициенты с и n определяются как для горизонтальной поверхности:
Вт/м?К
Вт/м2?К
Коэффициент теплоотдачи снаружи бака:
Критерий Грасгофа.
К
К-1
К
м2?с
м
Критерий Нуссельта.
Вт/м?К
Вт/м2?К
Коэффициент теплопередачи через крышку бака:
Поток теплоты через крышку бака трансформатора:
Вт
Температура крышки бака трансформатора:
°С
Разность температур между стенкой и крышкой бака:
°С
Данные расчетов при различны температурах окружающего воздуха и различной загрузке трансформатора сведены в таблицу 8.
Подобные документы
Выбор оборудования трансформаторной подстанции 10/0,4 кВ: силовых трансформаторов, выключателей нагрузки и предохранителей, трансформаторов тока, автоматических выключателей. Выбор и проверка кабеля от распределительного устройства до электроприемника.
курсовая работа [729,6 K], добавлен 06.04.2012Масляные трансформаторы, их устройство и назначение. Установка, ремонт и замена масляных трансформаторов. Правила по электрической безопасности при эксплуатации трансформаторов. Эксплуатация масляных трансформаторов на примере трансформатора ТМ-630.
курсовая работа [718,0 K], добавлен 28.05.2014Проект реконструкции подстанции "Рождественское", предназначенной для снабжения электроэнергией сельских потребителей. Построение графиков нагрузок по режимным дням и выбор мощности трансформаторов. Расчет токов короткого замыкания. Экологичность проекта.
дипломная работа [187,0 K], добавлен 29.04.2010Разработка схемы главных соединений трансформаторной подстанции и описание плана работ по секционированию РУ-6кВ ТП-68 на промышленной зоне исправительной колонии. Экономическое обоснование замены силовых трансформаторов мощностью 180 кВА и 250 кВА.
дипломная работа [250,5 K], добавлен 23.06.2013Характеристика объектов, питающихся от проектируемой трансформаторной подстанции. Выбор места расположения подстанции аэропорта, количества трансформаторов. Разработка схем, выбор камер и элементов защиты. Техника эксплуатации оборудования подстанции.
курсовая работа [495,9 K], добавлен 24.03.2015Обоснование целесообразности реконструкции подстанции. Выбор мощности трансформаторов трансформаторной подстанции. Расчет токов короткого замыкания и выбор основного оборудования подстанции. Расчетные условия для выбора электрических аппаратов.
дипломная работа [282,5 K], добавлен 12.11.2012Характеристика потребителей электроснабжения. Расчет электрических нагрузок трансформаторной подстанции 10/0,4 кВ, силовой сети и выбор релейной защиты трансформаторов. Автоматическое включение резерва. Расчет эксплуатационных затрат и себестоимости.
дипломная работа [1,6 M], добавлен 23.07.2011Обзор оборудования на подстанции, назначение релейной защиты. Терминал защиты линии электропередач. Шкафы защиты шин и трехобмоточных трансформаторов с напряжением 110 (220) Кв. Регулятор напряжения SPAU 341C. Расчет уставок и токов короткого замыкания.
дипломная работа [1022,1 K], добавлен 10.09.2011Порядок выбора силовых трансформаторов. Ряд вариантов номинальных мощностей трансформаторов. Температурный режим. Технико-экономическое сравнение вариантов трансформаторов. Подсчёт затрат. Издержки, связанные с амортизацией и обслуживанием оборудования.
курсовая работа [1,1 M], добавлен 30.03.2016Разработка структурной схемы подстанции, выбор количества и мощности силовых трансформаторов. Расчет количества присоединений РУ. Проведение расчета токов короткого замыкания, выбор токоподводящего оборудования и трансформаторов, техника безопасности.
курсовая работа [1,8 M], добавлен 31.10.2009