Космические лучи
Открытие, классификация и этапы исследования космических лучей. Ядерно-активная компонента космических лучей и множественная генерация частиц. Космические мюоны и нейтрино. Проникающая компонента вторичного излучения. Область модуляционных эффектов.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 08.07.2013 |
Размер файла | 2,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Теория происхождения космических лучей опирается не только на гипотезу о галактической природе источников космических лучей, но и на представление о том, что космические лучи длительное время удерживаются в Галактике, медленно вытекая в межгалактическое пространство. Двигаясь по прямой, космические лучи покинули бы Галактику спустя несколько тысяч лет после момента генерации. В масштабах Галактики это время столь мало, что восполнить потери при такой быстрой утечке было бы невозможно. Однако в межзвёздном магнитном поле с сильно запутанными силовыми линиями движение космических лучей имеет сложный характер, напоминающий диффузию молекул в газе. В результате время утечки космических лучей из Галактики оказывается в тысячи раз большим, чем при прямолинейном движении. Сказанное касается основой части частиц космических лучей (с эВ). Частицы с более высокой энергией, число которых очень мало, слабо отклоняются галактическим магнитным полем и покидают Галактику сравнительно быстро. С этим, по-видимому, связан излом в спектре космических лучей при эВ.
3.4 Классификация по происхождению космических лучей
· вне нашей Галактики
· в Галактике
· на Солнце
· в межпланетном пространстве
Первичными принято называть внегалактические и галактические лучи. Вторичными принято называть потоки частиц, проходящие и трансформирующиеся в атмосфере Земли.
Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.
До развития ускорительной техники космические лучи служили единственным источником элементарных частиц высокой энергии. Так, позитрон и мюон были впервые найдены в космических лучах.
Химический спектр космических лучей в пересчете энергии на нуклон более чем на 94 % состоит из протонов, ещё на 4 % -- из ядер гелия (альфа-частиц). Есть также ядра других элементов, но их доля значительно меньше. В пересчете энергии на частицу доля протонов составляет около 35 %, доля тяжёлых ядер соответственно.
По количеству частиц космические лучи на 90 процентов состоят из протонов, на 7 процентов -- из ядер гелия, около 1 процента составляют более тяжелые элементы, и около 1 процента приходится на электроны.
При изучении источников космических лучей вне Солнечной системы протонно-ядерная компонента в основном обнаруживается по создаваемому ею потоку гамма-лучей орбитальными гамма-телескопами, а электронная компонента -- по порождаемому ею синхротронному излучению, которое приходится на радиодиапазон (в частности, на метровые волны -- при излучении в магнитном поле межзвёздной среды), а при сильных магнитных полях в районе источника космических лучей -- и на более высокочастотные диапазоны. Поэтому электронная компонента может обнаруживаться и наземными астрономическими инструментами[1][2].
Традиционно частицы, наблюдаемые в КЛ, делят на следующие группы: L, M, H, VH (соответственно, легкие, средние, тяжелые и сверхтяжелые). Особенностью химического состава первичного космического излучения является аномально высокое (в несколько тысяч раз) содержание ядер группы L (литий, бериллий, бор) по сравнению с составом звёзд и межзвёздного газа. Данное явление объясняется тем, что частицы КЛ под воздействием галактического магнитного поля хаотически блуждают в пространстве около 7 млн лет, прежде чем достигнуть Земли. За это время ядра группы VH могут неупруго про взаимодействовать с протонами межзвёздного газа и расколоться на более легкие фракции. Данное предположение подтверждается тем, что космические лучи обладают очень высокой степенью изотропии.
Рис. 5. Спектр всех частиц первичных космических лучей
3.5 Механизмы ускорения космических лучей
Вопрос о возможных механизмах ускорения частиц до энергий ~ 1021 эВ в деталях ещё далёк от окончат. решения. Однако в общих чертах природа процесса ускорения уже ясна. В обычном (не ионизованном) газе перераспределение энергии между частицами происходит за счёт их столкновений между собой. В разреженной космической плазме столкновения между заряженными частицами играют очень малую роль, а изменение энергии (ускорение или замедление) отдельной частицы обусловлено её взаимодействием с электромагнитными полями, возникающими при движении всех окружающих её частиц плазмы.
В обычных условиях число частиц с энергией, заметно превышающей ср. энергию теплового движения частиц плазмы, ничтожно мало. Поэтому ускорение частиц должно начинаться практически от тепловых энергий. В космической плазме (электрически нейтральной) не могут существовать сколько-нибудь значительные электростатические поля, которые могли бы ускорять заряженные частицы за счёт разности потенциалов между точками поля. Однако в плазме могут возникать электрические поля импульсного или индукционного характера. Импульсные электрические поля появляются, напр., при разрыве нейтрального токового слоя, возникающего в области соприкосновения магнитных полей противоположной полярности Индукционное электрическое поле появляется при увеличении напряжённости магнитного поля со временем (бетатронный эффект). Кроме импульсных полей начальная стадия ускорения может быть обусловлена взаимодействием ускоряемых частиц с электрическими полями плазменных волн в областях с интенсивным турбулентным движением плазмы.
В отличие от регулярного ускорения импульсными и индукционными электрическими полями, ускорение плазменными волнами имеет статистический характер. В турбулентной плазме имеется большое количество волн с разными фазовыми скоростями. Для частиц со скоростями v > vт (vт - тепловая скорость электронов) всегда находится достаточное число волн, с которыми они усиленно взаимодействуют (частица медленно движется относительно "вершины" волны и отражается от неё). Эффективная темп-ра плазменных волн на много порядков больше, чем темп-ра частиц плазмы. Поэтому стремление к равномерному распределению темп-ры (энергии) между волнами и взаимодействующими с ними быстрыми частицами приводит к значит. ускорению последних. Этот механизм аналогичен известному статистическому механизму Ферми (подробнее об этом см. ниже), но здесь он определяется условиями плазменной турбулентности.
В космосе, по-видимому, существует иерархия ускорительных механизмов, которые работают в различных комбинациях или в различной последовательности в зависимости от конкретных условий в области ускорения. Ускорение импульсным электрическим полем или плазменной турбулентностью способствует последующему ускорению индукционным (бетатронным) механизмом или механизмом Ферми.
Некоторые особенности процесса ускорения частиц в космосе связаны с поведением плазмы в магнитном поле. Космические магнитные поля существуют в больших объёмах пространства. Частица с зарядом Ze и импульсом p движется в магнитном поле H по искривлённой траектории с мгновенным радиусом кривизны
где R = cp/Ze - магнитная жёсткость частиц (измеряется в вольтах), - питч-угол частицы. Если поле мало изменяется на расстояниях, сравнимых с величиной , то траектория частицы имеет вид винтовой линии, навивающейся на силовую линию магнитного поля. При этом силовые линии поля как бы прикреплены к плазме (вморожены в плазму) - смещение любого участка плазмы вызывает соответствующее смещение и деформацию силовых линий магнитного поля, и наоборот. Если в плазме возбуждены достаточно интенсивные движения (такая ситуация возникает, напр., в результате взрыва сверхновой), то имеется много таких беспорядочно движущихся участков плазмы. Для наглядности их удобно рассматривать как отдельные плазменные облака, движущиеся друг относительно друга с большими скоростями. Основная масса частиц плазмы удерживается в облаках и движется вместе с ними. Однако небольшое число частиц высокой энергии, для которых радиус кривизны траектории в магнитном поле плазмы сравним с размером облака или превышает его, попадая в облако, не остаётся в нём. Эти частицы лишь отклоняются магнитным полем облака, происходит как бы столкновение частицы с облаком в целом и рассеяние частиц на нём (рис. 5). В таких условиях частица эффективно обменивается энергией сразу со всем облаком. Но кинетическая энергия облака очень велика и в принципе энергия ускоряемой т.о. частицы может расти неограниченно, пока частица не покинет область с интенсивными движениями плазмы. Такова суть статистического механизма ускорения, предложенного Э. Ферми в 1949 г. Аналогично происходит ускорение частиц при их взаимодействии с мощными ударными волнами (напр., в межпланетном пространстве), в частности при сближении двух ударных волн, образующих отражающие магн. "зеркала" (или "стенки") для ускоряемых частиц.
Рис. 5. Столкновение частицы с движущимся магнитным облаком. При движении облака возникает электрическое поле E, направленное перпендикулярно векторам напряжённости магнитного поля H и скорости облака u. Это поле ускоряет частицу при встречном столкновении с облаком или замедляет её, если она догоняет облако
Все механизмы ускорения приводят к спектру космических лучей, в к-ром с ростом энергии число частиц убывает. На этом сходство механизмов кончается. Несмотря на интенсивные теоретические и экспериментальные исследования, пока не найдено универсального механизма ускорения или комбинации механизмов, которые могли бы объяснить все особенности спектра и зарядового состава К. л. В случае, напр., импульсного электрического поля Е скорость приращения жёсткости R определяется соотношением dR/dt = сЕ, т.е. не зависит от первоначальной магнитной жёсткости частиц. При этом ускоряются все частицы в области действия поля E, их состав будет отражать состав исходной плазмы, а спектр иметь вид D(R) ~ exp-(R/R0), где R0 - характеристическая жёсткость спектра.
При ускорении плазменными волнами могут ускоряться частицы с энергией лишь в несколько раз больше тепловой. Число таких частиц не слишком мало, но условия ускорения будут существенно зависеть от сорта частиц, что должно вести к сильному изменению их состава по сравнению с составом исходной плазмы. Спектр ускоренных протонов, однако, и в этом случае может быть ~ exp-(R/R0). Бетатронный механизм, в основе которого лежит сохранение адиабатическая инварианта движения частицы = const, даёт степенной спектр и не избирателен по отношению к сорту частиц, но его эффективность пропорциональна магнитной жёсткости частицы (dR/dt ~ R), т.е. для его действия необходимо предварительное ускорение (инжекция).
Механизм ускорения Ферми даёт степенной энергетический спектр , однако он избирателен по отношению к сорту частиц. Ускорение ударными волнами в космической плазме также приводит к степенному энергетическому спектру, причём теоретические расчёты дают показатель =2,5, что довольно хорошо соответствует наблюдаемой форме спектра космических лучей таким образом, теория ускорения, к сожалению, допускает неоднозначный подход к интерпретации наблюдаемых спектров ускоренных частиц (в частности, солнечных космических лучей).
Процессы ускорения импульсными электрическими полями вблизи нулевых линий магнитного поля наблюдаются во время вспышек на Солнце, когда в течение нескольких мин появляются частицы, ускоренные до энергии в нескольких ГэВ. Вблизи пульсаров, в оболочках сверхновых звёзд в Галактике, а также во внегалактического объектах - радиогалактиках и квазарах - этот процесс также может играть роль основного механизма ускорения или, по крайней мере, роль инжектора. В последнем случае инжектируемые частицы ускоряются до макс. наблюдаемых в К. л. энергий в результате взаимодействий с волнами и с неоднородностями магнитного поля в турбулентной плазме.
Наблюдения в различных масштабах (Галактика, Солнце, магнитосфера Земли и т.д.) показывают, что ускорение частиц происходит в космической плазме всюду, где имеются достаточно интенсивные неоднородные движения и магнитного поля. Однако в большом количестве и до очень больших энергий частицы могут ускоряться только там, где плазме сообщается очень большая кинетическая энергия. Это как раз и происходит в таких грандиозных космических процессах, как вспышки сверхновых звёзд, активность радиогалактик и квазаров.
Наряду с огромной ролью космических лучей в астрофизических процессах, необходимо отметить их значение для изучения далёкого прошлого Земли (изменений климата, эволюции биосферы и т.д.) и для решения некоторых практических задач современности.
Заключение
Исследования Галактических космических лучей , продолжающиеся уже в течение нескольких десятилетий, не привели, тем не менее, к закрытию «белых пятен» в этой интересной области, хотя многие вопросы были успешно решены. Можно, например, констатировать, что накопленной информации вполне достаточно для оценки вклада ГКЛ в радиационный фон на орбитах космических аппаратов. Однако, по мере повышения энергии частиц, качество информации ухудшается. Недостаточная светосила используемых установок на больших высотах и в космическом пространстве не позволяет исследовать область 1014-1015 эВ прямыми методами с достаточной статистикой, не говоря уже о том, чтобы продвинуться в область энергий, в которой происходит излом спектра ГКЛ. Следствием такой ситуации является некоторая нестабильность экспериментальных данных, которые в области выше 1012 эВ после осуществления новых экспериментов меняют оценки интенсивности на 20-30%. Поэтому ближайшей и актуальной задачей остается создание аппаратуры с большими геометрическими факторами, что позволило бы исследовать область излома прямыми методами.
Литература
1. Гинзбург В.Л., Сыроватский С.И., Происхождение космических лучей, М., 1963; Мирошниченко Л.И., Космические лучи в межпланетном пространстве, М., 1973;
2. Дорман Л.И., Экспериментальные и теоретические основы астрофизики космических лучей, М., 1975; Топтыгин И, Н., Космические лучи в межпланетных магнитных полях, М., 1983. Мирошниченко Л. И., Петров В. М., Динамика радиационных условий в космосе, М., 1985. Л. И. Мирошниченко.
3. Космические лучи и их взаимодействие, М., 1968; Бугаев Э. В., Котов Ю. Д., Розенталь И. Л., Космические мюоны и нейтрино, М., 1970; Бондаренко В. М., Использование космических лучей в геологии, М., 1965. Популярная лит.: Росси Б., Космические лучи, пер. с англ., М., 1966;
4. Добротин Н. А., Космические лучи, М., 1963; Жданов Г. Б., Частицы высоких энергии, М., 1965; Гинзбург В. Л., Происхождение космических лучей, М., 1968.
5. Грейзен К., Широкие атмосферные ливни. В сб: «Физика космических лучей». Под ред. Дж.Вильсона. М.: ИЛ. 1958. Т.3. №.7-141.
6. Зацепин Г.Т., Кузьмин В.А., О верхней границе спектра космических лучей, Письма в ЖЭТФ, Т.4, С.114-116, 1966.
Размещено на Allbest.ru
Подобные документы
О происхождении космических лучей. Атмосфера земли - защитный экран и детектор космических лучей сверхвысокой энергии. О распространении космических лучей сверхвысокой энергии от источника до солнечной системы. Эффект Грейзена, Зацепина и Кузьмина.
статья [153,6 K], добавлен 06.02.2008Открытие катодных лучей. Действие катодных лучей на коллекторе. Отклонение катодных лучей под действием внешнего электрического поля. Исследования А.Г. Столетова, Леннарда и Томсона. Коротковолновая граница спектра тормозного рентгеновского излучения.
презентация [2,9 M], добавлен 23.08.2013Открытие, свойства и применение рентгеновских лучей. Торможение быстрых электронов любым препятствием. Большая проникающая способность рентгеновских лучей. Дифракционная картина, даваемая рентгеновскими лучами при их прохождении сквозь кристаллы.
презентация [1,8 M], добавлен 04.12.2014Динамика частиц, захваченных геомагнитным полем, ее роль в механизме динамики космического изучения в околоземном пространстве. Геометрия радиационных поясов Земли. Ускорение частиц космического излучения. Происхождение галактических космических лучей.
дипломная работа [1,2 M], добавлен 24.06.2015Пространственное разрешение космических снимков. Новейшие и перспективные спутники ДЗЗ. Мульти- и гиперспектральные космические съемки, возможности использования, преимущества и недостатки. Мониторинг вырубок леса и диагностика объектов техносферы.
курсовая работа [968,1 K], добавлен 04.05.2014Создание большого адронного коллайдера, ускорителя заряженных частиц на встречных пучках. Предназначение его для разгона протонов и ионов, изучение продуктов их соударений. Изучение космических лучей, моделируемых с помощью несталкивающихся частиц.
презентация [1,1 M], добавлен 16.04.2015Взаимодействие излучения высокой энергии с веществом, корпусов космических аппаратов с окружающей плазмой. Лабораторное оборудование для проведения радиационных испытаний космических аппаратов, исследования радиационных воздействий в натурных условиях.
курсовая работа [910,3 K], добавлен 14.06.2019Открытие рентгеновского излучения Вингельмом Конрадом Рентгеном. Публикация статьи "О новом типе лучей" в журнале Вюрцбургского физико-медицинского общества. Эксперименты Хитторфа, Крукса, Герца и Ленарда. Присуждение Нобелевской премии по физике.
презентация [346,9 K], добавлен 10.02.2011Открытие рентгеновского излучения. Источники рентгеновских лучей, их основные свойства и способы регистрации. Применение рентгеновского излучения в металлургии. Определение кристаллической структуры и фазового состава материала, анализ их несовершенств.
курсовая работа [2,0 M], добавлен 21.02.2013История открытия рентгеновского излучения. Источники рентгеновских лучей, их основные свойства и способы регистрации. Рентгеновская трубка, ускорители заряженных частиц. Естественная и искусственная радиоактивность. Применение рентгеновского излучения.
презентация [427,3 K], добавлен 28.11.2013