Физика от Аристотеля до Ньютона

Зарождение физики, основные этапы в ее развитии. Первые наблюдения по акустике, первые сведения об электричестве и магнетизме. Возникновение первой модели мироздания. Эксперимент Эратосфена Киренского. Камера-обскура - оптическое изображение объектов.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 27.02.2012
Размер файла 745,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1

Содержание

физика мироздание электричество магнетизм

Введение

1. Основные периоды и этапы в развитии физики

2 Предыстория физики (от древнейших времен до ХVII в.)

2.1 Эпоха античности (VI в. до н. э.- V в. н. э.)

2.1.1 Физика как наука того времени

2.1.2 Совершенные открытия

2.1.3 Эксперимент Эратосфена Киренского

2.1.4 Камера-обскура

2.2 Средние века (VI - ХIV вв.)

2.2.1 Физика как наука того времени

2.2.2 Совершенные открытия

2.2.3 Физика арабского средневековья

2.3 Эпоха Возрождения (ХV - ХVI вв.)

2.3.1 Физика как наука того времени

2.3.2 Совершенные открытия

2.3.3 Эксперимент Галилео Галилея

2.3.4 Другой эксперимент Галилео Галилея

3 Период становления физики как науки. Физика И. Ньютона

3.1 Физика как наука того времени

3.2 Совершенные открытия

3.3 Эксперимент Исаака Ньютон

3.4 Эксперимент Генри Кавендиша

Заключение

Введение

Фимзика (от др.-греч. цэуйт «природа») -- область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Законы физики лежат в основе всего естествознания.[1]

Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности -- Аристотеля, жившего в IV веке до нашей эры. Первоначально термины «физика» и «философия» были синонимичны, поскольку обе дисциплины пытаются объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика выделилась в отдельное научное направление.

В русский язык слово «физика» было введено Михаилом Васильевичем Ломоносовым, когда он издал первый в России учебник физики в переводе с немецкого языка. Первый отечественный учебник под названием «Краткое начертание физики» был написан первым русским академиком Страховым.

В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров.

Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

1. Основные периоды и этапы в развитии физики

Предыстория физики(от древнейших времен до ХVII в.)

Ш Эпоха античности (VI в. до н. э.- V в. н. э.).

Ш Средние века (VI - ХIV вв.).

Ш Эпоха Возрождения (ХV - ХVI вв.).

Период становления физики как науки.

Ш Начало ХVII в.- 80-е гг. ХVII в.

Переиод классической физики (конец XVII в.- начало ХХ в.)

Ш Первый этап (конец ХVII в. - 60-е гг. ХIХ в.).

Ш Второй этап (60-е гг. ХIХ в.- 1894 г.).

Ш Третий этап (1895 - 1904).

Период современной физики(с 1905) Первый этап (1905 - 1931).

Ш Второй этап (1932-1954).

Ш Третий этап (с 1955).

Период от древнейших времен до начала ХVII в. - это предыстория физики, период накопления физических знаний об отдельных явлениях природы, возникновения отдельных учений. В соответствии с этапами развития общества в нем выделяют эпоху античности, средние века, эпоху Возрождения.

Физика как наука берет начало от Г. Галилея - основоположника точного естествознания. Период от Г. Галилея до И. Ньютона представляет начальную фазу физики, период ее становления.

Последующий период начинается И. Ньютоном, заложившим основы той совокупности законов природы, которая дает возможность понять закономерности большого круга явлений. И. Ньютон построил первую физическую картину мира (механическую картину природы) как завершенную систему механики. Возведенная И. Ньютоном и его последователями, Л. Эйлером, Ж. Даламбером, Ж. Лагранжем, П. Лапласом и другими, грандиозная система классической физики просуществовала незыблемо два века и только в конце ХIХ в. начала рушиться под напором новых фактов, не укладывающихся в ее рамки. Правда, первый ощутимый удар по физике Ньютона нанесла еще в 60-х годах ХIХ в. теория электромагнитного поля Максвелла - вторая после ньютоновской механики великая физическая теория, дальнейшее развитие которой углубило ее противоречия с классической механикой и привело к революционным изменениям в физике. Поэтому период классической физики в принятой схеме делится на три этапа: от И. Ньютона до Дж. Максвелла (1687 - 1859), от Дж. Максвелла до В. Рентгена (1860 - 1894) и от В. Рентгена до А. Эйнштейна (1895 - 1904).

Первый этап проходит под знаком полного господства механики Ньютона, его механическая картина мира совершенствуется и уточняется, физика представляется уже целостной наукой. Второй этап начинается с создания в 1860 - 1865 гг. Дж. Максвеллом общей строгой теории электромагнитных процессов. Используя концепцию поля М. Фарадея, он дал точные пространственно-временные законы электромагнитных явлений в виде системы известных уравнений - уравнений Максвелла для электромагнитного поля. Теория Максвелла получила дальнейшее развитие в трудах Г. Герца и Х. Лоренца, в результате чего была создана электродинамическая картина мира.

Этап с 1895 по 1904 гг. является периодом революционных открытий и изменений в физике, когда последняя переживала процесс своего преобразования, обновления, периодом перехода к новой, современной физике, фундамент которой заложили специальная теория относительности и квантовая теория. Начало ее целесообразно отнести к 1905 г. - году создания А. Эйнштейном специальной теории относительности и превращения идеи кванта М. Планка в теорию квантов света, которые ярко продемонстрировали отход от классических представлений и понятий и положили начало созданию новой физической картины мира - квантово-релятивистской. При этом переход от классической физики к современной характеризовался не только возникновением новых идей, открытием новых неожиданных фактов и явлений, но и преобразованием ее духа в целом, возникновением нового способа физического мышления, глубоким изменением методологических принципов физики.

В периоде современной физики целесообразно выделить три этапа: первый этап (1905 - 1931), который характеризуется широким использованием идей релятивизма и квантов и завершается созданием и становлением квантовой механики - четвертой после И. Ньютона фундаментальной физической теории; второй этап - этап субатомной физики (1932 - 1954), когда физики проникли на новый уровень материи, в мир атомного ядра, и, наконец, третий этап - этап субъядерной физики и физики космоса, - отличительной особенностью которого является изучение явлений в новых пространственно-временных масштабах. При этом за начало отсчета условно можно взять 1955 г., когда физики начали исследовать структуру нуклона, что знаменовало проникновение в новую область пространственно-временных масштабов, на субъядерный уровень. Этот этап совпал во времени с развернувшейся научно-технической революцией, начало ему дали новый уровень производительных сил, новые условия развития человеческого общества.

Приведенная схема периодизации физики в какой-то степени является условной, однако дает возможность в сочетании с хронологией открытий и фактов более четко представить ход развития физики, ее точки роста, проследить генезис новых идей, возникновение новых направлений, эволюцию физических знаний.

Далее будет рассмотрено эволюция науки- физика, ее основные этапы, научные достижения в ней в период от Аристотеля до Ньютона(384 до н. э. -- 1727 н.э.).

2 Предыстория физики (от древнейших времен до ХVII в.)

2.1 Эпоха античности (VI в. до н. э.- V в. н. э.)

2.1.1 Физика как наука того времени

Физика древней Греции и эллинистического периода являлась составной частью философии и занималась философской интерпретацией природных явлений. Вследствие этого метод и содержание физики носили качественно иной характер, чем возникшая в результате научной революции 16 и 17 вв классическая физика. Начинающаяся математизация физической стороны явлений послужила импульсом к созданию точной научной дисциплины. Однако специфический физический метод, который мог привести к формированию физики как самостоятельной науки, в античный период ещё не сложился. Эксперименты носили спорадический характер и служили более для демонстрации, нежели для получения физических фактов. Тексты, относящиеся к физическим явлениям, в латинском и арабском переводах сохранились приблизительно с 5 века до н.э., большей частью в позднем переложении. Наиболее важные произведения из области физических знаний принадлежат Аристотелю, Теофрасту, Евклиду, Герону, Архимеду, Птолемею и Плинию Старшему.

2.1.2 Совершенные открытия

VI в. до н. э.

- Первые наблюдения по акустике. Пифагор устанавливает связь между высотой тона и длиной струны или трубы.

- Первые сведения об электричестве и магнетизме. Открытие свойств натертого янтаря притягивать легкие предметы, а магнита - железные (Фалес Милетский).

V - VI в. до н. э.

- Возникновение идеи о прерывистом зернистом строении материи, установление предела делимости вещества - атома (Левкипп, Демокрит).

- Создание Платоном теории зрения.

IV в до н. э.

- Зарождение элементов механики. Рассмотрение прямолинейных и криволинейных механических движений. Установление правила сложения перемещений, перпендикулярных друг другу, правила равновесия рычага (Аристотель).

- Правильное представление о распространении звука в воздухе (звучащее тело вызывает сжатие и разрежение воздуха). Объяснение эха отражением звука от препятствий. Известно явление преломления света (Аристотель).

IV - III в. до н. э.

- Древним китайцам известна камера-обскура.

IV - II в. до н. э.

- Возникновение первой модели мироздания - геоцентрической системы мира (Эвдокс Книдский, Аристотель, Гиппарх).

III в до н. э.

- Возникновение идеи гелиоцентрической системы мира (Аристарх Самосский).

- Первые попытки определения расстояния до Луны и Солнца (Аристарх Самосский).

- Открытие закона прямолинейного распространения света и закона отражения. Возникновение геометрической оптики (Евклид).

- Архимед разработал научные основы статики, ввел понятие о центре тяжести и моменте сил относительно прямой и плоскости, определил центр тяжести треугольника, дал строгую теорию рычага, сформулировал правило сложения параллельных сил.

- Архимед открыл основной закон гидростатики (закон Архимеда), установил условия плавания тел.

II в. до н. э.

- Ктесибий построил водяные часы, ставшие прототипом часов, употреблявшихся во многих странах вплоть до XVIII в.

I - II в. н. э.

- Герон Александрийский дал детальное описание рычага, ворота, клина, винта и блока, установил правило для рычага и блока, согласно которому выигрыш в силе при помощи этих механизмов сопровождается потерей во времени, описал прибор, являющийся прообразом современной паровой турбины, - так называемый эолипил, сделал ряд технических изобретений.

- К. Птолемей экспериментально исследовал явление преломления света, ввел поправку на атмосферную рефракцию (учет преломления света), объяснил явление прецессии.

- К. Птолемей придал завершенную форму геоцентрической теории мироздания (система мира Птолемея).

2.1.3 Эксперимент Эратосфена Киренского

Один из самых древних известных физических экспериментов, в результате которого был измерен радиус Земли, был проведен в III веке до нашей эры библиотекарем знаменитой Александрийской библиотеки Эрастофеном Киренским. Схема эксперимента проста. В полдень, в день летнего солнцестояния, в городе Сиене (ныне Асуан) Солнце находилось в зените и предметы не отбрасывали тени. В тот же день и в то же время в городе Александрии, находившемся в 800 километрах от Сиена, Солнце отклонялось от зенита примерно на 7°. Это составляет около 1/50 полного круга (360°), откуда получается, что окружность Земли равна 40 000 километров, а радиус 6300 километров. Почти невероятным представляется то, что измеренный столь простым методом радиус Земли оказался всего на 5% меньше значения, полученного самыми точными современными методами.

2.1.4 Камера-обскура

Каммера-обскумра (лат. camera obscыra «тёмная комната») -- простейший вид устройства, позволяющего получать оптическое изображение объектов. Представляет собой светонепроницаемый ящик с отверстием в одной из стенок и экраном (матовым стеклом или тонкой белой бумагой) на противоположной стенке.

Камера-обскура, схема Камера-обскура, общий вид

Лучи света, проходя сквозь отверстие диаметром приблизительно 0,5-5 мм, создают перевёрнутое изображение на экране. На основе камеры-обскуры были сделаны некоторые фотокамеры.

Камера-обскура не обеспечивает высокой резкости изображения. До определенного предела резкость изображения может быть повышена путем уменьшения диаметра отверстия, но при слишком сильном уменьшении начинают сказываться эффекты дифракции и изображение становится ещё более расплывчатым. Обскура характеризуется бесконечно большой глубиной резко изображаемого пространства. Говорить о фокусном расстоянии обскуры можно только условно. Под эквивалентным фокусным расстоянием такой камеры обычно понимают расстояние от отверстия до экрана f. Соотношение f/D определяется как и в обьективе числом диафрагмы. Камера с f = 100 мм и диаметром отверстия D = 0,5 мм располагает числом диафрагмы равным 200. Увеличение отверстия до 1 мм уменьшает число до 100. Фактор выдержки, таким образом, уменьшается до 25.

Первые камеры-обскуры представляли собой затемнённые помещения (или большие ящики) с отверстием в одной из стен. Упоминания о камере-обскуре встречаются ещё в IV веке до н. э. -- последователи китайского философа Мо Ди -- моисты -- описали возникновение перевернутого изображения на стене затемнённой комнаты. Упоминания о камере-обскуре встречаются и у Аристотеля. Арабский физик и математик X века Ибн ал-Хайсам (Альхазен), изучая камеру-обскуру, сделал вывод о линейности распространения света.

Размещено на http://www.allbest.ru/

1

Фрагмент пейзажа Яна Вермеера Дельфтского, созданного при помощи камеры-обскуры.

Судя по всему, первым использовал камеру-обскуру для зарисовок с натуры Леонардо да Винчи. Он также подробно описал её в своём «Трактате о живописи». В 1686 году Йоганнес Цан спроектировал портативную камеру-обскуру, оснащённую зеркалом, расположенным под углом 45° и проецировавшим изображение на матовую горизонтальную пластину, что позволило художникам переносить пейзажи на бумагу.

Многие художники (например Вермеер) использовали камеру-обскуру для создания своих произведений -- пейзажей, портретов, бытовых зарисовок. Камеры-обскуры тех времён представляли собой большие ящики с системой зеркал для отклонения света. Часто вместо простого отверстия использовался объектив (обычно одиночная линза), что позволяло значительно увеличить яркость и резкость изображения. С развитием оптики объективы усложнялись, а после изобретения светочувствительных материалов камеры-обскуры стали фотоаппаратами.

Однако и в настоящее время некоторые фотографы используют так называемые «стеномпы» -- фотоаппараты с маленьким отверстием вместо объектива. Изображения, полученные при помощи таких камер, отличаются своеобразным мягким рисунком, идеальной линейной перспективой и большой глубиной резкости.

В дофотографическую эру применялась также камера-люцида, изобретённая в 1807 г. английским физиком Волластоном -- четырёхгранная призма, при определённом угле зрения совмещающая мнимое изображение пейзажа с листом бумаги, на котором делается зарисовка.

2.2 Средние века (VI - ХIV вв.)

2.2.1 Физика как наука того времени

После Герона и Птолемея наступил упадок физики. Вместо оригинальных научных исследований мы видим компиляции, повторения и псевдонаучные пережевывания.

Римляне из греческой науки периода ее упадка в основном усвоили те моменты, которые могли иметь прямое практическое применение, и широко использовали их, например, в строительстве.

Вместе с тем в римской империи было создано большое число научных энциклопедий. Это в течение многих веков было единственным источником сведений о греческой науке. Но с распадом империи вследствие нашествия варваров традиции греческой школы были надолго забыты на Западе.

На Востоке культурные традиции греческой школы никогда не исчезали, хотя и были ослаблены. Они поддерживались в Византийской империи, а затем были переняты арабами, а от них пришли на Запад уже приблизительно в 13 веке.

2.2.2 Совершенные открытия

VI в. (конец)

- Первое упоминание о механических часах, Изобретение их приписывают Пацификусу из Вероны (нач. IХ в.). Достоверно известно, что простейшие механические часы (башенные) построены в 1335 в Милане.

ХI в.

- Исследования Альхазена по физиологической оптике. На смену теории зрительных лучей древнегреческих мыслителей приходит теория зрения Альхазена, согласно которой зрительные изображения тел создаются лучами, исходящими от видимых тел. Попадая в глаз, эти лучи вызывают зрительные ощущения. Исследовал явления отражения и преломления света, усовершенствовал формулировку закона отражения, впервые установив, что нормаль к поверхности зеркала, падающий и отраженный лучи лежат в одной плоскости. Изучал отражение световых лучей от вогнутого сферического зеркала. Его труд “Сокровище оптики” дошел до нас в латинском переводе, опубликованном в 1572.

- Разложение скорости брошенного тела на две составляющие - параллельную и перпендикулярную плоскости (Альхазен).

- Переоткрытие арабами свойств ориентации магнитной иглы (стрелки), появление компаса (свойство магнитной иглы ориентироваться в определенном направлении было известно китайцам еще в 2700 г. до н. э.). В Европе компас появился в ХII в.

- Ал-Бируни разработал с помощью отливного сосуда способ определения объемов тел неправильной формы, который применял для нахождения удельного веса чистых металлов, некоторых сплавов и драгоценных камней.

- Омар Хайям усовершенствовал способы взвешивания и определения удельного веса (его трактат “Весы мудростей или об абсолютных водяных весах”).

1121

- Альгацини написал трактат “Книга о весах мудрости” - своеобразный курс средневековой физики. Он содержал таблицы удельных весов твердых и жидких тел (для 50 веществ), в нем указывалось также, что закон Архимеда применим и для воздуха, что удельный вес воды зависит от температуры, вес тела пропорционален количеству вещества, содержащегося в нем, скорость измеряется отношением пройденного пути ко времени, описано применение ареометра, приводятся описания четырех конструкций применявшихся в то время весов, снабженные схематическими чертежами.

1269

- Появился первый рукописный трактат по магнетизму “Послание о магните” П. Перегрино, или Пьера из Марикура (опубликован в 1558), где дано описание свойств магнитного камня, методов определения полярности магнита, взаимодействия полюсов, намагничивание прикосновением, явление магнитной индукции, некоторые технические применения магнитов и т. п.

1271

- Появился в рукописи трактат по оптике Эразма Вителлия (Вителло), получивший широкое распространение в средние века (напечатан в 1533). В нем наряду с изложением того, что сделали Евклид и Альхазен, содержится закон обратимости световых лучей при преломлении, доказывается факт, что параболические зеркала имеют один фокус, подробно исследуется радуга.

ХIII в.

- Р. Бэкон измеряет фокусное расстояние сферического зеркала (ему известен главный фокус вогнутого зеркала) и открывает сферическую аберрацию, выдвигает идею зрительной трубы, один из первых рассматривает линзы как научные приборы, основу познания усматривает в опыте. Является предвестником экспериментального метода.

1310

- Т. Теотоникус дает объяснение радуги, не объясняя, однако, порядка цветов. Первое правильное объяснение радуги приписывают Ал-Фаризи (примерно 1280).

ХIV в. (начало)

- Введены понятия мгновенной скорости и ускорения (У. Гейтсбери). Он же впервые рассмотрел вопросы об ускорении и замедлении движения и о пути, пройденном при равномерно ускоренном движении.

ХIV в.

- Исследование относительного перемещения, получает развитие теория “движущей силы” (теория “импетуса”) (Ж. Буридан, Н. Орем, А. Саксонский), используется понятие “количество материи” (Ж. Буридан).

- А. Саксонский ввел деление движений на поступательное и вращательное, равномерное и переменное.

- Введено понятие равномерно-переменного движения, угловой скорости.

- Н. Орем дал графическое изображение движения, введя метод двумерных координат (это сделал также Дж. ди Казалис в 1346), и установил закон равномерно-переменного движения, связывающий путь, пройденный телом, со временем. С этого времени в научных трудах появляются графики скорости движения, и кинематические доказательства приобретают геометрический характер.

2.2.3 Физика арабского средневековья

Арабы в средние века создали огромную империю. В начальный период ее становления господствовало презрительное недоверие к греческой культуре. Но с середины 8 века наступает пересмотр этого отношения. На первых этапах ассимиляции культур на арабский язык с греческого и сирийского были переведены труды греческих ученых. В этот же период основываются школы по образцу греческих в новых столицах - Дамаске и Багдаде, где началось самостоятельное развитие арабской науки. Здесь наряду с изучением теологических проблем развивались и естественнонаучные исследования.

Вследствие своих греческих корней интерес арабских ученых в основном был обращен к исследованиям в области механики и оптики. В механике арабы следовали Аристотелю и не внесли значительных новых идей в эту область, за исключением гидростатики. Здесь в 10 веке были введены в употребление гидростатические весы для определения удельного веса, а также объяснено действие артезианских колодцев на основе принципа сообщающихся сосудов.

Следует отметить заслуги Мухаммеда ибн Ахмеда аль-Бируни (973-1048), который проводил эксперименты по определению удельных весов с помощью специального отливного сосуда. Бируни был энциклопедистом, широко известны его исследования по астрономии и географии, в частности, определение угла наклона эклептики к экватору, радиуса Земли и т.п. Также широко известна работа среднеазиатского ученого 12 века Аль Хазини "Книга о весах мудрости", в которой подробно описаны применение закона Архимеда и специально сконструированные весы. При этом обсуждается закон Архимеда для воздуха, зависимость удельного веса воды от температуры, пропорциональность веса количеству вещества, содержащегося в теле.

Наиболее ярким арабским физиком-оптиком был Альхазен, работавший в Египте в начале 11 века.

Альхазен (Ибн Аль-Хайтан, Абу Али Хайсама) (965-1039) - арабский физик, астроном, математик, медик, философ. Родился в Басре. Жил и работал в Каире.

Основные результаты оптических исследований изложены в трактате, переведенном в 12 веке на латинский язык, где выдвинул свою теорию зрения, описал работы с камерой-обскурой и по отражению в зеркалах различных видов, высказал идею о конечности скорости света.

В своей теории зрения Альхазен основывался на анатомическом описании глаза, известном по античным исследованиям. Но он отказался от представлений древнегреческих ученых, что световые лучи испускаются глазом. Несостоятельность этого он показывает с помощью ряда опытов физико-физиологического характера, например, ослеплением при попадании на глаза солнечного света. По Альхазену зрительный образ формируется при воздействии на глаз естественного света и цветовых лучей. Под естественным светом он понимает белый солнечный свет, а под цветовыми лучами - свет, отраженный от цветных предметов.

Главное же принципиальное открытие Альхазена состоит в утверждении того, что каждой точке наблюдаемого предмета соответствует некоторая воспринимающая точка глаза. Если у всех греческих физиков зрение рассматривается как ощущение образа, восприятие всего наблюдаемого тела разом, то по Альхазену из каждой точки предмета исходит бесконечное число лучей и в зрачок тоже попадает бесконечное число лучей. При этом Альхазен основывает свои суждения не только на геометрических построениях, но и на базе описанных им опытов с камерой-обскурой. Помимо работ по теории зрения известны труды Альхазена по экспериментальному и геометрическому рассмотрению плоских, сферических, цилиндрических и конических зеркал, а также исследования по преломлению света.

Фундаментальные работы по оптике Альхазена были в 12 веке переведены на латинский язык и распространялись в рукописи, но широкой известности в средние века не имели. В большей степени был известен трактат по оптике Эразма Вителлия, вышедший в 70-е годы 13 века и где по существу излагались представления Евклида, Птолемея и Альхазена.

2.3 Эпоха Возрождения (ХV - ХVI вв.)

2.3.1 Физика как наука того времени

В 11-12 веках после периода упадка наблюдается развитие экономической деятельности в Западной Европе. Благодаря этому и контактам с арабским миром происходит интеллектуальное пробуждение в Испании, Лотарингии, Франции, Шотландии. В эпоху Возрождения появляется новый подход к исследованию, в полной мере начинает развиваться экспериментальный метод - предпосылка для создания классической физики, которая зарождается с конца 16 века. Ведущая роль здесь принадлежит Галилею.

2.3.2 Совершенные открытия

ХV в.

- Исследование свободного падения и движения тела, брошенного горизонтально, удара тел, расширение понятия момента сил, определение центра тяжести тетраэдра, изобретение ряда механизмов для преобразования и передачи движений - конусный шарикоподшипник, цепные и ременные передачи, двойное соединение (теперь названное “кардановым”) и др. (Леонардо да Винчи).

- Зарождение динамики (выяснение природы инерции, установление факта, что действие равно противодействию и противоположно ему). Изучение механизма трения и его влияния на условия равновесия, определение коэффициентов трения и установление закона трения, открытие существования сопротивления среды и подъемной силы (Леонардо да Винчи).

- Исследование отражения звука и формулирование принципа независимости распространения звуковых волн от различных источников (Леонардо да Винчи).

- Леонардо да Винчи исследует законы зрения, описывает камеру-обскуру, выполняет графическое построение хода лучей в линзах.

1440

- Н. Кузанский изобретает первый гигрометр (из шерсти). В 1664 Ф. да Поппи конструирует гигрометр из пергаментной бумаги, в 1781 гигрометр из китового уса - Ж. Делюк, в 1783 волосяной гигрометр - Х. де Соссюр.

1475

- Леонардо да Винчи высказал идею о невозможности вечного двигателя.

ок. 1490

- Леонардо да Винчи открывает явление капиллярности, наблюдая поднятие жидкостей в узких трубках.

XV в.

- Н. Кузанский развивает мысли о том, что движение является основой всего сущего, неподвижного центра во Вселенной нет (идея относительного движения), последняя бесконечна, Земля и все небесные тела созданы из одной и той же первоматерии.

1538

- Дж. Фракасторо применил линзы для увеличения видимых размеров предметов.

1543

- Вышел в свет труд Н. Коперника “О вращении небесных сфер”, содержащий изложение гелиоцентрической системы мира, отражающей истинную картину мироздания и приведшей к революционным преобразованиям в мировоззрении и естествознании.

ХVI в.

- Ф. Мавролик написал (1567) трактат “Просвещающее о свете” (опубликован в 1611, посмертно). В нем рассмотрены прямолинейное распространение свеча, отражение и преломление света, явление радуги, анатомия глаза, механизм зрения. Мавролик объяснил дефекты зрения (дальнозоркость и близорукость) и действие очков, показал, что выпуклые линзы являются собирательными, а вогнутые - рассеивающими, что при прохождении пластинки с плоскопараллельными гранями световые лучи не изменяют направления распространения, а лишь смещаются параллельно самим себе; первый указал на семь цветов радуги (а не на три, как считали до него долгое время) и начал исследовать преломление света в призмах.

1558

- Вышел в свет трактат Дж Порты “Естественная магия”, содержащий ряд новых наблюдений, в частности получение прямых изображений при помощи вогнутых зеркал, применение камеры-обскуры для выполнения рисунков и для проектирования их (идея проекционного фонаря), для объяснения теории зрения, некоторые данные о магнетизме.

1575

- Н. Монардес наблюдает флюоресценцию.

1583

- Открытие Г. Галилеем изохронности колебаний маятника.

1584

- Опубликован диалог Дж. Бруно “О бесконечности, Вселенной и мирах”, где высказана идея о бесконечности Вселенной, о существовании в ней, кроме солнечной, других планетных систем, о возможности открытия новых планет в нашей солнечной системе, о вращении Солнца и звезд вокруг оси, идея о единстве законов природы.

1585

- Опубликован трактат Дж. Бенедетти “Различные математические и физические рассуждения”, где содержатся принцип инерции, применяемый для объяснения ускорения движения тела, догадка о центробежной силе, доказательство гидростатического парадокса.

1586

- Вышел в свет трактат С. Стевина “Начала статики”, в котором излагается принцип невозможности вечного двигателя, дано оригинальное доказательство условия равновесия тела на наклонной плоскости, открыт закон сложения сил (параллелограмм сил) и разложения силы на две составляющие, перпендикулярные друг другу, сформулирован для частного случая принцип возможных перемещений. В этой работе статика древних получила свое завершение.

ХVI в. (конец)

- Изобретение зрительной трубы голландскими мастерами (ее появление связывают с именем Захария Янсена, 1590). Быстрое распространение коротких зрительных труб, состоящих из выпуклой и вогнутой линз, началось примерно в 1608.

1590

- Появилась итальянская модель микроскопа. В 1604 микроскоп построил Захария Янсен. В 1610 - 14 микроскопы конструирует Г. Галилей.

1592

- Г. Галилей изобрел термоскоп, являющийся прообразом термометра (впервые описан в 1620 Ф. Бэконом).

2.3.3 Эксперимент Галилео Галилея

В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это. Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту.

Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения. Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова.

Результаты, полученные Галилеем. -- следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе.

2.3.4 Другой эксперимент Галилео Галилея

Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам.

Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится. Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики.

3 Период становления физики как науки. Физика И. Ньютона

3.1 Физика как наука того времени

Физика как наука берет начало от Г. Галилея, который выдвинул в первой половине XVII в. идею об относительности движения, установил законы инерции и свободного падения и др., активно защищал гелиоцентрическую систему мира. Основным достижением физики XVII в. признано создание классической механики, связанное с формулировкой основных законов этой науки И. Ньютоном в 1687 г. Фундаментальное значение имело введение Ньютоном понятия состояния, которое стало одним из основных для всех физических теорий. Состояния систем тел в механике полностью определяются координатами и импульсами тел системы. Исходя из законов движения планет, установленных И. Кеплером, Ньютон сформулировал закон всемирного тяготения, с помощью которого удалось с достаточной точностью рассчитать движение Луны, планет и комет, объяснить приливы в океане. Им были впервые четко сформулированы классические представления об абсолютном пространстве как вместилище материи, не зависящем от ее свойств и движения, и абсолютном равномерно текущем времени. Ньютон построил механистическую картину природы как завершенную систему механики. Важное достижение этого времени - понимание идентичности физических законов для всей Вселенной.

3.2 Совершенные открытия

1600

- Вышел в свет трактат У. Гильберта “О магните, магнитных телах и о большом магните Земли”, в котором заложены основы электро- и магнитостатики.

1603

- Открытие фосфоресценции (В. Каскариоло).

1604

- Вышел в свет трактат И. Кеплера по оптике “Дополнения к Вителлию”, где помещены его теория зрения теория камеры-обскуры, сформулирован один из основных законов фотометрии - закон обратной пропорциональности между освещенностью и квадратом расстояния до источника света, введено понятие фокуса и дана формула линзы.

1604 - 09

- Г. Галилей установил законы тела, брошенного под углом к горизонту, и показал, что движение тел по наклонной плоскости является равноускоренным.

1604

- К. Дреббель выполнил опыт над расширением тел от теплоты.

1607

- Г. Галилей осуществил опыт по измерению скорости света.

1609

- Вышел в свет труд И. Кеплера “Новая астрономия”, где помещены первые два закона движения планет и высказана мысль, что тяжесть - свойство, присущее всем небесным телам.

- Г. Галилей сконструировал зрительную трубу (труба с вогнутым окуляром) и использовал ее как телескоп для астрономических наблюдений (возникновение оптической астрономии). В 1608 такую же трубу изобрел Х. Липперсгей.

- Изобретен термостат.

1611

- Вышел в свет труд И. Кеплера “Диоптрика”, в котором дана теория зрительной трубы, в частности конструкция трубы с выпуклым окуляром, которую теперь называют кеплеровой. В этом труде и в предыдущем (“Дополнения к Вителлию”) изложена элементарная геометрическая оптика.

1619

- Вышел в свет трактат И. Кеплера “Гармония мира”, содержащий третий закон движения планет.

1620

- Опубликован трактат Ф. Бэкона “Новый органон”, в котором впервые высказана идея, что тепло есть движение. В дальнейшем кинетические воззрения на теплоту развивали Р. Бойль, который продемонстрировал в 1675 превращение упорядоченного движения в беспорядочное тепловое, Р. Гук, Иоганн и Даниил Бернулли и др.

ок. 1621

- В. Снеллиус экспериментально открыл закон преломления света.

1628

- Б. Кастелли установил закон обратной пропорциональности скорости течения жидкости в трубах площади поперечного сечения.

1631

- Ж. Рей изобрел жидкостный термометр.

1632

- Вышел в свет труд Г. Галилея “Диалог о двух основных системах мира - птолемеевой и коперниковой”, где, в частности, содержались принцип инерции и принцип относительности.

1635

- Н. Аджиунти устанавливает на опыте, что вода при замерзании не сжимается, а расширяется. В 1667 это также показывает Х. Гюйгенс. Предположение об этом высказал еще Г. Галилей.

1637

- Вышел в свет труд Р. Декарта “Диоптрика”, где излагается идея эфира как переносчика света, дается теоретическое доказательство закона преломления, высказанное им еще в 1630, а также теория радуги

1638

- Вышел в свет труд Г. Галилея “Беседы и математические доказательства, касающиеся двух новых областей науки...”, в котором, в частности, содержатся законы свободного падения (пропорциональность скорости падающего тела времени падения и пройденного пути квадрату времени), закон сложения перемещений, учение о сопротивлении материалов.

1641

- О. Герике изобрел воздушный насос.

- П. Гассенди осуществил опыт, подтверждающий принцип относительности Галилея.

- Создан спиртовой термометр. В 1646 спиртовой термометр продемонстрировал Э. Торричелли.

- Опубликован труд Э. Торричелли “О движении свободно падающих и брошенных тел”, где даны закон равновесия тела на наклонной плоскости и принцип о движении центров тяжести, рассмотрено движение тела под углом к горизонту и определен параболический характер его траектории, установлены другие теоремы баллистики.

- Э. Торричелли вывел формулу для скорости истечения жидкости из отверстия в открытом сосуде (формула Торричелли).

1643

- Открытие атмосферного давления (Э. Торричелли). Первый барометрический опыт, доказывающий существование атмосферного давления, выполнил В. Вивиани по указанию Торричелли, объяснен Торричелли в 1644.

1644

- Получение вакуума (“торричеллиевой пустоты) и создание барометра (Э. Торричелли). Термин “барометр” ввел в 1662 - 63 Р. Бойль.

- Вышел в свет труд Р. Декарта “Начала философию”, в котором впервые четко сформулирован закон инерции, дана теория магнетизма и изложена первая космогоническая гипотеза. Здесь же помещен и его закон сохранения количества движения (скорость у Декарта была скалярной величиной). Впервые этот закон Декарт высказал в 1639.

1648

- Открытие дисперсии света (Я. Марци).

- Экспериментально обнаружено уменьшение атмосферного давления с высотой (Ф. Перье по идее Б. Паскаля).

1653

- Установление Б. Паскалем закона распределения давления в жидкости (закон Паскаля), опубликован в 1663 в трактате “0 равновесии жидкостей”.

1654

- О. Герике выполнил демонстрационный опыт с "магдебургскими полушариями”, доказывающий существование атмосферного давления.

1655

- Изобретение ртутного термометра.

1657

- Х. Гюйгенс сконструировал маятниковые часы со спусковым механизмом, ставшие основой точной экспериментальной техники (проект использования маятника в часах предлагал в 1636 Г. Галилей).

1660

- Р. Гук открыл закон упругости твердых тел (закон Гука). Опубликован в 1676.

- Р. Бойль и Р. Гук усовершенствовал воздушный насос Герике (насос Бойля).

1661

- Р. Бойль и Р. Тоунли установили обратно пропорциональную зависимость между объемом газа и его давлением, к которой в 1676 пришел также Э. Мариотт (закон Бойля - Мариотта).

- Р. Бойль в труде “Химик-скептик” сформулировал понятие химического элемента как простейшей составной части тела.

1662

- П. Ферма сформулировал основной принцип геометрической оптики (принцип Ферма).

1663

- Э. Сомерсет изобрел паровую машину (построена в 1667 в Лондоне и поднимала воду на высоту 40 футов). В 1705 паро-атмосферную водоподъемную машину создал Т. Ньюкомен.

1665

- Опубликован труд Ф. Гримальди “Физико-математический трактат о свете, цветах и радуге”, в котором содержалось открытие явления дифракции света.

- Вышел в свет трактат Р. Гука “Микрография”, в котором описаны его микроскопические наблюдения, явление дифракции, цвета тонких пленок, содержится гипотеза о свете как поперечных волнах.

1665 - 66

- И. Ньютон вывел обратно пропорциональную зависимость силы тяготения квадрату расстояния между притягивающимися телами.

1665

- Х. Гюйгенс и Р. Гук предложили как основные точки термометра точки плавления льда и кипения воды. В 1694 это сделал также К. Ренальдини.

1666

- Переоткрытие И. Ньютоном явления разложения белого света в спектр (дисперсия света) и открытие хроматической аберрации, построение корпускулярной теории света. Свою “Новую теорию света и цветов” Ньютон доложил в 1672 а затем в 1675, на основе этих сообщений появилась в 1704 его “Оптика”.

1668

- И. Ньютон сконструировал зеркальный телескоп-рефлектор (проект его предложил в 1663 Дж. Грегори).

- Р. Гук показал, что для всех тел точки кипения и плавления постоянны.

1669

- Э. Бартолин открыл двойное лучепреломление света в кристаллах исландского шпата.

- Открытие хемилюминесценции фосфора (Г. Брандт).

- В мемуаре "О движении тел под влиянием удара" Х. Гюйгенс дал теорию центрального удара упругих тел, установил закон сохранения количества движения (mv) и закон “живых сил” (mv2). Понятие “живой силы” (кинетической энергии) как меры механического движения ввел в 1686 Г. Лейбниц установив также закон сохранения “живых сил”.

1673

- Вышел в свет труд Х. Гюйгенса “Маятниковые часы”, в котором приведены теория физического маятника, понятие момента инерции и законы центробежной силы.

1674

- Открытие Д. Папином зависимости точки кипения воды от давления (при более низком давлении вода закипает при температуре, ниже чем 100? С).

1676

- О. Рёмер в результате наблюдений спутников Юпитера сделал вывод о конечности скорости распространения света и по данным наблюдений впервые определил ее величину - 214000 км/с (до этого Дж. Порта, И. Кеплер, Р. Декарт и др. считали скорость света бесконечной).

1678

- Создание Х. Гюйгенсом волновой теории свеча и объяснение на ее основе всех известных тогда явлений. Впервые идею волновой природы света высказали в 1648 Я. Марци и в 1665 Ф. Гримальди и Р. Гук.

- Открытие поляризации света (Х. Гюйгенс).

- Х. Гюйгенс впервые опытным путем определил величину силы тяжести для Парижа (g = 979,9 см/с2).

1680

- Д. Папин изобрел паровой котел (котел Папина). В 1681 он снабдил его предохранительным клапаном.

1687

- Вышел в свет труд И. Ньютона “Математические начала натуральной философии” (“Начала”), содержащие основные понятия и аксиоматику механики, в частности три основных ее закона (законы Ньютона) и закон всемирного тяготения. Выход в свет “Начал” открыл новый период в истории физики, так как в них впервые содержалась законченная система механики, законы которой управляют большим количеством процессов в природе.

3.3 Эксперимент Исаака Ньютон

В 1672 году Исаак Ньютон проделал простой эксперимент, который описан во всех школьных учебниках. Затворив ставни, он проделал в них небольшое отверстие, сквозь которое проходил солнечный луч. На пути луча была поставлена призма, а за призмой -- экран. На экране Ньютон наблюдал «радугу»: белый солнечный луч, пройдя через призму, превратился в несколько цветных лучей -- от фиолетового до красного. Это явление называется дисперсией света.

Сэр Исаак был не первым, наблюдавшим это явление. Уже в начале нашей эры было известно, что большие монокристаллы природного происхождения обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой еще до Ньютона выполнили англичанин Хариот и чешский естествоиспытатель Марци.

Однако до Ньютона подобные наблюдения не подвергались серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. И Хариот, и Марци оставались последователями Аристотеля, который утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к белому свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный -- при наименьшем. Ньютон же проделал дополнительные опыты со скрещенными призмами, когда свет, пропущенный через одну призму, проходит затем через другую. На основании совокупности проделанных опытов он сделал вывод о том, что «никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных; количество света не меняет вида цвета». Он показал, что белый свет нужно рассматривать как составной. Основными же являются цвета от фиолетового до красного.

Этот эксперимент Ньютона служит замечательным примером того, как разные люди, наблюдая одно и то же явление, интерпретируют его по-разному и только те, кто подвергает сомнению свою интерпретацию и ставит дополнительные опыты, приходят к правильным выводам.

3.4 Эксперимент Генри Кавендиша

Установление Ньютоном закона всемирного тяготения явилось важнейшим событием в истории физики. Его значение определяется, прежде всего, универсальностью гравитационного взаимодействия. На законе всемирного тяготения основывается один из центральных разделов астрономии -- небесная механика. Мы ощущаем силу притяжения к Земле, однако притяжение малых тел друг к другу неощутимо. Требовалось экспериментально доказать справедливость закона всемирного тяготения и для обычных тел. Именно это и сделал Г.Кавендиш, попутно определив среднюю плотность Земли.

где m1 и m2 -- массы материальных точек, R -- расстояние между ними, a F -- сила взаимодействия между ними. До начала XIX века G в закон всемирного тяготения не вводилось, так как для всех расчетов в небесной механике достаточно использовать постоянные GM, имеющие кинематическую размерность. Постоянная G появилась впервые, по-видимому, только после унификации единиц и перехода к единой метрической системе мер в конце XVIII века. Численное значение G можно вычислить через среднюю плотность Земли, которую нужно было определить экспериментально. Очевидно, что при известных значениях плотности с и радиуса R Земли, а также ускорения свободного падения g на её поверхности можно найти G:

Первоначально эксперимент был предложен Джоном Мичеллом. Именно он сконструировал главную деталь в экспериментальной установке -- крутильные весы, однако умер в 1793 так и не поставив опыта. После его смерти экспериментальная установка перешла к Генри Кавендишу. Кавендиш модифицировал установку, провёл опыты и описал их в Philosophical Transactions в 1798.

Установка

Крутильные весы

Установка представляет собой деревянное коромысло с прикреплёнными к его концам небольшими свинцовыми шарами. Оно подвешено на нити из посеребрённой меди длиной 1 м. К шарам подносят шары большего размера массой 159 кг, сделанные также из свинца. В результате действия гравитационных сил коромысло закручивается на некий угол. Жёсткость нити была такой, что коромысло делало одно колебание за 15 минут. Угол поворота коромысла определялся с помощью луча света, пущенного на зеркальце на коромысле, и отражённого в микроскоп. Зная упругие свойства нити, а также угол поворота коромысла, можно вычислить гравитационную постоянную.

Для предотвращения конвекционных потоков установка была заключена в ветрозащитную камеру. Угол отклонения измерялся при помощи телескопа.

Списав закручивание нити на магнитное взаимодейстивие железного стержня и свинцовых шаров, Кавендиш заменил его медным, получив те же результаты.

Вычисленное значение

В «Британнике» утверждается, что Г. Кавендиш получил значение G=6,754·10-11 мі/(кг·сі)[1]. Это же утверждают Е. P. Коэн, К. Кроув и Дж. Дюмонд[2] и А. Кук. [3].

Л. Купер в своём двухтомном учебнике физики приводит другое значение: G=6.71·10-11мі/(кг·сі)[4].

О.П. Спиридонов -- третье: G=(6.6 ± 0.04)·10-11мі/(кг·сі)[5].

Однако в классической работе Кавендиша не было приведено никакого значения G. Он рассчитал лишь значение средней плотности Земли: 5.48 плотностей воды[6] (современное значение 5,52 г/смі). Вывод Кавендиша о том, что средняя плотность планеты 5,48 г/смі больше поверхностной ~2 г/смі, подтвердил, что в глубинах сосредоточены тяжёлые вещества.

Гравитационная постоянная была введена, по-видимому, впервые только С. Д. Пуассоном в «Трактате по механике» (1811)[7]. Значение G было вычислено позже другими учеными из данных опыта Кавендиша. Кто впервые рассчитал численное значение G, историкам неизвестно.

Заключение

Наша земля имеет радиус приблизительно 6400 км, люди живут лишь на поверхности этого шара, вся наша деятельность распространяется лишь на 10 километров вглубь и на 20 километров в высоту, в этой тонкой оболочке заключены все наши науки, это соизмеримо с кожурой яблока, физика же изучает всю нашу необъятную вселенную, начиная от фантастически малых частиц заканчивая гигантскими звездами на краю вселенной.

На протяжении всего существования человечества люди пытались понять окружающий их мир. Природное любопытство, жажда познаний и стремление облегчить себе жизнь заставляли людей изучать законы мироздания. С древних времен люди копили и передавали свои знания об устройстве мира, а когда их стало достаточное количесто-образовалась наука, которую мы сейчас называем физика.

Именно физики двигают прогресс, именно благодаря этой науке вы используете сложнейшие аппараты, живете в домах, где есть газ, телефон, свет, водоснабжение и канализация (да все мы прекрасно помним о российских реалиях, но ведь все это скорее есть чем нет). Эта наука дала человеку комфорт и безопасность, покорила силы стихий и открыла новые горизонты для завоеваний. Практически во всем, что нас окружает, есть заслуга физики.


Подобные документы

  • Сведения об электричестве и магнетизме. Первые успехи в исследовании магнитных явлений в средние века. Развитие учения об электричестве в XVII и XVIII вв. до изобретения лейденской банки. Изобретение лейденской банки и первые электрические приборы.

    доклад [67,5 K], добавлен 25.05.2009

  • Важная роль физики в техническом развитии оборонной промышленности. Теоретические исследования физиков, начальное развитие новых отраслей науки: теории относительности, атомной квантовой физики. Работы в области радиотехники, военных прикладных отраслей.

    доклад [17,9 K], добавлен 27.02.2011

  • Предмет и структура физики. Роль тепловых машин в жизни человека. Основные этапы истории развития физики. Связь современной физики с техникой и другими естественными науками. Основные части теплового двигателя и расчет коэффициента его полезного действия.

    реферат [751,3 K], добавлен 14.01.2010

  • Научно-техническая революция (НТР) ХХ века и ее влияние на современный мир. Значение физики и НТР в развитии науки и техники. Открытие и применение ультразвука. Развитие микроэлектроники и применение полупроводников. Роль компьютера в развитии физики.

    презентация [4,5 M], добавлен 04.04.2016

  • Значение деятельности Э. Ленца в развитии учения об электричестве. Дополнение Ленцем закона об электромагнитной индукции, лежащего в основе современной электротехники. Главнейшие результаты исследований Ленца, которые излагаются во всех учебниках физики.

    презентация [461,8 K], добавлен 06.01.2012

  • Происхождение понятия "физика". Развитие науки в России. Основные физические термины. Точность и погрешность измерений. Наблюдения и опыты как источники физических знаний. Значение физики для развития техники. Физические величины и их измерение.

    реферат [16,4 K], добавлен 20.06.2009

  • Изучение биографии польско-французского физика Марии Склодовской: детство, юность, вступление в брак, первые опыты, научные достижения. История открытия и получения Марией Склодовской-Кюри и Пьером Кюри одного из удивительных металлов мироздания - радия.

    презентация [106,7 K], добавлен 22.10.2012

  • Физические представления античности и Средних веков. Развитие физики в Новое время. Переход от классических к релятивистским представлениям в физике. Концепция возникновения порядка из хаоса Эмпедокла и Анаксагора. Современная физика макро- и микромира.

    реферат [26,0 K], добавлен 27.12.2016

  • Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.

    курс лекций [1,0 M], добавлен 13.10.2011

  • Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.

    учебное пособие [686,6 K], добавлен 26.02.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.