Средства учета количества электричества и электрической энергии
Анализ потребности производства в устройствах дозирования количества электричества. Основные понятия и определения по вопросу квантования количества электричества и электрической энергии. Оценка погрешности квантователя по вольт-секундной площади.
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 22.04.2010 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
РЕФЕРАТ
Дипломный проект состоит из 109 листов пояснительной записки, содержащей 12 таблиц и 17 иллюстраций, и 6 листов графической части. В дипломном проекте использовано 61 наименование источников литературы.
Ключевые слова: дозирование, количество электричества, электрическая энергия, квантователь, электротехнический комплекс, погрешность дозирования.
В данном дипломном проекте проведен обзор средств учета количества электричества и электрической энергии, имеющихся в настоящее время в промышленности и представлен анализ потребности современного производства в устройствах дозирования с обоснованием их внедрения.
С этой целью разработаны схемы устройств дозирования количества электричества и электрической энергии, принцип действия которых основан на квантовании измеряемой величины по вольт-секундной площади и проведен анализ их метрологических характеристик.
Разделы пояснительной записки:
Использование дозатора электрической энергии при проведении контактной сварки.
Вопрос квантования текущего значения количества электричества и электрической энергии.
Разработка комплекса технических средств для цифрового дозирования количества электричества и электрической энергии.
Анализ метрологических характеристик.
Экономический расчет.
Охрана труда.
THE ABSTRACT
The degree project consists from 109 of sheets of an explanatory slip containing 12 of the tables and 17 of illustrations, and of 6 sheets of a graphic part. In the degree project are used 61 of the names of sources of the literature.
Key words: batching, quantity of electricity, electrical energy, quantizer, electrotechnical complex, error of batching.
In the given degree project are produced analyze of means of account of quantity of electricity and electrical energy, existing in current time in industry and is presented of needs of modern production in devises of batching with analyses of their introducing.
With this purpose are developed circuits of devices of batching of quantity of electricity and electrical energy, which principle of action grounded on quantization on the volt-second area and also the analysis of their metrological characteristics is carried out.
Sections of an explanatory slip:
Position of question of batching of quantity of electricity and electrical energy in modern production.
Question of quantization of the current meaning of an electric quantity and electrical energy.
Design of devises of batching.
The analysis of metrology performances.
Economic account.
Labour safety.
СОДЕРЖАНИЕ
Введение
1 Состояние вопроса дозирования количества электричества и электрической энергии в современном производстве
1.1 Анализ потребности производства в устройствах дозирования количества электричества
1.2 Аналитический обзор средств учета количества электричества, применяемых в электрохимии
1.3 Потребность производства в устройствах дозирования электрической энергии
1.4 О средствах учета электрической энергии, используемых в электротехнологиях
2 Вопрос квантования текущего значения количества электричества и электрической энергии
2.1 Основные понятия и определения по вопросу квантования количества электричества Q(t) и электрической энергии W(t)
2.2 Цифровое дозирование количества электричества и электрической энергии
2.3 Обоснование выбора интегрирующего преобразователя в качестве квантователя измеряемой величины по вольт-секундной площади
3 Проектирование устройств дозирования
3.1 Разработка схемы устройства цифрового дозирования количества электричества
3.2 Разработка схемы устройства цифрового дозирования электрической энергии
4 Анализ метрологических характеристик
4.1 Оценка погрешности квантователя по вольт-секундной площади и способы ее снижения
4.2 Определение погрешности устройства дозирования количества электричества
4.3 Определение погрешности устройства дозирования электрической энергии
4.4 Зависимость погрешности дозирования от состава технических средств комплексов дозирования
5 Экономический расчет
6 Охрана труда
6.1 Анализ опасных и вредных производственных факторов на рабочем месте оператора ЭВМ
6.2 Микроклимат
6.3 Освещение
6.4 Шум
6.5 Вибрация
6.6 Электробезопасность
6.7 Электромагнитное излучение
6.8 Эргономика рабочего места
6.9 Противопожарная безопасность
Заключение
Литература
ВВЕДЕНИЕ
В настоящей работе рассматривается вопрос о целесообразности и актуальности использования в современном производстве устройств дозирования количества электричества и электрической энергии, обеспечивающих более полную автоматизацию процессов электролиза, а также способствующих внедрению в производство новых, ресурсосберегающих и энергосберегающих электротехнологий, отвечающих требованиям настоящего времени.
В технической литературе термин «дозирование» наиболее широко употребляется для характеристики нормированного расхода веществ и материалов, а также штучных предметов, к которым можно отнести жидкие, газообразные, сыпучие вещества и прочие материалы. Существует большой перечень устройств и установок, выполняющих данные функции. Из электрических величин таким термином можно охарактеризовать только те величины, которые имеют способность накапливаться в течение определенного времени. К ним в первую очередь относятся заряд (количество электричества) и электрическая энергия.
Для учета количества электричества, затраченного в ходе той или иной электрохимической реакции, используются кулонометры, интеграторы тока, счетчики ампер-часов. Широкое применение электрохимических технологий во многих отраслях промышленности требует совершенствования средств учета и контроля количества электричества. Однако на многих предприятиях электрохимии эти средства по своим техническим возможностям не всегда отвечают требованиям современного производства.
В настоящее время для оперативного управления процессами электролиза необходимы средства автоматического контроля, способные не только измерять и контролировать количество электричества, но также и дозировать его.
Велика потребность в устройствах дозирования в гальваностегии, где дозаторы могут применяться при управлении процессами нанесения гальванических и антикоррозийных покрытий металлов с целью обеспечения заданной толщины защитных слоев. Высокой эффективности от дозирования можно добиться, если использовать дозаторы в процессе осаждения защитных или декоративных покрытий из драгоценных металлов (золота, платины и т.п.) для поддержания оптимального режима с целью экономии их расхода. Дозирование целесообразно использовать для контроля заряда при тренировках аккумуляторных батарей и в других электрохимических технологиях.
В электрохимии вопрос дозирования количества электричества имеет чрезвычайно важное значение, поскольку дозирующие устройства способны исполнять функции элементов автоматизации процессов электролиза.
В современном производстве при выполнении некоторых технологических операций нередко возникает потребность, а порой и необходимость, дозировать также и электрическую энергию. Выполнение этой процедуры подразумевает подачу в электрическую нагрузку заранее отмеренной порции энергии. Например, перед штамповкой в процессе предварительного электронагрева металлических заготовок, а также во время контактной точечной сварки дозирование электрической энергии является обязательной технологической операцией, поскольку самым непосредственным образом влияет на качество продукции.
Технологии с использованием дозирования электрической энергии могут широко применяться при термических процессах в химическом производстве, в оборонной, в пищевой и обрабатывающей промышленностях, в электротехнике, микроэлектронике и т. д.
Средства учета электрической энергии, используемые в настоящее время на предприятиях в электротехнологиях, зачастую не отвечают современным требованиям по автоматизации производства. В связи с этим, существует потребность в создании устройств измерений, обладающих дополнительными возможностями, в число которых входит функция дозирования.
Основной целью данной работы является разработка комплексов технических средств дозирования количества электричества и электрической энергии, способных обеспечивать применение прецизионных технологий при электролизе и осуществлять прецизионное дозирование электрической и тепловой энергии при электроконтактном или электродуговом нагреве металлов, а также при электротермическом нагреве различных материалов.
Для реализации поставленной цели требуется решение следующих задач:
обоснование технических требований к разрабатываемым приборам;
анализ существующих средств учета количества электричества и электрической энергии на пригодность работы в структуре дозаторов;
обоснование технических требований и выбор схемы квантователя, наиболее пригодной для практического использования;
исследование метрологических характеристик схемы квантователя;
разработка средств дозирования, обеспечивающих требуемую точность.
1. Состояние вопроса дозирования количества электричества и электрической энергии в современном производстве
1.1 Анализ потребности производства в устройствах дозирования количества электричества
В любой отрасли промышленности всегда имеется потребность либо в продуктах электрохимии, либо непосредственно в самом электрохимическом производстве. На большинстве предприятий машиностроительного профиля для проведения электрохимической обработки изделий существуют гальванические цеха, функционируют электрохимические лаборатории.
К электрохимическому методу обработки часто прибегают тогда, когда никакими другими методами изготовить или обработать изделие нельзя. В первую очередь это относится к гальваностегии - методу электроосаждения металлопокрытий, который повсеместно применяется с целью защиты изделий от коррозии, для защитно-декоративной отделки, а также для повышения сопротивления механическому износу наиболее ответственных деталей механизмов и образованию у них поверхностной твердости.
Кроме электролитического существуют и другие способы нанесения металлопокрытий, например, погружение изделий в расплавленный металл, распыление расплавленного металла, термическая диффузия металла в поверхностные слои изделия, плакирование - совместная горячая прокатка металла и покрытия, химическое восстановление, вытеснение металла из раствора его соли. Однако электролитический метод по сравнению с другими имеет ряд преимуществ, основное из которых - возможность получения осадков разнообразной структуры на металлических и неметаллических изделиях с регулируемой толщиной покрытия (от долей микрона до нескольких миллиметров) [1].
Важное практическое значение имеет технология восстановления изношенных деталей механизмов твердым электролитическим железом [2], которая представляет наиболее эффективный и экономически рациональный способ ремонта изношенных поверхностей в машиностроении.
Особого внимания заслуживает технология покрытия изделий благородными металлами с целью придания их поверхностям высокой способности к электро- и теплопроводности, а также к повышению химической устойчивости по отношению к агрессивным средам. При реализации подобных покрытий самое широкое распространение имеет метод электролитического золочения [1]. Однако, при использовании данного метода электроосаждения существует проблема соблюдения оптимальной технологии металлопокрытий, которая заключается, с одной стороны, в обеспечении качества покрытий, а с другой стороны, в экономии драгоценных металлов. Именно для такой технологии требуется наиболее эффективно применять процедуру дозирования количества электричества.
Целесообразно также применять дозирующие устройства для контроля заряда аккумуляторных батарей особенно при проведении тренировочных или восстановительных циклов с реверсированием тока заряда. Поддержание емкости аккумулятора в процессе его эксплуатации в допустимых пределах продлевает срок его эффективной работы, что отвечает современным требованиям по развитию ресурсосберегающих технологий.
Необходимость учета, а вместе с ним и дозирования количества электричества, вытекает из условия обеспечения непрерывного автоматизированного контроля за ходом процесса электролиза и управления им по заранее заданной программе.
1.2 Аналитический обзор средств учета количества электричества, применяемых в электрохимии
Из курса электрохимии известно, что во время процесса электролиза из расплавов металлов или растворов солей на одном из электродов, опущенных в ванну, происходит осаждение определенного количества металлов или выделение вблизи его определенного количества газов, по своей массе или объему пропорциональное израсходованному количеству электричества.
Основополагающим законом в электрохимии, подтверждающим сказанное выше, является первый закон Фарадея, устанавливающий связь между количеством вещества G, выделившимся на электроде в процессе реакции, и количеством израсходованного при этом электричества Q [3].
(1.1),
где - электрохимический эквивалент вещества, выделяемого на электроде [г];
F - постоянная Фарадея (F 96500) (Кл);
А - атомная масса элемента;
n - валентность элемента.
Для измерения количества электричества, потребляемого во время электролиза, используются специальные приборы: баллистические гальванометры, кулонометры, интеграторы тока, счетчики ампер-часов.
Самыми чувствительными приборами из перечисленных являются баллистические гальванометры, которые применяют для измерения малых количеств электричества, протекающих в течение коротких промежутков времени. Например, баллистический гальванометр типа М17/13, обладает разрешающей способностью СQ = 0,810-9 Клм/мм. Погрешность измерения баллистическим гальванометром в значительной мере зависит от соотношения времени прохождения импульса тока через катушку гальванометра и периода свободных колебаний его подвижной части и может составлять (5 ч 10)%.
Известны различные типы электронных кулонометров и кулонометрических установок, специфика которых зависит от характера электродных процессов [4]. Они применяются в основном для проведения кулонометрического анализа в научно-исследовательских, химических лабораториях.
Кулонометры служат для измерения количества электричества, в импульсах тока, протекающих за время от 0,05 до 2 секунд при амплитуде тока от 20 до 200 мА. Например, милликулонометр типа М337 используется для диапазона измерений 0 ч 30 мКл и 0 ч 150 мКл. Основная приведенная погрешность такого прибора обычно не превышает 5 %.
Особенностью работы кулонометров является необходимость постоянства амплитуды импульса измеряемого тока, т.е. применение их ограничивается измерением количества электричества прямоугольных импульсов. К данным приборам можно отнести также кулонометры типа ЦЛА, К-1, прецизионную установку ПКУ-101, составными элементами которых, как правило, являются электрохимическая ячейка с набором электродов, потенциостат, интегратор тока, электронные потенциометры. Подсчет результатов измерений в ходе электрохимических процессов осуществляется с помощью этих приборов посредством интегрирования в течение определенного времени текущего значения тока электролиза
(1.2)
где Q(t) - текущее значение количества электричества ( Кл );
i(t) - текущее значение силы тока в цепи электролиза ( А );
t - время интегрирования ( с ).
Одним из типичных представителей такого ряда приборов, используемых для электрохимических исследований в заводских лабораториях, является интегратор кулонометрический ИПТ-1[5].
Для определения количества электричества, протекающего в цепях постоянного тока в течение длительного времени, в промышленности нашли широкое применение две разновидности счетчиков количества электричества - электролитические и магнитоэлектрические.
Измерительным элементом в электролитических счетчиках является водородный кулонометр, производящий интегрирование тока. К таким приборам относится, например, счетчик Х603 [6], предназначенный для учета слабых токов и применяемый, в основном, в качестве счетчика моточасов работы приборов. Аналогичный принцип действия имеют электролитические счетчики ампер-часов типа Х602А и Х15, служащие для учета количества электричества, протекающего в цепях аккумуляторных батарей [7]. Приведенная погрешность таких электролитических счетчиков ампер-часов может достигать (2ч 4) %.
Наиболее широкое применение на предприятиях электрохимии в качестве приборов контроля количества электричества, расходуемого во время процессов электролиза, в силовых установках постоянного тока имеют магнитоэлектрические счетчики ампер-часов типов СА-М640, СА-М640У и СА-Ф603П [7]. В этих цепях они, как правило, используются в комплекте с измерительными преобразователями или добавочными устройствами (Р640), рассчитанными на работу с большими токами (до сотни килоампер). Относительная погрешность таких счетчиков ампер-часов лежит в диапазоне (1,0 ч 3,0) % без учета погрешностей шунтов.
В настоящее время, наряду с электролизом при стационарных режимах работы на постоянном, относительно стабильном токе, применяют электролиз в нестационарных режимах - на токах сложной формы, для которых характерны следующие показатели. В моменты переходов из одного режима в другой плотность тока электролиза может резко изменяться по величине, а также происходить реверсирование или прерывание постоянного тока с последующей стабилизацией электрических параметров. Изменение режимов способствует интенсификации технологического процесса вследствие устранения отрицательных явлений, сопутствующих повышению плотности тока, к которым относятся снижение качества катодного осадка, потеря благородных металлов и пассивация анодов [8]. Рассмотренный динамический режим характеризуется кратковременным превышением значений тока, в 210 раз превосходящих рабочие величины. Одним из сложных для реализации является ассиметричный реверсивный режим, применяемый для гальванического «осталивания» деталей, в котором используется импульсный ток с крутыми фронтами [9].
Применение магнитоэлектрических счетчиков для измерения количества электричества, потребляемого при таких режимах, приводит к увеличению погрешностей в измерениях, вследствие инерционности подвижных механизмов счетчиков, которые не успевают отрабатывать эти изменения. Еще большие погрешности измерений накапливаются в процессе периодических операций "реверсирования" тока.
Наиболее энергоемкими приемниками электроэнергии на предприятиях цветной металлургии являются электролизеры алюминия, магния, цинка, меди и никеля. Их мощности на постоянном токе достигают 1000 ч 2500 МВт.
Как известно [9], основными источниками питания электролизных и электротермических установок являются полупроводниковые преобразователи электрической энергии. Во время их работы в силовых цепях тиристорных преобразователей возникают периодически повторяющиеся обратные выбросы тока (с частотой, кратной 50 Гц), поступающие в нагрузку. Их воздействие в определенной мере влияет на процесс электролиза, однако по указанным выше причинам оно не может быть учтено магнитоэлектрическими счетчиками ампер-часов, что приводит к дополнительным погрешностям измерений.
Известно, что силовые установки электролизеров при производстве меди и никеля рассчитаны на токи нагрузки 2560 кА [10], а токи электролиза при производстве алюминия могут достигать значений до 200 кА [11], поэтому при использовании в качестве измерительных приборов указанных счетчиков, величины погрешностей, возникающих при измерениях могут быть достаточно высокими.
В электрохимии назрела ситуация, когда требуется обновить парк морально устаревших и не отвечающих требованиям времени измерительных приборов и приложить определенные усилия к созданию электронных средств измерений количества электричества, обладающих высокими точностными характеристиками.
В последнее время на некоторых предприятиях электрохимии начинают использовать электронные счетчики количества электричества, которые существенно превосходят все названные типы счетчиков по показателям точности, однако внедрение их в производство не имеет массового характера [12]. Погрешность таких электронных счетчиков, как правило, не превышает 1%.
Следует отметить, что по состоянию на настоящий момент в электрохимическом производстве дозирование количества электричества практически не применяется. Этот факт подтверждается еще и тем, что ни в одном из перечисленных лабораторных приборов, а также ни на одной из промышленных установок для электролиза не предусмотрено автоматическое отключение источника тока, которое должно осуществляться после получения нагрузкой заданной дозы количества электричества, расходуемого в электрохимическом процессе. Как уже было отмечено, наиболее острая потребность в приборах дозирования существует в гальваностегии при осаждении на металлические поверхности антикоррозийных или декоративных покрытий. На некоторых предприятиях эту задачу решают в частном порядке путем внедрения в процесс самостоятельно изготовленных образцов дозирующих устройств [10].
Отсутствие промышленных приборов дозирования количества электричества принципиально не позволяет решать задачи автоматизации технологических процессов электролиза.
Средства учета количества электричества, какими являются, например, кулонометры, интеграторы тока, счетчики ампер-часов, не наделены функциями подключать и своевременно отключать электрическую нагрузку от источников тока [13].
Современные технические требования, ориентированные на внедрение в производство энерго- и ресурсосберегающих технологий, в основу которых положен принцип непрерывного контроля за ходом технологических процессов, а также необходимость проведения мероприятий по сокращению времени присутствия оперативного персонала в цехах с вредными условиями труда, заставляют совершенствовать имеющиеся и создавать новые средства автоматизации производства.
1.3 Потребность производства в устройствах дозирования электрической энергии
Одной из возможных областей применения разрабатываемого прибора - дозатора электрической энергии является управление процессом проведения контактной точечной сварки, где на сварку каждой точки должно выделяться определенное количество энергии, которое будет задаваться заранее с помощью набора переключателей блока задания дозы.
Выбор в качестве объекта управления установки для контактной сварки не случаен. Область применения контактной сварки чрезвычайно широка -- от крупногабаритных строительных конструкций, космических аппаратов до миниатюрных полупроводниковых устройств и пленочных микросхем. В настоящее время около 30 % всех сварных соединений выполняют различными способами контактной сварки. Среди других способов сварки она отличается очень высокой степенью механизации, роботизации, автоматизации и, как следствие, высокой производительностью.
Этот способ сварки широко используют в автомобиле- и вагоностроении, строительстве, радиоэлектронике и т. д. Например, в конструкциях современных лайнеров насчитывается несколько миллионов сварных точек, легковых автомобилей - до 5000 точек. Диапазон толщины свариваемых элементов - от нескольких микрометров до 10 - 30 мм. Точечной сваркой соединяются элементы жесткости и крепежные детали с листами, тонкостенными оболочками и панелями.
Электрическая энергия, потребляемая в нагрузке за определенный промежуток времени вычисляется по формуле:
(1.3)
где u, i, p - мгновенные значения напряжения, тока и мощности на нагрузке;
t - время интегрирования.
Электронный счетчик электрической энергии должен реализовывать процедуру вычисления интеграла от произведения мгновенных значений напряжения и тока нагрузки, поэтому в его состав должны входить первичные преобразователи напряжения, тока, множительное и интегрирующее устройства.
Известны различные варианты построения схем электронных счетчиков, предназначенных для систем учета и контроля электрической энергии в однофазных и трехфазных цепях переменного тока, где используются аналоговые множительные устройства с широтно-импульсной и амплитудной модуляцией с последующим преобразованием полученного напряжения в частоту. К таковым можно отнести, например, счетчики типа Ф441, Ф652 и т.п.
Потребность в использовании разрабатываемого дозатора электрической энергии может возникнуть при управлении технологическими процессами, проходящими с применением тепловой энергии, выделяемой при электрическом или электродуговом нагреве, например в машиностроении для предварительного прогрева металла перед штамповкой, при точечной и стыковой сварке деталей, при плавке металлов в дуговых электрических печах, при термических процессах в химическом производстве, в пищевой промышленности, в медицинской технике и т. д.
Во время работы электротермических и электросварочных установок энергия из электрической практически полностью превращается в тепловую.
Основным электрическим параметром для учета выделенной тепловой энергии в электродуговой установке является активная мощность, потребляемая ей за время горения электрической дуги, так как ток дуги может меняться в широких пределах при неизменной мощности установки.
Проектируемый прибор дает возможность дозировать подачу заранее определенного количества электрической энергии в электрическую нагрузку, и контролировать количество тепловой энергии, выделяющейся в зоне формирования электрической дуги, при одинаковых повторяющихся электродуговых процессах. Именно поэтому наибольший эффект от применения дозатора будет наблюдаться на автоматизированных линиях.
Конечной целью нормированного дозирования электрической энергии является стабилизация теплового импульса энергии, необходимого для обеспечения качественного выполнения технологической операции и снижения суммарных потерь энергии. Наибольшего экономического эффекта при дозировании энергии можно добиться, используя дозирующие устройства на автоматизированных поточных линиях в циклически повторяющихся операциях.
Создание дозирующих устройств на основе, например, широко распространенных цифровых измерителей мощности с аналоговыми преобразователями не составит больших экономических затрат.
В данной работе в качестве примера приведен вариант построения схемы дозатора электрической энергии с обоснованием выбора отдельных элементов.
Применение на производстве электронных счетчиков количества электричества, обладающих высокими показателями точности, не имеет массового характера. На большинстве предприятий электрохимии находятся в использовании морально устаревшие и не отвечающие требованиям времени средства учета количества электричества, что отрицательно сказывается на точности измерений, а в конечном итоге и на качестве продукции.
Одним из факторов, которые могут повлиять на успешное осуществление автоматизации производства, использующего электрохимические технологии, является создание и внедрение дозирующих устройств на основе электронных измерителей-дозаторов количества электричества, способных помимо измерительной функции выполнять функцию дозирования.
В настоящее время в машиностроении широко применяются технологии контактной сварки, электроконтактного нагрева металлов, термического нагрева различных материалов. Реализация этих технологий неразрывно связана с необходимостью применения процедуры дозирования электрической энергии.
Актуальность дозирования электрической энергии имеет место в ряде отраслей промышленности и при осуществлении хозяйственной деятельности, в связи с чем существует потребность в разработке дозирующих устройств на основе электронных счетчиков электрической энергии, которые смогут выполнять не только измерительные функции, но также функции контроля и управления, т.е. дозирования.
Внедрение предлагаемых дозирующих устройств в производство позволит, наряду с повышением качества продукции и снижением материальных затрат на ее создание, существенно облегчить решение задач автоматизации технологических процессов.
Во время работы электротермических и электродуговых установок электрическая энергия, потребляемая нагрузкой, практически полностью превращается в тепловую, поэтому дозирование тепловой энергии, выделяющейся в области электронагрева или в зоне формирования электрической дуги, можно осуществлять посредством дозирования электрической энергии, потребляемой в нагрузке.
Проводя анализ существующих в современном производстве электротехнологических процессов, можно достаточно легко определить перечень операций, где процедура дозирования электрической энергии должна быть их неотъемлемой частью. В настоящее время наибольшая потребность в устройствах дозирования существует в машиностроительных отраслях.
Наглядным примером процесса, требующего использования процедуры дозирования, является электроконтактный нагрев металлических заготовок, проводимый перед горячей ковкой или штамповкой. Этот способ нагрева заключается в пропускании тока через заготовку, в результате чего в ней, согласно закону Джоуля-Ленца, выделяется тепловая энергия, которую можно вычислить по формуле:
, (1.4)
где i - текущее значение тока, меняющееся в процессе нагрева, А;
rЭ- активное сопротивление металла между электродами, Ом;
t- длительность протекания тока при нагреве, с.
Схема силовой цепи электроконтактной установки показана на рисунке 1.1.
Рисунок 1.1 - Схема контактной точечной сварки.
К нагреваемой заготовке с помощью контактов подключена вторичная обмотка понижающего силового трансформатора 3. Электрическая энергия к первичной обмотке трансформатора 3 подводится через контактор 2 от силовой электрической сети напряжением 380 или 220 В и частотой 50 Гц. При подаче энергии происходит контактный нагрев металлической заготовки.
Электроконтактный нагрев или, так называемый, нагрев сопротивлением, характеризуется большими токами, пропускаемыми через нагреваемые заготовки (1-40 кА), и малыми подводимыми напряжениями (2-20 В) [14].
Контактным способом рекомендуется нагревать длиномерные заготовки, имеющие постоянное поперечное сечение по длине, а также прутки диаметром до 100 мм и профильные заготовки. Данный способ нагрева находит применение также и в высадочных машинах, используемых в серийном кузнечно-штамповочном производстве [14].
Способ электроконтактного нагрева приобрел широкое применение, благодаря своим преимуществам перед другими известными методами нагрева: печным, электропечным и индукционным. Например, по сравнению с печным нагревом контактные электронагреватели обеспечивают большую скорость нагрева, лучшие условия работы обслуживающего персонала, меньший угар металла, а по сравнению с индукционным - более равномерное распределение температуры по сечению нагреваемой заготовки, а также возможность получить в центре сечения заготовки более высокую температуру, чем на поверхности, и обеспечить тем самым оптимальные условия деформации металла при обработке давлением. Кроме того, этот метод имеет самый высокий КПД, достигающий 93% [14].
Электроконтактный способ является экономически более эффективным и рентабельным по сравнению с другими, поэтому не случайно в странах Западной Европы и США разработкой и производством электроконтактных установок мощностью от 2000 до 10000 кВА и выше занимается ряд крупных фирм, таких, как «Brawn Boveri», «Bahler Verein», «Hasen-Klever», «Hateburg» и др.
В отечественной практике в настоящее время перспективны комбинированные электроконтактные устройства, в которых совмещаются операции нагрева и рубки заготовок в одном агрегате. Встройка таких установок в поточные линии технически наиболее эффективна по сравнению с другими установками нагрева, поскольку позволяет максимально автоматизировать технологические операции [15].
В существующих электроконтактных нагревательных установках с целью стабилизации выходной температуры заготовок, как правило, задают одинаковое для всех заготовок время пропускания тока и стабилизируют его величину. Однако, при этом разброс значений переходных контактных сопротивлений, возникающих при смене заготовок в силу ряда причин (наличие загрязнений или окисных пленок на поверхностях заготовок, ослабление усилий между прижимными контактами и заготовкой, износ рабочих поверхностей контактов), препятствует стабильному разогреву каждой из них. В отдельных ответственных случаях нагрева для управления дозированием энергии используют ЭВМ [14].
При выполнении операции нагрева с использованием устройства дозирования электрической энергии за время протекания тока между электрическими контактами в массе металла выделится определенная порция тепловой энергии, равная заданной дозе, не зависящая от изменений параметров, указанных выше, за исключением незначительных тепловых потерь, затраченных на нагрев подводящих контактов.
Количество тепловой энергии, необходимое для нагрева заготовки до определенной температуры, рассчитывается предварительно и уточняется экспериментально. В конечном результате, дозированный разогрев каждой заготовки будет производиться до одинаковой температуры, что позволит существенно повысить качество проведения технологической операции (ковки, штамповки) и, тем самым, снизит уровень брака. Наибольшего экономического эффекта от дозирования энергии здесь можно добиться, используя дозирующие устройства на автоматизированных поточных линиях в циклически повторяющихся операциях.
Показательным примером процесса, требующего, как и в предыдущем случае, введения процедуры дозирования, является процесс управления машинами, предназначенными для контактной точечной сварки. Функции дозирования выполняются здесь аппаратурой управления, в результате работы которой осуществляется: включение, регулирование и выключение сварочного тока; регулирование последовательности и продолжительности отдельных операций цикла сварки, в том числе и времени протекания тока.
В большинстве машин контактной точечной сварки, используемых в машиностроении, управление производится с помощью регуляторов циклов сварки (РЦС, РВИ и др.) в зависимости от выбранной циклограммы работы машины. Такие регуляторы производят импульсное, синхронное с сетью включение вентилей контактора, обеспечивают фазовое регулирование действующего значения сварочного тока, устанавливают заданную последовательность включения блоков машины и определяют продолжительность их работы.
Еще большими возможностями регулирования, чем в машинах с РЦС, обладает аппаратура управления контактной сваркой с замкнутыми системами автоматического регулирования на основе микроЭВМ и средств микропроцессорной техники, которая может реализовывать сложные алгоритмы управления циклом контактной сварки, применять расчетные методы при определении параметров ее режимов и производить выбор наиболее оптимальной программы действий. Следует отметить, что при рассмотрении алгоритма управления машиной контактной сварки с замкнутой системой контроля рабочая программа позволяет производить своевременное изменение величины сварочного тока или длительности процесса сварки для получения качественных соединений. Однако такие системы являются дорогостоящими и сложными в эксплуатации, поэтому не имеют широкого распространения.
Для сварки изделий из легких сплавов, легированных и жаропрочных сталей, а также из сплавов других цветных металлов серийно выпускаются конденсаторные машины. В этих машинах сварку производят за счет энергии, запасенной в батарее электролитических низковольтных конденсаторов, которые заряжаются от сети переменного тока до определенного напряжения через управляемый выпрямитель. Переключающим устройством батарею разряжают через первичную обмотку сварочного трансформатора, а на сварочном токе во вторичной обмотке этого трансформатора осуществляют сварку. Доза энергии определяется уровнем заряда конденсаторов. К преимуществам машин для конденсаторной сварки следует отнести стабильность сварочного импульса, к недостаткам - сложность и более высокую стоимость.
Для проведения точечной микросварки выпускаются конденсаторные машины малой мощности, применяемые в приборостроении, радиоэлектронике, электротехнике и в других отраслях промышленности.
Крупногабаритные громоздкие изделия, точечная сварка которых затруднена или невозможна на стационарных сварочных машинах, сваривают с помощью подвесных машин или клещей со встроенными трансформаторами. Особенно широко применяются такие машины в автомобилестроении, а также для сварки арматурных каркасов железобетонных изделий и т.п. Машины комплектуются тиристорными контакторами и регуляторами цикла сварки.
На качество сварки существенное влияние оказывают возмущения, связанные с изменением сопротивления между электродами от произвольных колебаний диаметра электрода, усилия сжатия и шунтирования тока. Поэтому для стабилизации качества сварки в схему фазорегулятора вводятся дополнительно узлы автоматической стабилизации сварочного тока и напряжения на электродах. Однако поддержание на постоянном уровне величины сварочного тока в течение времени горения электрической дуги является трудновыполнимой задачей, так как в рабочих режимах ток дуги изменяется в широких пределах, поэтому речь идет лишь об относительной стабилизации данного параметра в некотором диапазоне.
Наиболее распространенными на производстве являются однофазные машины точечной сварки переменного тока средней мощности (типа МТ, МТП), работающие в малых и средних предприятиях в различных отраслях промышленности. В результате отсутствия во многих из них регуляторов цикла сварки управление машинами осуществляется вручную. Поэтому качество сварки полностью зависит от мастерства операторов.
Для каждого металла и любой толщины свариваемых деталей можно найти некоторый оптимальный режим, который обеспечивал бы получение сварных соединений необходимого качества. Использование дозирующих устройств открывает широкие возможности программирования процессов сварки и электронагрева.
Для сварочных процессов характерны некоторые особенности точного дозирования, которые возникают из-за специфики точечной сварки. Они заключаются в быстротечности данного процесса (0,081,0 с), в минимальной протяженности зоны термического влияния, в нестабильности переходных контактных сопротивлений электродов, в резких изменениях основных электрических параметров: сварочного тока (для однофазных машин переменного тока 3 20 кА) и напряжения между электродами [16].
Наличие таких особенностей предъявляет дополнительные требования, как к измерительной аппаратуре, так и к аппаратуре управления сварочными машинами, которая должна обладать высокой чувствительностью, малой инерционностью, точностью работы и одновременно иметь высокую помехозащищенность и эксплуатационную надежность. Таким требованиям может отвечать только аппаратура, созданная на базе электронных компонентов.
Включение в состав аппаратуры управления средств дозирования электрической энергии, которые в процессе сварки будут учитывать в реальном режиме времени изменения основных электрических параметров процесса, приведет к стабилизации теплового импульса, выделяемого в зоне точечной сварки, что главным образом отразится на качестве сварных соединений.
Еще одной отраслью промышленности, где дозирование электрической энергии непосредственно применяется в технологическом процессе, является сталелитейная отрасль. Здесь для автоматического управления электрическими режимами работы электропечных трансформаторов дуговых сталеплавильных печей (ДСП) используются дозаторы энергии совместно с программно-логическими устройствами [17]. Первостепенной функцией таких устройств является программирование расхода электроэнергии при проведении плавок.
Основной задачей регулирования электрического режима является ввод в печь максимально возможной активной мощности в соответствии с возможностями трансформатора. Регулируемой величиной в дуговых сталеплавильных печах является полезная активная мощность дуг, поэтому при регулировании подвергаются контролю напряжения и токи фаз.
Данные дозаторы энергии разработаны ВНИИР и ВНИИЭТО совместно с заводом «Большевик» (г. Ленинград) и с СПКТБ электротермического оборудования ПО «Сибэлектротерм».
Применение дозатора для такого чрезвычайно энергоемкого процесса, каким является электродуговая плавка в ДСП, в первую очередь обусловлено экономией электрической энергии за счет ее рационального использования с целью ограничения непроизводительных расходов.
1.4 О средствах учета электрической энергии, используемых в электротехнологиях
На протяжении последних десятилетий измерение расхода активной электрической энергии в цепях переменного тока для промышленных целей и бытовых нужд производится с помощью индукционных счетчиков переменного тока номинальной частотой 40-60 Гц (ГОСТ 6570-75) [18].
Принцип действия индукционного измерительного механизма таких счетчиков основан на взаимодействии двух или нескольких переменных магнитных потоков с токами, индуктированными ими в подвижном алюминиевом диске. Возникающий при этом в подвижном элементе счетчика вращающий момент пропорционален активной мощности. Для учета израсходованной энергии с помощью счетного механизма осуществляется подсчет количества оборотов диска.
В настоящее время среди наиболее распространенных приборов для учета активной энергии можно выделить однофазные счетчики киловатт-часов типов СО-И445, СО-И446, СО-И449 2-го класса точности, трехфазные счетчики киловатт-часов типов СА3-И674, СА3-И675, СА3-И681, СА3-И682 1-го класса точности и СА3-И670, СА3-И672, СА3-И677, СА3-И678 2-го класса точности [7].
С ростом мощностей и расширением ассортимента электрических нагрузок в сетях электроснабжения современных потребителей электроэнергии возрастает уровень нелинейных искажений токов и напряжений, который в отдельных случаях может достигать значений до 20%. В этих условиях индукционные счетчики, работающие в узком диапазоне частот, дают дополнительную погрешность до 10% [19]. Поэтому неотложной задачей времени стало внедрение в производство цифровых электронных счетчиков, способных прийти на смену электромеханическим.
В связи с интенсивным развитием цифровой электронной техники появилась возможность проектирования более точных, чувствительных и быстродействующих цифровых средств измерений электрической мощности и энергии. Такие приборы были разработаны на базе, так называемых, предвключенных модулей, которые представляют собой аналоговые измерительные преобразователи мощности (ИПМ). Например, электронные приборы для измерения мощности строятся на основе измерительного преобразователя мощности в напряжение, на выходе которого устанавливается магнитоэлектрический измерительный механизм со шкалой, градуированной в единицах мощности.
Наиболее распространенный принцип построения электронных счетчиков электроэнергии, выпускаемых на данный момент промышленностью, состоит в дополнении к ИПМ преобразователя напряжения в частоту и подсчете импульсов на выходе этого преобразователя.
В качестве предвключенных приборов в модульном исполнении выпускаются измерительные преобразователи активной, реактивной и полной мощностей переменного тока, предназначенные для работы, как в однофазных, так и в трехфазных цепях для измерения мощности и энергии.
В основе работы преобразователя активной мощности лежит реализация зависимости
,
где Р - измеряемая мощность; Т - период тока i и напряжения u на нагрузке. Наиболее ответственным элементом исследуемого преобразователя является устройство перемножения текущих значений напряжения u(t) и тока i(t).
Академик П.П. Орнатский разделяет структуры существующих цифровых измерителей мощности по следующим принципам построения [19]:
структуры с промежуточными аналоговыми преобразованиями мощности в информативный параметр электрического сигнала и с последующим преобразованием аналог - код (рисунок 1.2, а);
структуры с преобразованием информативных параметров входных сигналов в код и определением результата при помощи цифровых вычислительных устройств (микропроцессоров) (рисунок 1.2, б).
а) б)
Рисунок 1.2 - Структуры цифровых измерителей мощности:
а) - с аналоговым преобразователем мощности; б) - с кодированием мгновенных значений тока и напряжения и последующим цифровым вычислением значения мощности
В настоящее время в энергетике используются преимущественно структуры с аналоговыми ИПМ, например, в системах электропередачи, на АСУ ТП энергообъектов, на электротранспорте.
Структуры с преобразованием информативных параметров входных сигналов в код предполагают цифровое перемножение их мгновенных значений с последующим осреднением результатов.
При этом значение измеряемой мощности NW будет определяться из выражения
, (1.5)
где n - число мгновенных значений Nu(kTд) и Ni(kTд) обоих сигналов в дискретные моменты времени за период Т с шагом дискретизации Тд.
Данная структура содержит два преобразователя мгновенных значений u(t) и i(t) в код, микропроцессор и цифровое счетное устройство.
Применение этого метода является наиболее эффективным в цепях с сигналами низких и инфранизких частот, что обусловлено ограниченным быстродействием.
Более высокое быстродействие, чем в предыдущем примере обеспечивает реализация структур с цифровым перемножением интегральных значений входных сигналов, однако при этом требуется дополнительно преобразовывать в цифровой код косинус угла фазового сдвига между током и напряжением исследуемой цепи. Недостатком такого метода является возникновение дополнительных погрешностей из-за отклонения форм кривых входных сигналов от синусоидальных.
Применение так называемого вычислительного преобразователя с использованием микропроцессорных структур, не приобрело широкого распространения и встречается, в основном, в области низких частот. Вызвано это тем, что в части быстродействия и точности такие преобразователи не вполне отвечают необходимым требованиям, а их приборная реализация сопряжена с большим расходом оборудования [20].
Электронные счетчики активной энергии строятся на основе аналогового преобразователя мощности с последующим интегрированием его выходной величины в соответствии с зависимостью
. (1.6)
Схема такого счетчика показана на рисунке 1.3, где ПМН - преобразователь мощности в напряжение, представленный на рис.4, а; ПНЧ - преобразователь напряжения в частоту; СИ - счетчик импульсов. Как было показано, UВЫХ пропорционально активной мощности Р. С помощью ПНЧ напряжение UВЫХ преобразуется в частоту f импульсов, которая таким образом пропорциональна мощности Р. Выходные импульсы ПНЧ подсчитываются счетчиком импульсов СИ, показания которого пропорциональны активной энергии Wа.
Рисунок 1.3 - Структурная схема электронного счетчика активной энергии
Наибольшее распространение в системах учета тепловой и электрической энергии получили импульсные перемножающие устройства (ИПУ) с широтно-импульсной (ШИМ) и амплитудной модуляцией (АМ), которые обеспечивают высокую статическую точность, достигающую значения 0,01% [21, 22], как в цепях постоянного тока, так и в цепях переменного (однофазного, трехфазного) тока с синусоидальной или несинусоидальной формой сигнала. Например, на этом принципе работают измерительные преобразователи мощности Е748, Ф5139, счетчик для учета энергии на электротранспорте Ф440, активно-реактивные счетчики электрической энергии - однофазный Ф441 и трехфазный счетчик Ф652.
В промышленности и для хозяйственных нужд используется большое разнообразие электрических счетчиков, применяемых для учета расхода электрической энергии в цепях переменного или постоянного тока, которые имеют в качестве измерительных устройств индукционную или электронную системы, однако ни один из известных типов счетчиков не предназначен для дозирования энергии, т.е. не снабжен устройствами для задания дозы и подачи управляющих сигналов на своевременное включение-отключение источников энергии от нагрузки.
Цифровые измерительные приборы с подобными - предвключенными - измерительными преобразователями были разработаны для решения наиболее насущных задач в различных областях науки, техники, энергетики, народного хозяйства для измерения электрической энергии, электрической мощности, параметров магнитных цепей, массы изделий, температуры и т.п. Внедрение таких приборов в производство позволило решить проблему автоматизации измерительных процедур, требующих непрерывного контроля технологических параметров в течение длительных периодов времени.
Наиболее высокую эффективность принесло применение таких приборов в энергетике, где для обеспечения экономного расходования энергоресурсов и глубокого изучения энергетических аспектов различных процессов необходимы точные быстродействующие и чувствительные цифровые средства измерения электрической мощности и энергии. Широкое применение нашли измерительные преобразователи мощности (ИПМ) в ваттметрах и счетчиках электроэнергии в энергетике и на электротранспорте.
Электронный счетчик электрической энергии должен реализовывать процедуру вычисления интеграла от произведения мгновенных значений напряжения и тока нагрузки, поэтому в его состав должны входить первичные преобразователи напряжения, тока, множительное и интегрирующее устройства.
Известны различные варианты построения схем электронных счетчиков, предназначенных для систем учета и контроля электрической энергии в однофазных и трехфазных цепях переменного тока, где используются аналоговые множительные устройства с широтно-импульсной и амплитудной модуляцией с последующим преобразованием полученного напряжения в частоту. К таковым можно отнести, например, счетчики типа Ф441, Ф652 и т.п.
Однако ни в одном из перечисленных технических решений не предусмотрена возможность дозирования энергии, расходуемой на проведение определенной технологической операции, хотя потребность в этом существует, например, в машиностроении для предварительного прогрева металла перед штамповкой, при точечной сварке деталей, при плавке металлов в дуговых электрических печах и т.д.
Применение электронных счетчиков переменного тока целесообразно для измерения крупных потоков энергии и в системах с высоким уровнем нелинейных искажений [19].
Подобные документы
История возникновения приборов учёта и измерения электрической энергии. Классификация счётчиков электричества по типу измеряемых величин, типу подключения и конструкции. Схема устройства индукционного счетчика. Будущее учёта электрической энергии.
реферат [268,8 K], добавлен 11.06.2014Сущность беспроводных способов передачи электричества. Принципиальная схема WiTricity. Энергосберегающая технология передачи электрической энергии на расстояния. Преимущества однопроводной резонансной системы по сравнению с традиционной трехфазной.
реферат [1,2 M], добавлен 05.08.2013Изучение сведений об электрической цепи, токе и законах электричества. Характеристика взаимодействия зарядов, источников тока, процесса электролиза. Анализ изобретения первых электрических конденсаторов и их использования, соединения проводников в цепи.
реферат [26,6 K], добавлен 15.09.2011Экономия электрической энергии. Эффективные способы экономии электричества в быту. Потребление энергии в режиме ожидания. Правила пользования электроприборами. Применение местных светильников. Использование компьютера с пониженным энергопотреблением.
презентация [785,1 K], добавлен 24.02.2014Знакомство с химическими процессами, приводящими к образованию электричества в батарейках. Батарейка как хранилище электричества, в котором электрический заряд создается в результате реакции между двумя веществами. Особенности создания лимонной батарейки.
презентация [2,0 M], добавлен 19.05.2014Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.
курсовая работа [3,9 M], добавлен 30.07.2012Распространение солнечной энергии на Земле. Способы получения электричества из солнечного излучения. Освещение зданий с помощью световых колодцев. Получение энергии с помощью ветрогенераторов. Виды геотермальных источников энергии и способы ее получения.
презентация [2,9 M], добавлен 18.12.2013Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.
реферат [27,7 K], добавлен 16.09.2010Общие сведения о солнце как источнике энергии. История открытия и использование энергии солнца. Способы получения электричества и тепла из солнечного излучения. Сущность и виды солнечных батарей. "За" и "против" использования солнечной энергии.
реферат [999,0 K], добавлен 22.12.2010Современные методы генерации и использование электричества из энергии ветра. Экономические и экологические аспекты ветроэнергетики, перспективы развития в РФ. Моделирование систем электроснабжения на базе дизель-генератора и ветроэлектрической установки.
дипломная работа [4,5 M], добавлен 29.07.2012