Система автоматизированного регулирования режима теплового парового котла

Элементы рабочего процесса в котельной установке. Обоснование необходимости автоматизации технологических параметров. Система автоматического регулирования и контроля питания котла, ее монтаж и наладка. Спецификация на монтажные изделия и материалы.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 01.06.2015
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Исходное состояние элементов схемы:

сигнал источника напряжения ИН равен 0

положение плунжера дифтрансформаторного преобразователя ДТП - среднее

положение переключателей, как показано на рис.

Перед проверкой работоспособности всего прибора целесообразно проверить баланс регулирующего устройства (РУ) модуля ИР 029. Переводят переключатель 2 в положение 0. Остальные элементы схемы и органы настроек должны быть в исходном положении.

Подают напряжение питания 220 В на клеммы 1,2 прибора. Если индикаторы не включаются, то начинают проверку общей работоспособности. Если же оба, или один включен, то следует произвести балансировку регулирующего устройства, воспользовавшись для этой цели рекомендациями справочного пособия.

Возвращают ключ 2 в положение 1. Выключают питание. Проверяют работу измерительной схемы прибора. Контроль сигнала рассогласования осуществляют по индикатору и вольтметру 1, подключенному к выходным гнездам. Проверку целесообразно проводить по тем входам прибора, которые предполагается использовать.

Для прибора РС 29.0.12 замыкатель знака корректора устанавливают в положение +, корректор К - 100%, орган - в крайнее правое положение. Изменяя сигнал от ДТП устанавливают сигнал равным - 10В. При этом индикатор должен отклонятся влево на всю шкалу и включаться индикаторы и при исходных положениях органов настройки органам К и оперативным задатчиком балансирует регулятор, моменту баланса соответствует выключение индикаторов, при этом индикатор должен остановиться на отметке 0 шкалы.

Оперативный задатчик поворачивают вправо на 0,5% относительно положения баланса, при этом должен включиться индикатор.

Оперативным задатчиком балансируют регулятор. Орган поворачивают в крайнее правое положение. В этом случае индикаторы должны включиться при повороте оперативного задатчика вправо и влево приблизительно на 2,5 % относительно положения баланса.

Орган поворачивают в крайнее левое положение. Балансируют регулятором оперативным задатчиком. Орган - на отметку 0,8 шкалы. Переключатель режима - ПИ.

Оперативный задатчик резко поворачивают в крайнее правое положение. Индикатор должен включиться на 1-3с, затем выключиться и в дальнейшем включаться периодически, и длительностью примерно 0,1с, время между импульсами должно быть примерно 1,5-4с. При этом если замыкатель множителя установить в положение 10, то время между импульсами должно увеличиться примерно в 10 раз, если же установить на отметку 3 шкалы и повернуть вправо орган, то длительность импульсов должна увеличиваться и при крайнем правом положении, длительность включения индикатора должна быть примерно 0,7-1,5с. Переключатель рода управления - (ручное). Измеряют напряжение на клеммах 7,13 и 9,13 при нажатии органа ручного управления нагрузкой в сторону и соответственно.

Клемму 25 переключают (переключателем S3) к клемме 23 прибора и органом устанавливают показания индикатора на нулевую отметку, затем кл.25 подключают к кл.23, показания индикатора должны установится на нулевой отметке шкалы. Органы настройки регулятора и элементы схемы проверки возвращают в исходное положение и балансируют регулятор.

Проверка предельных значений диапазона изменения задания порогов срабатывания, зоны возврата и выходных сигналов при аналого-релейном преобразовании.

К гнездам "И" ОТ регулятора подключают вольтметр. Для проверки верхнего предельного значения порогов срабатывания плавно создают сигнал рассогласования до момента включения индикатора и замечают напряжение срабатывания по вольтметру. Затем изменяют сигнал рассогласования в обратном направлении до момента погасания индикатора и загорания индикатора. Включение индикаторов должно происходить при напряжении по вольтметру, равном +9,7. +10,3В. При включении индикаторов и измеряют напряжение на клеммах 27,11 и 29,11 соответственно. Оно должно быть в пределах 20.27В постоянного тока.

Для проверки нижнего предельного значения устанавливают орган настройки в крайнее левое положение. Изменяют сигнал

до погасания индикатора и включения индикатора. При этом по вольтметру допускается иметь напряжение в пределах - 300. +300мВ.

Изменяют напряжение до момента погасания индикатора (возможно включение индикатора). При этом по вольтметру фиксируют напряжение. Допускается зона возврата, равная 60<160мВ.

Переводят орган в правое положение, - в левое. Изменяют напряжение до погасания индикатора, а затем до его включения. При этом по вольтметру допускается напряжение в пределах - 300. +300мВ.

Изменяют напряжение до момента погасания индикатора и фиксируют напряжение по вольтметру. Допускается зона возврата, равная 60<160мВ.

Органы настройки регулятора и элементы схемы проверки возвращают в исходное положение. Регулятор балансируют.

Проверка выходных напряжений. При сбалансированном регуляторе по показаниям вольтметров, подключаемым к клеммам 7 и 13 (выход Меньше) 9 и 13 (выход Больше), 5 и 13 (выход 0; 10В), напряжение не должно превышать 0,18 В. Переключатель переводят в положение; переключатель в положение. При помощи источника ИН на вход РУ подают напряжение +0,5В, при этом напряжение на выходе Меньше должно быть +22. +26В, а на выходе 0; +10В напряжение должно быть +9. +11В.

Затем задают напряжение - 0,5В. На выходе Больше должно быть +22. +26В, на выходе 0; 10В напряжение должно быть - 9. - 11В.

Устанавливают сигнал от ИН равным 0. Положение переключателей остается прежним.

Проверка минимального значения зоны нечувствительности. Органы настройки - в крайнее левое положение. На выходе ИН плавно изменяют напряжение положительной полярности от 0 до момента включения индикатора со скоростью не более 2мВ/с и замечают напряжение, при котором произошло включение индикатора.

Таким же образом действуют при отрицательной полярности напряжения на выходе ИН. Затем суммируют отмеченные напряжения. Переводят органы настройки и элементы схемы в исходное положение, за исключением переключателя множителя.

Проверка коэффициента передачи. При проверке определяют три коэффициента передачи - максимальный, средний или промежуточный, и минимальный.

При нахождении максимального значения органы настройки в крайнее правое, переключатель режима работы - ПИ, замыкатель множителя остается в положении 1. При помощи ИН создают напряжение +5В. Переводят в положение 1 и одновременно включают мех. Секундомер, замечают длительность первого импульса. Аналогично измеряют длительность первого импульса при подаче напряжения +0,2.

Длительность первого включения на первом этапе должна составлять 32.68с, а на втором 26.54с. При нахождении промежуточного значения коэффициента передачи орган устанавливают в положение 4, а орган в крайнее правое при ПИ-режиме работы, после чего соблюдают тот же порядок работы, что и при определении максимального коэффициента передачи.

Длительность первого импульса на первом этапе должна составлять 13.27с, а на втором 10,5.21,5с.

При нахождении минимального значения коэффициента передачи на первом этапе подают напряжение +1,0В и переводят ключ в положение 1, а на втором этапе подают напряжение - 1,0В, и переводят ключ в положение 1. Орган - в крайнее левое, а в крайнее правое положение при ПИ - режиме работы. После чего создает порядок работы тот же, что и в предыдущих случаях.

Длительность первого импульса на первом и втором этапах должна составлять 1,4.2,6с, разность абсолютных значений импульсов на каждом из этапов не должна превышать 0,2с.

Органы настройки и элементы схемы - в исходное положение, в положение 0.

Проверка постоянной времени интегрирования. Различают максимальное, промежуточное и минимальное значения.

Проверку максимального значения производят в два этапа. В положение 0. При помощи ИН создают напряжение +1,0В, в положение 1, орган настройки - в крайнее правое положение при ПИ - режиме работы, а замыкатель множителя - в положение 10.

Переключатель переводят в положение 1 и электросекундомером фиксируют продолжительность первого импульса, в момент возникновения интегрального импульса включают мех. секундомер, и фиксируют время, где эточисло учтенных интегральных импульсов, - промежуток времени между появлением первого и второго интегральных импульсов.

Для регуляторов РС29.0.12 допускается равной (2000+720) с. С помощью ИН задают на входе РУ напряжение - 1,0В, орган настройки - в крайнее правое положение при ПИ-режиме работы, замыкатель - в положение "1", действия такие же как на первом этапе.

Абсолютная разность измеренных значений на втором и первом этапах не должна превышать 100с. Если это условие не выполняется, то производят балансировку РУ модуля ИР029.

Проверку промежуточного значения производят в такой последовательности. Напряжение по вольтметру задают равным 1,0В, в положение 0, в положение 1, орган настройки в крайнее правое положение при ПИ - режиме работы, замыкатель в положение, а за тем действуют как на первом этапе.

Постоянную времени интегрирования вычисляют по уравнению. Для регуляторов РС29.0.12 допускается равной (200+72) с.

Проверку минимального значения производят в такой же последовательности. Напряжение задают равным +0,5В, а затем действуют так же как при проверке промежуточного значения. Отличие заключается лишь в том, что электросекундомером фиксируют время при соблюдении условия

Для регуляторов РС29.0.12 допускается равной (20+7,2) с. По окончании проверки все элементы схемы, органы настройки - в исходное положение, в положение 0.

Проверка максимального значения зоны нечувствительности и постоянной времени демпфирования

Орган настройки - крайнее правое положение, после чего изменяют напряжение ИН положительной полярности со скоростью не более 20 мВ/с до момента включения индикатора "меньше". Фиксируют среднюю скорость изменения напряжения (в положении 0).

Органы настройки устанавливают в крайнее правое положение, напряжение на выходе ИН задают равным 1,6 от значения зафиксированного при средней скорости изменения напряжения, и одновременно включают мех. секундомер. фиксируют постоянную времени демпфирования как промежуток времени, прошедшего с момента включения до момента срабатывания регулятора.

Для регулятора РС29.0.12. допускается значение, равное (10+3,6) с., орган настройки в исходное положение.

Задают полярность напряжения "-", после чего изменяют сигнал со скоростью не более 20мВ/с. до момента включения индикатора "Больше". Фиксируют среднюю скорость изменения напряжения.

Абсолютная сумма напряжений средних скоростей изменения напряжений на первом и третьем этапах для регулятора РС29.0.12 должна составлять 330.470мВ.

Проверка длительности импульсов.

Для проверки минимальной длительности переводят в положение 0, задают напряжение ИН равным +0,5В, орган настройки устанавливают в крайнее правое положение, замыкатель множителя в положение 1 при ПИ - режиме, в положение 1. Орган - в положение 1 и электросекундомером фиксирует сумму продолжительности не менее 10 импульсов.

Средняя продолжительность одного импульса должна составлять не менее 0,08с.

Затем переключатель переводят в положение 1 и электросекундомером фиксируют суммарную продолжительность не менее 10 импульсов. Средняя продолжительность одного импульса должна составлять не менее 0,08с.

Для проверки максимальной длительности импульсов устанавливают орган настройки в крайнее левое положение, переключатель - в положение 1. Задают напряжение ИН равным +0,5 В, орган настройки перемещают в крайнее правое положение при ПИ - режиме работы, замыкатель множителя переводят в положение 1, и одновременно плавно перемещают орган настройки из левого положения в правое, после чего по электросекундомеру фиксируют длительность трех импульсов.

Допускается максимальная средняя продолжительность одного импульса 0,65с.

Статическая настройка регулятора.

Под статической настройкой понимают:

настройку измерительной схемы на заданное значение регулируемого параметра

выбор требуемых диапазонов действия и цены деления задатчика (градуировка)

выбор зоны нечувствительности.

Органы статической настройки: масштабатор, корректор, задатчик, зоны нечувствительности.

Настройка масштабатора.

Положение ручки выбирается исходя из требуемого значения точности поддержания регулируемой величины. Для выбора положения органов масштабатора сменяется зависимость выходного сигнала измерительной схемы от регулируемой величины при разных положениях ручки.

Настройка задатчика.

Для настройки задатчика к выходным клеммам регулятора подключают имитатор, и на нем выставляют значение измеряемого параметра. Баланс схемы устанавливают корректором. Положением ручки корректора замечают в делениях корректора при наладке САР. При смещении движка оперативного задатчика в крайнее положение сигнал рассогласования поступает на микросхему и имитатором подгоняют значение так, чтобы сигнал рассогласования исчез. Затем такую же операцию повторяют при смещении движка в другое положение. По этим данным находят диапазон действия задатчика и, разделив его на количество делений, узнают цену деления.

Нечувствительность Ѕ допускаемого отклонения желательно выбирать минимальную зону нечувствительности, но при этом увеличивается частота срабатывания регулятора, что в свою очередь приводит к ускоренному износу пускового устройства с исполнительным механизмом. Кроме этого при малой зоне нечувствительности и больших длительностях импульсов может иметь место автоколебание (переброска), что также не допустимо. Автоколебания могут отсутствовать, если величина зоны, выраженной в процентах, будет не более чем 0,5.

На практике выбирают значение зоны нечувствительности равное Ѕ отклонения регулируемой величины, которое можно считать допустимым по условию эксплуатации. При этом выражается в процентах от номинального диапазона изменения регулируемого параметра, указанного на первичном приборе или от номинального диапазона входного сигнала.

Динамическая настройка регулятора.

Основными параметрами динамической настройки являются: коэффициент передачи Кп, время демпфирования tд, время интегрирования tинт, время импульса tимп.

Настройки предварительно должны быть рассчитаны (например, графоаналитическим методом) на основании расчета определяется:

коэффициент передачи всего регулятора, выраженный в безразмерной форме

время полного хода исполнительного механизма

Для уменьшения колебаний уменьшают, а затем увеличивают длительность импульсов.

Настройку подбирают после установки основных органов при дальнейшей наладке системы регулирования, при чем рекомендуется выбирать максимально возможным. Не следует сильно укорачивать импульсы, это ведет к снижению устойчивости процесса регулирования и повторному возникновению переброски.

Время демпфирования.

Установка постоянного времени демпфирования 2.5с. исключением является случай очень малой постоянной времени регулирования (порядка нескольких секунд). В этом случае допустимая величина определяется экспериментально.

2.6.9 Проверка выполнения монтажа схемы автоматизации

Выбор места установки САПФИР-22ДИ

Соединительные линии от места отбора давления к прибору должны быть положены по кратчайшему расстоянию.

Площадка, на которой устанавливается прибор, должна быть строго горизонтальной; место установки должно обеспечивать быстрый и удобный демонтаж.

Проверка монтажа регулирующего прибора РС29.0.12:

проверка монтажа регулятора согласно проекту;

проверка крепления прибора на щите;

проверка электрических соединений;

проверка заземления.

проверка выполнения монтажа вторичного прибора ДИСК-250:

проверка соответствия места монтажа вторичных приборов на щите проектному;

проверка крепления прибора на щите;

проверка заземления;

проверка электрических соединений.

Проверка выполнения монтажа пусковой аппаратуры:

проверка соответствия места монтажа проектному;

проверка надежности крепления;

проверка электрических линий;

проверка заземления.

Проверка монтажа исполнительного механизма:

проверка электрических линий;

проверка заземления.

Выходной вал исполнительного механизма должен быть установлен горизонтально с углом наклона не более 15;

сочленение исполнительного механизма с регулирующим органом не должно иметь люфтов и не должно вызывать осевых усилий.

На последнем этапе наладки и монтажа системы автоматического регулирования производится:

наладка каждого звена системы автоматического регулирования в отдельности;

наладка разомкнутой САР;

подготовка к включению САР в работу на процессе;

сдача САР в эксплуатацию.

2.6.10 Наладка регулирующих органов (РО)

РО выбирают и рассчитывают при проектировании систем автоматического регулирования. Однако при разработке проекта не всегда удается учесть ряд особенностей потоков вещества или элементов, изменение которых служит управляющим воздействием на объект, что приводит к появлению существенной нелинейности статической характеристики САР.

Нелинейность РО при линейном объекте регулирования, даже при правильно выбранных настройках регулятора, существенно ухудшает качество автоматического регулирования, в связи с этим наладку САР начинают с ревизии и чтения статических характеристик РО.

Статическую характеристику РО определяют при прямом и обратном ходе 2-3 раза при наиболее вероятных по технологии режимах.

При экспериментальном определении статической характеристики РО весь диапазон перемещения разбивают на 6-10 участков и устанавливают соответствие шкалы в случае наличия нелинейности, участок диапазона перемещения РО, который соответствует нелинейному участку характеристики, его, разбивают дополнительно на ряд более мелких отрезков. Если в начальной зоне имеются нелинейности типа нечувствительность, а в конечной зоне типа насыщение, и каждая из этих зон не превышает 5% от полного хода, то рабочий диапазон по перемещению ограничивают линейной частью расходной характеристики, т.е. они от 5 до 95%. Перемещение РО, связанное с электрическим исполнительным механизмом ограничивается при помощи конечных выключателей. Если нелинейность типа насыщение в конце диапазона перемещения регулирующей заслонки или шибера составляет более 5%, то выбирают такое соотношение рычагов, устанавливаемое на выходных валах РО и исполнительного механизма, при котором перемещение РО ограничено линейной частью характеристики при полном ходе ИМ.

Если линейная часть расходной характеристики находится между 0-25%, то целесообразно заменить РО с другим меньшим сечением. В этом случае требуемого перемещения РО при полном ходе ИМ можно добиться подбором определенных соотношений.

Если расходная характеристика, профилируемая РО не удовлетворяет предъявляемым требованиям, то РО заменяют, предварительно пересчитав характеристику.

При экспериментальном определении характеристики РО дроссельного типа, необходимо убедиться в том, что постоянный поток жидкости, положение РО - закрыт, не превышает 5-10% номинального расхода, при 40-60% раскрытом РО, обеспечит поток соответственно полной нагрузке объекта.

2.6.11 Наладка сочленения исполнительного механизма с регулирующим органом

Основные требования к электрическим ИМ:

момент на выходном валу должен обеспечить перемещение РО без перегрева двигателя;

время перемещения выходного вала ИМ от положения закрыто до положения открыто (постоянная времени ИМ) должно обеспечивать необходимые качества процесса регулирования при максимально возможной скорости изменения регулируемого параметра;

выбег ИМ должен быть незначителен (2% макс. хода).

ИМ выбирают в зависимости от величины усилия, необходимого для перемещения РО.

Определение момента необходимого для вращения поворотных заслонок:

М=К (Мрт) Н/м (кгс. м (2)

где Мр - момент реактивный, обусловленный стремлением закрыть заслонку.

Мт - момент трения в опорах.

К - коэффициент, учитывающий затяжку сальников и загрязнений трубопровода, К=2-3

Мр=0,07 Рро*Dy Н/м (кгс*м) (2.1)

при расчете Рро

Рро - перепад давлений на заслонке, Па (кгс. м).

Dy - диаметр заслонки, м.

Нт=0,785 Dy*Р Н/м (кгс*м) (2.2)

Где с - радиус шейки вала заслонки, м.

г - коэффициент трения в опоре (=0,15)

На валах исполнительного механизма и РО устанавливают рычаги, длины которых предварительно рассчитываются. В этих рычагах до их установки для удобства наладки высверливают ряд отверстий. Соединение ИМ с РО следует выполнять таким образом, чтобы при повороте штурвала ручной перестановки ИМ против часовой стрелки РО перемещался в сторону открытия, а по часовой - в сторону закрытия.

Соединив ИМ с РО проверяют наличие люфтов в соединении. Обнаружив наличие люфтов, их устраняют (например заменой пальцев в местах соединений). При наладке ИМ с РО проверяют работу дистанционного управления.

2.6.12 Наладка дистанционного указателя положения и ИМ

Установить ИМ в крайнее положение соответствующее закрытому состоянию РО. Настроить один соответствующий конечный выключатель и установить стрелку указателя положения против отметки 0 при помощи переменного сопротивления нулевой настройки.

Установить в другое крайнее положение ИМ обеспечивающий открытое состояние РО. Настроить второй конечный выключатель и установить стрелку указателя положения на отметку 100% с помощью другого настроечного резистора. Все наладочные работы до пуска системы на процесс должны проводиться при расчлененных ИМ и РО.

2.6.13 Наладка первичного датчика

К выходным клеммам измерительного преобразователя САПФИР-22ДИ подключается вторичный прибор с токовым входом (например ДИСК-250). При наладке необходимо проверить 0. Для этого закрывают подводящие вентили и открывают уравнительный вентиль. Убедиться, что вторичный прибор показывает 0. Если стрелка вторичного прибора не совпадает с 0, то первичный датчик отстраивается с помощью переменного резистора.

После наладки первичного датчика на вход регулирующего прибора нужно подать сигнал пропорциональный заданному значению регулируемого параметра. Для этого нужно отсоединить первичный датчик от объекта, минусовую камеру соединить с атмосферой, а в плюсовую подавать давление воздуха, предварительно подсчитав перепад давления.

2.6.14 Наладка регулирующего прибора

Наладка заключается в балансировке регулирующего прибора. Балансировка производится следующим образом:

переключатели выбора рода работы должен стоять в положении ручное и во время балансировки обратная связь должна быть отключена - в положении 0), переключатель положения должен быть в положении трехпозиционное, балансировка РС29.0.12 производится прибором сигнала задатчик.

2.6.15 Наладка разомкнутой системы

Наладка разомкнутой системы заключается в том, чтобы согласовать направление работы ИМ в соответствии со знаком сигнала рассогласования, возникшего в результате отклонения сигнала пропорционального сигнала регулируемому параметру и еще согласовать направление работы ИМ со знаком сигнала рассогласования, возникшего в результате изменения задания.

Наладка выполняется в следующем порядке: управляя ИМ дистанционно устанавливают его в среднее положение и переводят переключатель выбора рода работ в положение автомат. Имитируют отклонение регулируемого параметра в сторону больше (изменяя давление в плюсовой камере САПФИРа-22) при этом ИМ должен работать в сторону меньше. Далее аналогично при имитации отклонения регулируемого параметра в сторону меньше, ИМ должен работать в сторону больше. Если направление работы ИМ не соответствует указанному, то необходимо поменять провода на выходных клеммах регулирующего устройства.

Имитировать изменение задания в сторону больше, при этом регулятор должен работать также в сторону больше. При имитации изменения задания в сторону меньше регулятор должен также работать в сторону меньше. При невыполнении этих условий необходимо поменять местами провода, идущие от задатчика к регулирующему устройству. После всего этого первичный датчик подключить к объекту, и наблюдают некоторое время за работой разомкнутой САР.

2.6.16 Подготовка и включение САР в работу на процесс

Управляя дистанционно ИМ, одновременно наблюдая за показаниями вторичного прибора, регулируют технологический параметр до заданного значения и переключают переключатель выбора рода работы в положение автомат. Убедившись, что система работает устойчиво, время интегрирования устанавливают в соответствии с расчетом и проверяют качество процесса регулирования. Для чего к объекту регулирования прикладывают возмущение при условии стабилизации всех остальных параметров.

В связи с тем, что динамические характеристики объекта изменяются во времени, необходима корректировка параметров настройки регулятора. Корректировку параметров настройки необходимо осуществлять его по принципу последовательного приближения - малыми изменениями параметров настройки и строго по заранее разработанному графику.

Каждое изменение параметров настройки регулятора должно сопровождаться поверкой полученных показателей качества процесса регулирования.

Корректировку параметров настройки приходится всегда осуществлять при изменении режимов работы агрегатов, так как при переходе на другой режим или при изменении сырья изменяются статические и динамические свойства объекта.

2.6.17 Сдача САР в эксплуатацию

После окончания всех наладочный работ САР включают в опытную эксплуатацию. В процессе опытной эксплуатации все устройства и системы в целом должны работать без неполадок не менее чем трое суток. После этого система считается принятой в постоянную промышленную эксплуатацию, о чем составляется акт.

2.7 Заказная спецификация на приборы и оборудование

Таблица 2

Позиция по схеме

Техническая хар-ка основного и комплектующего оборудования приборов, арматуры, кабельных и других изделий

Марка оборудования

Изготовитель

1

2

3

4

1-1

Преобразователь измерительный разности давлений. Верхний предел измерения 2,5МПа. Питание 36В, выходной сигнал 0-5 мА

Сапфир22ДИ 2150-А-01-УХЛ-3,1-0,25/2,5МПа-0,5-В-К-1/2

ТУ 25-2472-0049

Завод

Манометр

г. Москва

1-2

Диафрагма камерная, Dy-200мм, Py-10МПа. Способ отбора у плоскостей диска через кольцевые камеры.

ДКС 10-200-А/Г-1

ГОСТ 26-969-86

Рязань ПО

Теплоприбор

1-3

Преобразователь измерительный разности давлений. Верхний предел измерения 2,5МПа. Питание 36В, выходной сигнал 0-5 мА

Сапфир22ДД 2450-А-01-УХЛ-3,1-0,25/2,5МПа-0,5-В-К-1/2

ТУ 25-2472-0049

Завод

Манометр

г. Москва

1-4

Блок извлечения корня. Выходной сигнал 0-5мА. Напряжение питания 220В. Частота 50Гц.

БИК-1

ТУ 25-02720132-86

Ивано-Франковске ПО Геофизприбор

1-5

Прибор регистрирующий. Напряжение питания 220В. Частота 50Гц, Р-25В/А,

Шкала 0-2,5.

Диск-250-2121

ТУ 25-0521.104-85

Челябинское ПО Электроприбор

1-6

Прибор регистрирующий. Напряжение питания 220В. Частота 50Гц, Р-25В/А,

Шкала 0-15.

Диск-250-2121

ТУ 25-0521.104-85

Челябинское ПО Электроприбор

1-7

Прибор регулирующий. Выходной сигнал 24В. Напряжение питания 220В. Частота 50Гц.

РС29.0.12

ГОСТ 05138-85

МЗТА

1-8

Усилитель мощности. Выходной сигнал 220В. Напряжение питания 220В. Частота 50Гц.

У29.3

ТУ25-02.05138-85

МЗТА

1-9

Механизм исполнительный однооборотный, номинальный крутящий момент 40кгс/м, номинальный ход выходного органа 0,25 оборота за 25с, Напряжение питания 220В. Частота 50Гц.

МЭО 40/25-0,25

ТУ25-02120123-81

Чебоксарское ПО

Электроприбор

1-10

Клапан регулирующий

КРП-100

ТУ25-091207-78

2-1

Диафрагма камерная, Dy-100мм, Py-10МПа. Способ отбора у плоскостей диска через кольцевые камеры.

ДКС 10-100-А/Г-1

ГОСТ 26-969-86

Рязань ПО

Теплоприбор

2-2

Преобразователь измерительный разности давлений. Верхний предел измерения 2,5МПа. Питание 36В, выходной сигнал 0-5 мА

Сапфир22ДД 2450-А-01-УХЛ-3,1-0,25/2,5МПа-0,5-В-К-1/2

ТУ 25-2472-0049

Завод

Манометр

г. Москва

2-3

Блок извлечения корня. Выходной сигнал 0-5мА. Напряжение питания 220В. Частота 50Гц.

БИК-1

ТУ 25-02720132-86

Ивано-франковское ПО Геофиз-прибор

2-4

Преобразователь измерительный разности давлений. Верхний предел измерения 2,5МПа. Питание 36В, выходной сигнал 0-5 мА

Сапфир22ДИ 2150-А-01-УХЛ-3,1-0,25/2,5Па-0,5-В-К-1/2

ТУ 25-2472-0049

Завод

Манометр

г. Москва

2-5

Прибор регистрирующий. Напряжение питания 220В. Частота 50Гц, Р-25В/А,

Шкала 0-25.

Диск-250-2121

ТУ 25-0521.104-85

Челябинское ПО Электроприбор

2-6

Прибор регистрирующий. Напряжение питания 220В. Частота 50Гц, Р-25В/А,

Шкала от - 100 до +100.

Диск-250-2121

ТУ 25-0521.104-85

Челябинское ПО Электроприбор

2-7

Прибор регулирующий. Выходной сигнал 24В. Напряжение питания 220В. Частота 50Гц.

РС29.0.12

ГОСТ 05138-85

МЗТА

2-8

Усилитель мощности. Выходной сигнал 220В. Напряжение питания 220В. Частота 50Гц.

У29.3

ТУ25-02.05138-85

МЗТА

2-9

Механизм исполнительный однооборотный, номинальный крутящий момент 40кгс/м, номинальный ход выходного органа 0,25 оборота за 25с, Напряжение питания 220В. Частота 50Гц.

МЭО 40/25-0,25

ТУ25-02120123-81

Чебоксарское ПО

Электроприбор

2-10

Клапан регулирующий

КРП-100

ТУ25-091207-78

3-1

Диафрагма камерная, Dy-400мм, Py-0,6МПа. Способ отбора у плоскостей диска через кольцевые камеры.

ДКС 0,6-400-А/Г-1

ГОСТ 26-969-86

Рязань ПО

Теплоприбор

3-2

Диафрагма камерная, Dy-100мм, Py-0,6МПа. Способ отбора у плоскостей диска через кольцевые камеры.

ДКС 0,6-100-А/Г-1

ГОСТ 26-969-86

Рязань ПО

Теплоприбор

3-3;

3-4

Преобразователь измерительный разности давлений. Верхний предел измерения 2,5КПа. Питание 36В, выходной сигнал 0-5 мА

Сапфир22ДД 2420-А-01-УХЛ-3,1-0,25/2,5КПа-0,5-В-К-1/2

ТУ 25-2472-0049

Завод

Манометр

г. Москва

3-5;

3-6

Блок извлечения корня. Выходной сигнал 0-5мА. Напряжение питания 220В. Частота 50Гц.

БИК-1

ТУ 25-02720132-86

Ивано-Франковске ПО Геофизпр

3-7

Прибор регулирующий. Выходной сигнал 24В. Напряжение питания 220В. Частота 50Гц.

РС29.0.12

ГОСТ 05138-85

МЗТА

3-8

Прибор регистрирующий. Напряжение питания 220В. Частота 50Гц, Р-25В/А,

Шкала 0-400.

Диск-250-2121

ТУ 25-0521.104-85

Челябинское ПО Электроприбор

3-9

Прибор регистрирующий. Напряжение питания 220В. Частота 50Гц, Р-25В/А,

Шкала 0-4000.

Диск-250-2121

ТУ 25-0521.104-85

Челябинское ПО Электроприбор

3-10

Прибор регистрирующий. Напряжение питания 220В. Частота 50Гц, Р-25В/А,

Шкала 0-2,5.

Диск-250-2121

ТУ 25-0521.104-85

Челябинское ПО Электроприбор

3-11

Механизм исполнительный однооборотный, номинальный крутящий момент 40кгс/м, номинальный ход выходного органа 0,25 оборота за 25с, Напряжение питания 220В. Частота 50Гц.

МЭО 40/25-0,25

ТУ25-02120123-81

Чебоксарское ПО

Электроприбор

3-12

Газоанализатор

Альфа

СГМТ

3-13

Усилитель мощности. Выходной сигнал 220В. Напряжение питания 220В. Частота 50Гц.

У29.3

ТУ25-02.05138-85

МЗТА

3-14

Прибор регулирующий. Выходной сигнал 24В. Напряжение питания 220В. Частота 50Гц.

РС29.0.42

ГОСТ 05138-85

МЗТА

4-1

Преобразователь измерительный разности давлений. Верхний предел измерения 0,125КПа. Питание 36В, выходной сигнал 0-5 мА.

Сапфир22ДИВ 2310-А-01-УХЛ-3,10,25/0,125КПа-0,5-В-К-1/2

ТУ 25-2472-0049

Завод

Манометр

г. Москва

4-2

Прибор регулирующий. Выходной сигнал 24В. Напряжение питания 220В. Частота 50Гц.

РС29.0.12

ГОСТ 05138-85

МЗТА

4-3

Прибор регистрирующий. Напряжение питания 220В. Частота 50Гц, Р-25В/А, Шкала 0-0,1.

Диск-250-2121

ТУ 25-0521.104-85

Челябинское ПО Электроприбор

4-4

Усилитель мощности. Выходной сигнал 220В. Напряжение питания 220В. Частота 50Гц.

У29.3

ТУ25-02.05138-85

МЗТА

4-5

Механизм исполнительный однооборотный, номинальный крутящий момент 40кгс/м, номинальный ход выходного органа 0,25 оборота за 25с, Напряжение питания 220В. Частота 50Гц.

МЭО 40/25-0,25

ТУ25-02120123-81

Чебоксарское ПО

Электроприбор

5-1;

5-2

Манометр предел измерения 0-1МПа, класс точности 0,5.

МТП-4

Казанское ПО Теплоконтроль

5-3

Манометр предел измерения 0-14МПа, класс точности 0,5.

МТП-4

Казанское ПО Теплоконтроль

6-1;

6-2;

6-3

Термометр термоэлектрический

ТХА-0179

Луцкий при-боростроительный завод

6-4

Прибор регистрирующий. Напряжение питания 220В. Частота 50Гц, Р-25В/А,

Шкала 0-300.

КСП2-023

ТУ25-0510.001-82

Чебоксарское ПО

Электроприбор

7-1;

7-2;

7-3

Датчик-реле давления

ДД

г. Улан-Удэ

Теплоприбор

7-4

Прибор контроля пламени

ф.34.2

ТУ25-02050214-82

7-5

Устройство защитно-запальное

ЗЗУ-1

ТУ25-010208-82

7-6

Термометр термоэлектрический

ТХА-0179

Луцкий приборостроительный завод

7-7

Прибор регистрирующий. Напряжение питания 220В. Частота 50Гц, Р-25В/А,

Шкала 0-900.

Диск-250-2121

ТУ 25-0521.104-85

Челябинское ПО Электроприбор

7-8;

7-9

Сигнализатор уровня

ЭРСУ-3

Рязань ПО

Теплоприбор

7-10

Соленоид

ЭД-07101

"УПП"

г. Харьков

7-11

Клапан отсечной

ПКН-100

ТУ25-1718-86

7-12

Датчик-реле давления

ДД

г. Улан-Удэ

Теплоприбор

Блок питания. Выходной сигнал 36В. Напряжение питания 220В. Частота 50Гц.

22БП-36

HL1-HL9

Арматура сигнальная

АС-220

ТУ16-535452-70

HL10

Сирена сигнальная

СС-1

ТУ16-535426-70

SB1;

SB2

Кнопка управления

КЕ-011

ТУ16-526407-79

2.8 Спецификация на монтажные изделия и материалы

Таблица 3

Наименование и тех. Характеристика

ед. изм

потребность

1

Маркировочная бирка БМН6-0 ТУ36.1117-75

шт.

100

2

Рамка для надписей

шт.

40

3

Скобы СО-8 ТУ36.1086-76

шт.

50

4

Скобы СО-16 ТУ36.1086-76

шт.

20

5

Щит ЩПК-600 Х 2200

шт.

5

6

Оконцеватели маркировочные ОКМ ТУ36.1100-74

шт.

45

7

Коробка протяжная КП160 Х 120

шт.

20

8

Блок зажимов БЗ-10 ТУ36-1750-74

шт.

10

9

Уголок перфорированный УП35 Х 35 ТУ36.1113-75

м

10

1

Щиток электропитания ЭЩП-2 ТУ36.1270-73

шт.

1

1

Розетка штепсельная РШ-Ц-2-0

шт.

2

3. Исследовательская часть

3.1 Объект исследования

Автоматические системы регулирования топлива предназначены для обеспечения потребителя требуемым количеством пара заданного качества (давления). Нарушение теплового баланса котла происходит за счет внутренних и внешних возмущений. К внутренним относятся возмущения, связанные с самопроизвольными изменениями характеристик топлива (теплоты сгорания) и его расхода, связанных с колебаниями давления газа, изменением характеристик регулирующей трубопроводной арматуры (гистерезис, "залипание" штока регулирующего клапана, люфты). К внешним возмущениям относятся возмущения, связанные с количеством потребляемого пара. В этом случае паропроизводительность котла не будет соответствовать количеству потребляемого пара. Показателем этого несоответствия является изменение давления пара в какой-либо точке парового тракта. Таким образом, САР (система автоматического регулирования) топлива должна выполнять две функции: компенсировать внутренние и внешние возмущения с помощью одного управляющего воздействия - расхода топлива.

САР должна обеспечить:

устойчивую работу системы (отсутствие автоколебаний) и ограниченную частоту включения регулирующего органа, которая при постоянной нагрузке не должна превышать шести включений в минуту;

поддержание в базовом режиме работы котла давления пара с отклонением не более ±3% заданного.

3.2 Расчет чувствительности системы управления подачи пара

Входные параметры: давление в трубопроводе р, характеристика открытия заслонки а.

Q - количество пара,

р - давление в трубопроводе,

а - откр. заслонки,

W - эффективность системы.

Q = p + a. (3.1)

Чувствительность системы определяется по соотношению:

(3.2)

Начальные параметры равны: рн = 0.8; ан = 0.5; Qн = 1.2; Wн = 0.71

Коэффициенты чувствительности составляют: а11=1; а12=1

Находим абсолютные коэффициенты чувствительности:

(3.3)

(3.4)

Значения аij и bij для всех выходных параметров составляют матрицы чувствительности:

(3.5)

Находим относительные коэффициенты чувствительности:

(3.6)

(3.7)

(3.8)

(3.9)

Матрица чувствительности равна:

0.03 < 0.66 X ДWmax;

ДWmax= 0,66 Дzmax

ДWmax< 3% =0,03

0.03< 0,66 =ДWmax

Таким образом, чтобы чувствительность системы W была < 3%, нужен датчик с точностью не более 4,5%.

3.3 Расчет системы автоматического регулирования температуры

Рисунок 6 - Структурная схема котла как объекта управления имеет следующий вид

Объект регулирования имеет следующие параметры: Коб = 1,2?С/с; T1 = 8с; Т2 = 11с. Объект регулирования можно описать следующим дифференциальным уравнением:

(3.10)

Подставив в это выражение известные нам Т1, Т2 и Ko6, получим уравнение следующего вида:

(3.11)

Решая это квадратное уравнение, получим:

р1 = - 0.0909; р2 = - 0.125. Далее находим Xвых (t):

Проверка:

Далее на основании полученного уравнения строим график зависимости Xвых (t) таблица 4 и рисунок 7

Таблица 4

Т

1

0,012

2

0,084

3

0,145

4

0,276

5

0,389

10

0,567

15

0,765

20

0,812

Далее определяем настройки регулятора с помощью кривой разгона:

Рисунок 7 - График зависимости Xвых (t)

Проводим касательную к графику функции и находим точку пересечения с линией 1.

Из графика находим = 1,2; Т2 = 9,9. Описываем объект как апериодическое звено первого порядка и соединенное с ним звено чистого запаздывания:

Далее рассчитываем настройки ПИ регулятора:

; (3.12)

Передаточная функция замкнутой системы (возмущение по нагрузке):

Дальнейший расчёт производится с использованием амплитудно-фазовых характеристик. Для этого надо построить амплитудно-фазовую характеристику замкнутой системы:

(3.13)

Re часть:

Im часть:

Таблица 5

Расчёт данных для построения годографа замкнутой системы (критерий Михайлова)

Re

Im

0.00000

11.73000

0.00000

1.00000

218.04258

145.53326

2.00000

306.86261

-197.32447

3.00000

-295.59782

-396.39833

4.00000

-887.76368

357.83268

5.00000

-302.30067

1422.83946

6.00000

1079.58738

1227.79263

7.00000

1348.27711

-340.42410

8.00000

-311.08265

-1219.90947

9.00000

-1977.22042

229.28306

10.00000

-1194.37690

2584.27908

Рисунок 8 - График построение годографа замкнутой системы

Для построения переходного процесса необходимо построить график действительной частотной характеристики, на основании которого находится трапецеидальная форма характеристики (рисунок 9)

Рисунок 9

Таблица 6

щ

Re

0.00000

0.69264

1.00000

3.25847

2.00000

3.27032

3.00000

3.27253

4.00000

3.27330

5.00000

3.27366

6.00000

3.27386

7.00000

3.27398

8.00000

3.27405

9.00000

3.27410

10.00000

3.27414

Затем определяем высоты трапеций:

1-я трапеция:

2-я трапеция:

3-я трапеция:

Таблица 7

Параметры

трапеций

Номера трапеций

1

2

3

-0.178

0.25

-0.072

0

0.66

1.1

0.43

0.92

5

0

0.717

0.22

Для построения переходных процессов трапецеидальных характеристик составляется таблица данных на основании таблицы h - функций

Таблица 8

ф

h1

h2

0.00000

0.00000

-0.50069

1.00000

4.51938

8.86483

2.00000

-27.84986

14.11156

3.00000

-81.22874

-12.24610

4.00000

9.87518

-39.53562

5.00000

236.24507

-14.79124

6.00000

221.57842

46.53552

7.00000

-245.92473

59.74299

8.00000

-625.29284

-12.82199

9.00000

-164.66158

-87.20709

10.00000

830.04969

-53.96457

Далее строим таблицу экспериментально найденных значений для строения общего переходного процесса:

Таблица 9

t

y (t)

e (t)

u (t)

0

0.00000

1.00000

324.84848

1

0.00000

1.00000

0.69264

2

3.07485

-2.07485

6.36296

3

-7.05514

8.05514

-38.97197

4

27.68405

-26.68405

205.38669

5

21.44396

-20.44396

171.37380

6

-69.09764

70.09764

-770.41106

7

247.33395

-246.33395

3335.80335

8

-911.77282

912.77282

-14159.69883

9

-525.88635

526.88635

-10422.99688

10

1916.47259

-1915.47259

42442.70019

Рисунок 10

Вывод:

Система автоматического управления устойчива, так как годограф Михайлова начинается на вещественной положительной полуоси обходит только против часовой стрелки последовательно 4 квадранта координатной плоскости.

Все параметры переходного процесса находятся в заданных пределах, выбор и расчет настроек регулятора проведены правильно.

4. Охрана труда

Охраной труда называют систему законодательных актов, социально-экономических, организационных, технических, гигиенических и лечебно-профилактических мероприятий и средств, обеспечивающих безопасность, сохранение здоровья работоспособности человека в процессе труда.

Одна из основных задач охраны труда заключается в обеспечении безопасности труда человека, т.е. создание таких условий труда, при которых исключается воздействие на работников вредных производственных факторов.

4.1 Анализ вредных и опасных производственных факторов

Вредный производственный фактор - производственный фактор, воздействие которого на работника может привести к его заболеванию.

Опасный производственный фактор - производственный фактор, воздействие которого на работника может привести к его травме. Опасный производственный фактор, фактор среды и трудового процесса, который может быть причиной острого заболевания или внезапного резкого ухудшения здоровья, смерти. В зависимости от количественной характеристики и продолжительности действия отдельные вредные производственные факторы могут стать опасными.

Наряду с указанным определением в последние годы с целью оценки травмобезопасности рабочих мест при проведении аттестации рабочих мест по условиям труда используется понятие "травмоопасный фактор". Результаты гигиенической оценки условий труда и оценки условий труда по факторам травмобезопасности оформляются протоколами лабораторных измерений и заносятся в карты аттестации рабочих мест по условиям труда.

Вентиляция и отопление. В результате жизнедеятельности человека, работы производственного оборудования, аварий и других факторов в воздух помещений поступают различные вредности в виде газов, паров, пыли и избыточного тепла. Эти вредности отрицательно влияют на здоровье человека.

Вентиляция является эффективным средством обеспечения нужных гигиенических качеств воздуха, соответствующих требованиям Санитарных норм проектирования промышленных предприятий (СН 245-71)

для создания нормальных санитарно-гигиенических параметров воздуха в помещениях предусмотрены системы приточно-вытяжной вентиляции. В зависимости от способов воздухообмена различают естественную вентиляцию (аэрация) и механическую. При естественной вентиляции приток и вытяжка воздуха из помещения, происходят вследствие разности давлений и плотностей воздуха внутри и снаружи здания. При механической вентиляции подача и удаление воздуха из помещений осуществляется побудителем тяги, которым в большинстве случаев является вентилятор, приводимый в действие электродвигателем.

Вентиляция бывает обще-обменной и местной. Обще-обменную вентиляцию применяют тогда, когда вредности распространяются по всему объему помещения или большей его части. Если же вредности локализуются по технологическим признакам и места их выделения четко определены, то устраивают местную вентиляцию. Во многих случаях наиболее целесообразным является сочетание местной и обще-обменной вентиляции. Местную вентиляцию применяют также для распределения воздуха на рабочие места. Здесь применяют обще-обменную вентиляцию, так как система не требует дополнительных местных вытяжек с рабочих мест.

Вентиляционная установка состоит из вентилятора, воздуховодов, а также устройств для очистки воздуха и организованного выброса его в атмосферу. Совокупность вентиляционных установок называется вентиляционной системой.

Параметры воздушной среды для рабочей зоны обосновываются, исходя из категорий выполняемых с учетом периодов года (теплый, холодный, переходный) в проекте в соответствии с требованиями СН245-7 1. Принимают при температуре наружного воздуха ниже 10°С:

температура-16-18°С; относительная влажность-40-60%; скорость

движения воздуха-0,5 м/с. Для самого жаркого месяца года принимают:

температура-26°С; относительная влажность-75 %; скорость движения воздуха-0,5-1,0 м/с.

Отопление. Нормализация метеорологических условий в производственных помещениях непосредственно связана с необходимостью поддержания определенных температур воздуха путем отопления. В зависимости от климатических условий и назначение здания могут применяться различные системы отопления. В городе для отопления жилых и общественных зданий наиболее распространенными являются системы центрального водяного отопления с водой, имеющей параметры 105 - 70°С.

Так как в данном случае промышленное предприятие то применяются система отопления с перегретой водой; парового отопления низкого давления (до 157 КПа) и высокого давления, совмещенные с системами приточной вентиляции и кондиционирования. В системах водяного и парового отопления теплоноситель циркулирует от котельной или теплоцентралей по трубам к нагревательным приборам и обратно замкнутым циклом к котлам для повторного нагрева.

Освещение. В создания благоприятных условий труда важное значение имеет рациональное освещение и цветовое оформление. Неудовлетворительное освещение и цветовое оформление затрудняет проведение работ, ведет к снижению производительности труда и работоспособности глаз и может являться причиной несчастных случаев и заболеваний их.

Освещенность в помещении должна быть такой, чтобы работающий длительное время мог вести наблюдение за всеми операциями без напряжения и утомления зрения, и при этом сохранялась нормальная работоспособность глаз.

В основном в рабочих помещениях, применяется боковое естественное освещение. Рабочие комнаты и кабинеты имеют естественное освещение. Но для максимального использования рабочего времени, чтобы не зависеть от времени года и погодных условий, в помещениях установлено совмещенное освещение. При этом дополнительное искусственное освещение применяется не только в темное, но и в светлое время суток.

В пределах России в ясный день полуденная освещенность колеблется от 4000 (в декабре) до 40000лк (в июле).

Зрение Е (%) при естественном освещении:

верхнем и комбинированном - 0,7;

боковом - 0,2.

Естественное освещение нормируется СНиП 2-А.8-72.

Освещение безопасности должно создавать на рабочих поверхностях в производственных помещениях и на территориях предприятий, требующих обслуживания при отключении рабочего освещения, наименьшую освещенность в размере 5 % освещенности, нормируемой для рабочего освещения от общего освещения, но не менее 2 лк. внутри зданий и не менее 1 лк. для территорий предприятий.

При этом создавать наименьшую освещенность внутри зданий более 30 лк. при разрядных лампах и более 10 лк. при лампах накаливания допускается только при наличии соответствующих обоснований. Для освещения помещений производственных и складских зданий следует использовать, как правило, наиболее экономичные разрядные лампы.

Для местного освещения рабочих мест следует использовать светильники в непросвечивающими отражателями. Светильники должны располагаться таким образом, чтобы их светящиеся элементы не попадали в поле зрения работающих на освещаемом рабочем поле и на других рабочих местах.

Местное освещение рабочих мест, как правило, должно быть оборудовано регуляторами освещения. Высота установки светильников рассеянного света должна быть не менее 3 м. при световом потоке источника света до 6000 лм. и не менее 4 м. при световом потоке более 6000 лм.

Для освещения помещений общественных, вспомогательных помещений следует предусматривать, как правило, разрядные лампы. В случае невозможности или технико - экономической нецелесообразности применения разрядных ламп, а также для обеспечения архитектурно - художественных требований допускается предусматривать лампы накаливания.

Шум и вибрация: требования, нормирование, защита. Различают два вида нормирования производственного шума:

гигиеническое нормирование

техническое нормирование.

Под гигиеническим нормированием понимают ограничение эмиссии шума, т.е. ограничение уровней шума, воздействующего на человека, находящегося в зоне действия источников шума.

Цель гигиенического нормирования - обоснование допустимых уровней и комплекса гигиенических требований, обеспечивающих предупреждение функциональных расстройств и заболеваний.

Предметом технического нормирования является ограничение интенсивности излучения источников шума из условий обеспечения допустимых уровней шума на рабочих местах.

Цель технического нормирования - предоставление возможности проектировщикам производственных помещений и потребителям машиностроительной продукции подбирать машины и оборудование с требуемыми акустическими характеристиками, а создателям нового оборудования еще на стадии проектирования определять необходимость проведения технических и организационных мероприятий по борьбе с шумом.

По временным характеристикам шум следует подразделять на:

постоянный, уровень звука, которого за 8 - часовой рабочий день (рабочую смену) изменяется во времени не более чем на 5 ДБА при измерениях на временной характеристике;

непостоянный, уровень звука, которого за 8 - часовой рабочий день (рабочую смену) изменяется во времени более чем на 5 ДБА при измерениях на временной характеристике.

Непостоянный шум подразделяют на:

колеблющийся во времени, уровень звука которого непрерывно изменяется во времени;

прерывистый, уровень звука, которого ступенчато изменяется (на 5 ДБА и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 сек. и более;

импульсный, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1 сек.

Таблица 4.1

Допустимые нормы шума.

Виды производственной деятельности, рабочие места

Уровень звука, ДБА

1. Рабочие места в помещениях: дирекция, проектно - конструкторские бюро, программисты вычислительных машин, в лабораториях для теоретических работ

50

2. Рабочие места в помещениях цехового управленческого аппарата, в рабочих комнатах конторских помещений, лабораториях

60

3. Рабочие места в помещениях диспетчерской службы, машинописных бюро, на участках точной сборки, в помещениях мастеров, в залах обработки информации на вычислительных машинах

65

4. Рабочие места за пультами в кабинах наблюдения и дистанционного управления производственными циклами без речевой связи по телефону, в помещениях лабораторий с шумным оборудованием

75

5. Выполнение всех видов работ (за исключением п.1 - 4) на постоянных рабочих местах в производственных помещениях и на территории предприятия

80

При разработке технологических процессов, проектировании, изготовлении и эксплуатации машин, производственных зданий и сооружений, при организации рабочего места следует принимать все необходимые меры по снижению шума, до значений, не превышающих их допустимые:

разработка шумобезопасной техники;

применение средств и методов коллективной защиты;

применение СИЗ.

Зоны с уровнем звука выше 85 ДБА должны быть обозначены знаками безопасности. Работающих в этих зонах администрация обязана снабжать средствами индивидуальной защиты.

Шумовые характеристики машин или предельные значения шумовых характеристик должны быть указаны в паспортах на них, руководстве (инструкции) по эксплуатации.

Коллективные средства защиты от шума подразделяются на:

оградительные;


Подобные документы

  • Понятие и строение парового котла, его назначение и функциональные особенности. Характеристика основных элементов рабочего процесса, осуществляемого в котельной установке. Конструкция парового котла типа ДЕ. Методы и средства управления работой котла.

    курсовая работа [1,2 M], добавлен 27.06.2010

  • Анализ существующих систем автоматизации процесса регулирования давления пара в барабане котла. Описание технологического процесса котлоагрегата БКЗ-7539. Параметрический синтез системы автоматического регулирования. Приборы для регулирования параметров.

    дипломная работа [386,2 K], добавлен 03.12.2012

  • Сущность технологического процесса, осуществляемого в котельной установке. Описание работы схемы автоматизации. Устройство и работа составных частей. Исполнительный механизм МЭО-40. Расчет и выбор регуляторов. Выбор приборов и исполнительных устройств.

    курсовая работа [1023,3 K], добавлен 02.04.2014

  • Водоснабжение котельной, принцип работы. Режимная карта парового котла ДКВр-10, процесс сжигания топлива. Характеристика двухбарабанных водотрубных реконструированных котлов. Приборы, входящие в состав системы автоматизации. Описание существующих защит.

    курсовая работа [442,0 K], добавлен 18.12.2012

  • Особенности разработки схемы теплового контроля водяного котла утилизатора КУВ-35/150, способы организации процесса регулирования питания. Этапы расчета узла измерения расхода сетевой воды за котлом. Анализ функциональной схемы теплового контроля.

    дипломная работа [1,8 M], добавлен 15.01.2013

  • Способы и схемы автоматического регулирования тепловой нагрузки и давления пара в котле. Выбор вида сжигаемого топлива; определение режима работы котла. Разработка функциональной схемы подсоединения паропровода перегретого пара к потребителю (турбине).

    практическая работа [416,1 K], добавлен 07.02.2014

  • Выполнение теплового расчета стационарного парового котла. Описание котельного агрегата и горелочных устройств, обоснование температуры уходящих газов. Тепловой баланс котла, расчет теплообмена в топочной камере и конвективной поверхности нагрева.

    курсовая работа [986,1 K], добавлен 30.07.2019

  • Первичный, измерительный, регулирующий и конечный элементы системы автоматического регулирования. Особенности котельных агрегатов как объектов автоматического регулирования. Динамический расчет одноконтурной системы регулирования парового котла.

    курсовая работа [1,9 M], добавлен 17.11.2017

  • Принципиальное устройство парового котла ДЕ-6,5-14ГМ, предназначенного для выработки насыщенного пара. Расчет процесса горения. Расчет теплового баланса котельного агрегата. Расчет топочной камеры, конвективных поверхностей нагрева, водяного экономайзера.

    курсовая работа [192,0 K], добавлен 12.05.2010

  • Характеристики судовых паровых котлов. Определение объема и энтальпия дымовых газов. Расчет топки котла, теплового баланса, конвективной поверхности нагрева и теплообмена в экономайзере. Эксплуатация судового вспомогательного парового котла КВВА 6.5/7.

    курсовая работа [1,1 M], добавлен 31.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.