Исследование резонанса токов в цепи переменного тока
Определение влияния активного, индуктивного и емкостного сопротивления на мощность и сдвиг фаз между током и напряжением в электрической цепи переменного тока. Экспериментальное исследование резонансных явлений в параллельном колебательном контуре.
Рубрика | Физика и энергетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 11.07.2013 |
Размер файла | 393,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ЛАБОРАТОРНО - ПРАКТИЧЕСКАЯ РАБОТА № 10
«Исследование резонанса токов в цепи переменного тока»
Цель работы:
Выявить влияние активного, индуктивного и емкостного сопротивления на значения мощности и сдвиг фаз между током и напряжением в цепи переменного тока; экспериментально и теоретически исследовать резонансные явления в параллельном колебательном контуре.
Содержание отчета:
– название лабораторно-практической работы;
– электрические схемы;
– заполненные таблицы;
– все расчеты к таблицам и дополнительные расчеты;
– основные выводы;
Правила оформления:
· Лабораторная работа выполняется на компьютере с применением виртуальной лаборатории «Электротехника» или «Electronics WorkBench».
· Отчет должен быть представлен печатной работой на листах формата А4, таблица заполняется шариковой ручкой от руки.
· Расчет может выполняться от руки или на компьютере.
· Использовать MS WORD, MS EXCEL
Требуемое оборудование:
Продолжительность работы: 2 часа
Лабораторная работа проводится в виртуальной среде «Электротехника» или «Electronics WorkBench».
Основные теоретические положения
В данной работе исследуется разветвленная электрическая цепь, состоящая из параллельно соединенных катушки индуктивности и конденсатора, и подключенная к источнику синусоидального напряжения. Схема цепи представлена на рис. 1.
Размещено на http://www.allbest.ru/
Рис. 1
Так как реальная катушка индуктивности обладает активным сопротивлением, ее целесообразно представить в виде эквивалентной схемы замещения. В данном случае удобнее воспользоваться параллельной схемой замещения катушки индуктивности, где параллельно включены резистивный элемент с активной проводимостью G и индуктивный элемент с индуктивной проводимостью BL (рис. 2). При этом, вектор IK тока катушки представляет собой сумму двух векторов: вектора IKА, проходящего через резистивный (активный) элемент, и вектора IKР, проходящего через индуктивный (реактивный) элемент. Конденсатор обладает емкостной проводимостью ВС.
Рис. 2
Активная и реактивная проводимости связаны с соответствующими сопротивлениями следующими соотношениями:
G = R/ZK, BL = XL/ZK, BC = 1/XC.
где: Z =
В соответствии c законом Ома полная проводимость цепи Y=I/U. Соотношение активной G, реактивной B = BC - BL и полной Y проводимостей определяется треугольником проводимостей (рис. 3). откуда следует:
Y = или Y = .
Кроме того, справедливо: G = Y*cos ?, B = Y*sin ? ? = arctg (B/G).
Аналогичный треугольник связывает вектора: тока всей цепи, тока IKA, протекающего через активное сопротивление цепи, и тока IP, протекающего через реактивное сопротивлении цепи, действующее значение которого определяется соотношением IP = IKP - IC,(рис .4). Поэтому угол сдвига фаз ? между векторами тока I и напряжения U цепи может быть также определен с помощью формулы
? = arctg (IP/IKA) = arctg [(IKP-IC)/IKA].
В соответствии с первым законом Кирхгофа вектор тока цепи I определяется выражением: I = IK + IC или I = IKA + IKP + IC.
Рис. 3
Необходимо отметить, что:
вектор активной составляющей тока катушки IKA совпадает по фазе с вектором напряжения U. Действующее значение этого тока IKA = G*U;
вектор реактивной (индуктивной) составляющей тока катушки IKP отстает по фазе от вектора напряжения U на угол ?. Действующее значение этого тока
IKP = BL*U;
вектор тока конденсатора IС опережает по фазе вектор напряжения U на угол ? Действующее значение этого тока IC = BC*U;
Рис. 4
Таким образом, возможны три режима работы параллельной цепи синусоидального тока, определяемые соотношением между величинами индуктивной BL и емкостной BC проводимостями:
BL > BC, тогда IKA > IC, и вектор напряжения U опережает по фазе вектор тока I на угол ?, лежащий в пределах 0 < j--< p/2.??. ?Такая цепь (нагрузка) называется активно-индуктивной (рис. 5).
BL < BC, тогда IKA < IC, и вектор напряжения U отстает по фазе от вектор тока I на угол ?. ? -p/2--< j--< 0. Такая цепь (нагрузка) называется активно-емкостной (рис. 6).
BL = BC, тогда IKA = IC, и вектор напряжения U совпадает по фазе с вектором тока I. Такой режим работы параллельной цепи синусоидального тока называется резонансом токов (рис. 7).
Из выражения BL = BC следуют условия, с помощью которых можно добиться возникновения резонанса в цепи:
путем подбора частоты wрез питающего напряжения;
путем подбора индуктивности Lрез катушки;
путем подбора емкости Cрез конденсатора (в данной работе резонанса добиваются именно этим способом).
Очевидно, что при резонансе напряжений величина реактивной проводимости Bрез = BC - BL равна нулю, а полная проводимость цепи Yрез = G, то есть принимает минимальное значение. Поэтому, действующее значение резонансного тока (величина которого минимальна) определяется формулой:
Iрез = U*Yрез = U*G min.
При этом, вектора токов IKP и IC численно равны между собой, и противоположны по направлению. Следовательно ток цепи, при резонансе токов, равен активной составляющей тока, т.е. I = IKA (рис. 7). Отметим, что при условии G<<BL(C) токи через реактивные элементы будут во много раз превышать ток всей цепи.
Полная мощность параллельной цепи синусоидального тока может быть определена по одной из следующих формул:
S = UI, S = YU2, S = ;
соответственно активная мощность:
P = U IKA, P = GU2, P = UI cos ?, P = S cos ?;
и реактивная мощность:
Q = QL - QC = (IKP - IC) U, Q = BU2 = (BC -BL) U2, Q = UI sin j, Q = S sinj.
В режиме резонанса токов QL = QC, следовательно полная мощность цепи будет равна активной мощности Sрез= P, а cos j= cos 0 = 1..
Порядок выполнения работы:
Собрать цепь в соответствии со схемой на рис. 1
Рис. 1
Установить амплитудное значение синусоидального напряжения на выходе генератора равным 5 В.
Плавно изменяя частоту генератора, снять зависимости напряжения V1, V2 и угла сдвига фаз ? в зависимости от частоты f поочередно для трех значений сопротивлений резистора R1=1 кОм, R2=2.2 кОм, R3=470 Ом.
Данные эксперимента занести в таблицы 1, 2 и 3
Таблица 1
R1=1 кОм |
f, Гц |
200 |
250 |
300 |
350 |
500 |
650 |
700 |
800 |
900 |
|
V1, B |
3.78 |
3.68 |
3.55 |
3.38 |
3.3 |
3.97 |
4.15 |
4.41 |
5.03 |
||
V2, B |
1.01 |
1.11 |
1.25 |
1.41 |
1.74 |
1.52 |
1.41 |
1.18 |
1.01 |
||
?, градус |
2 |
2.5 |
2.4 |
1 |
-11 |
-16 |
-15 |
-13 |
-10 |
Таблица 2
R2=2,2 кОм |
f, Гц |
200 |
250 |
300 |
350 |
500 |
650 |
700 |
800 |
900 |
|
V1, B |
4.33 |
4.27 |
4.19 |
4.09 |
4.03 |
4.5 |
4.61 |
4.75 |
4.82 |
||
V2, B |
0.53 |
0.59 |
0.68 |
0.78 |
0.98 |
0.8 |
0.71 |
0.58 |
0.48 |
||
?, градус |
1.5 |
1.4 |
1.3 |
0 |
-6 |
-8 |
-8 |
-6 |
-5 |
Таблица 3
R3=470 Ом |
f, Гц |
200 |
300 |
350 |
400 |
550 |
700 |
800 |
900 |
1000 |
|
V1, B |
3.1 |
2.77 |
2.56 |
2.38 |
2.53 |
3.32 |
3.9 |
4.21 |
4.41 |
||
V2, B |
1.79 |
2.12 |
2.32 |
2.51 |
2.67 |
2.53 |
2.26 |
2.01 |
1.8 |
||
?, градус |
5 |
4 |
2 |
-3 |
-23 |
-27.8 |
-25 |
-22 |
-20 |
По результату эксперимента построим графики (Рисунок 2,3,4) зависимости Ur , U и ? в цепи от частоты при R = 2.2 кОм, R=470 Ом, R=1 кОм.
Рисунок 2- Зависимость напряжения Ur от частоты.
Рисунок 3- Зависимость тока U от частоты.
Рисунок 4- Зависимость угла сдвига фаз ? от частоты.
Собрали цепь в соответствии с рисунком 5. Повторили эксперимент при R1= 10 кОм, R2=10 кОм. Результаты экспериментов записали в таблицу 4.
Рисунок 5- Схема цепи для эксперимента 2
Таблица 4
R1=10 кОм R2=10 кОм |
f, Гц |
470 |
380 |
560 |
300 |
650 |
200 |
760 |
930 |
|
V1, B |
4,77 |
4,77 |
4,84 |
4,81 |
4,90 |
4,84 |
4,96 |
4,97 |
||
V2, B |
0,23 |
0,20 |
0,20 |
0,16 |
0,16 |
0,12 |
0,12 |
0,07 |
||
?, градус |
-25 |
-3,9 |
-52 |
8,7 |
-64 |
12,6 |
-74 |
-81 |
По результату эксперимента построим графики (Рисунок 6) зависимости Ur , U и ? в цепи от частоты при R=10 кОм, R=10 кОм.
Рисунок 6- Зависимость напряжения Ur от частоты.
Рисунок 7- Зависимость тока (U/R) от частоты.
Рисунок 8- Зависимость угла сдвига фаз ? от частоты.
переменный ток резонансный
Вывод
Мы исследовали зависимость напряжения от частоты на колебательном контуре. На частоте 500 Гц наблюдается резонанс, при котором наблюдается увеличение напряжения на колебательном контуре. При этом напряжение на резисторе уменьшается. При резонансе угол сдвига фаз становится равным нулю.
Размещено на Allbest.ru
Подобные документы
Электрические цепи переменного тока, их параметры. Понятие и основные условия явления резонанса. Особенности изменения индуктивного и емкостного сопротивления. Анализ зависимости фазового сдвига между током и напряжением на входе контура от частоты.
контрольная работа [216,6 K], добавлен 16.01.2010Явление резонанса в цепи переменного тока. Проверка закона Ома для цепи переменного тока. Незатухающие вынужденные электрические колебания. Колебательный контур. Полное сопротивление цепи.
лабораторная работа [46,9 K], добавлен 18.07.2007Практическая проверка и определение физических явлений, происходящих в цепи переменного тока при последовательном соединении резистора, индуктивной катушки и конденсатора. Получение резонанса напряжений, построение по опытным данным векторной диаграммы.
лабораторная работа [32,3 K], добавлен 12.01.2010Расчет линейной электрической цепи постоянного тока с использованием законов Кирхгофа, методом контурных токов, узловых. Расчет баланса мощностей цепи. Определение параметров однофазной линейной электрической цепи переменного тока и их значений.
курсовая работа [148,1 K], добавлен 27.03.2016Свободные колебания в электрическом контуре без активного сопротивления. Свободные затухающие и вынужденные электрические колебания. Работа и мощность переменного тока. Закон Ома и вытекающие из него правила Кирхгофа. Емкость в цепи переменного тока.
презентация [852,1 K], добавлен 07.03.2016Изучение неразветвленной цепи переменного тока. Особенности построения векторных диаграмм. Определение фазового сдвига векторов напряжения на активном и индуктивном сопротивлении. Построение векторной диаграммы и треугольников сопротивления и мощностей.
лабораторная работа [982,7 K], добавлен 12.01.2010Исследование процессов, происходящих в простейших электрических цепях переменного тока, содержащих последовательное соединение активных и индуктивных сопротивлений. Измерение общей силы тока, активной и реактивной мощности; векторная диаграмма напряжений.
лабораторная работа [79,2 K], добавлен 11.05.2013Схема цепи с активным, индуктивным и емкостным сопротивлениями, включенными последовательно. Расчет значений тока и падения напряжения. Понятие резонанса напряжений. Снятие показаний осциллографа. Зависимость сопротивления от частоты входного напряжения.
лабораторная работа [3,6 M], добавлен 10.07.2013Исследование характера изменений параметров электрической цепи. Составление компьютерной схемы. Построение графиков при изменении величины активного сопротивления и индуктивности катушки. Исследование при изменении величины активного сопротивления.
лабораторная работа [733,7 K], добавлен 11.01.2014Сила тока в резисторе. Действующее значение силы переменного тока в цепи. График зависимости мгновенной мощности тока от времени. Действующее значение силы переменного гармонического тока и напряжения. Сопротивление элементов электрической цепи.
презентация [718,6 K], добавлен 21.04.2013