Пуск в работу питательного электронасоса после ремонта

Рассмотрение методики подготовки и пуска питательного насосного агрегата с электрическим приводом, последовательность технологических операций. Характеристика масляной системы поршня и работы центробежных насосов в сети. Решение аварийных ситуаций.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 16.06.2011
Размер файла 4,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МПН записывает в суточную ведомость время пуска ПЭН-2 в работу и докладывает о выполненной работе СМТЦ.

5.5 Контрольные вопросы

1. В какой оперативной документации выполняются технологические операции на оборудовании?

2. Что значит "сесть на муфту"?

3. Назначение линии байпаса напорной задвижки ПЭН?

4. Назначение ЭКМ на ПЭН?

5. Что такое гидроудар?

6. Как можно избежать гидроудары в насосе?

7. Назначение деаэратора?

8. Зачем нужны предвключенные винты, шнеки?

9. Назначение и работа обратного клапана на ПЭН?

10. Необходимые условия входа насоса в параллельную работу?

11. Почему и когда выполняют подрезку рабочего колеса насоса?

12. Как можно определить суммарную производительность двух насосов, работающих в параллель?

ПРИЛОЖЕНИЯ

Наряд-допуск (наряд) -- это есть задание на производство работы, оформленное на специальном бланке установленной формы и определяющее содержание, место работы, время ее начала и окончания, условия безопасного проведения, состав бригады и лиц, ответственных за безопасное выполнение работы.

На атомных электростанциях выдается дозиметрический наряд-допуск. Дозиметрический наряд-допуск - это письменное задание на безопасное производство работ. В наряде-допуске указывается содержание работы, место и время ее проведения, необходимые меры безопасности и состав бригады. При выполнении работ по дозиметрическим нарядам-допускам назначают ответственных лиц за безопасное проведение работ.

Лицо, выдающее наряд-допуск, отвечает за возможность безопасного проведения работ и полноту предусмотренных мер радиационной безопасности. Меры безопасности определяются на основании результатов измерения радиационной обстановки и записываются в графе "Условия производства работ", а в графе "Дополнительные средства индивидуальной защиты" указываются необходимые комплексы СИЗ. Производитель работ отвечает за приемку рабочего места в соответствии с требованиями наряда-допуска, а соблюдение мер радиационной безопасности лично самим и членами бригады, за дезактивацию рабочего места после выполнения задания до допустимых уровней.

Допускающий отвечает за полное выполнение мер радиационной безопасности в соответствии с нарядом-допуском, правильность допуска к работе и приемку рабочего места по окончании работы. Дозиметрист отвечает за правильность измерения параметров радиационной обстановки перед допуском бригады и во время ее работы, периодический контроль за соблюдением мер радиационной безопасности работающими при производстве работ.

Члены бригады несут ответственность за соблюдение мер радиационной безопасности и правильное применение СИЗ, предусмотренных наряд-допуском.

Распоряжение также является заданием на безопасное производство работ. Оно оформляется записью в журнале регистрации нарядов-допусков и распоряжений и имеет разовый характер. Срок действия распоряжения определяется продолжительностью рабочего дня бригады. Перечень работ, выполняемых по нарядам-допускам или распоряжениям, утверждается руководством электростанции.

ФОРМА НАРЯДА-ДОПУСКА

Предприятие _________ Подразделение __________

НАРЯД, ОБЩИЙ НАРЯД, ПРОМЕЖУТОЧНЫЙ НАРЯД N ____

_________________________________________

К ОБЩЕМУ НАРЯДУ N ______

(заполняется только при выдаче промежуточного наряда)

Руководителю работ _____________________________

Производителю работ (наблюдающему)_________________

(ненужное зачеркнуть) (фамилия, инициалы, должность, разряд)

с членами бригады _____ чел. __________________________

(фамилия, инициалы, разряд, группа)

Поручается _____________________________________

(содержание работы, объект, место работы)

________________________________________________

Начало работы: дата ____________, время ____________

Окончание: дата _________, время __________

Для обеспечения безопасных условий необходимо ____________________

(перечисляются необходимые мероприятия по подготовке рабочих мест и меры безопасности, в том числе подлежащие выполнению дежурным персоналом других цехов)

Особые условия ______________________________________

Наряд выдал: дата ________, время ________, должность

Подпись __________________, фамилия, инициалы

Наряд продлил по: дата ______, время _______, должность

Подпись __________________, фамилия, инициалы

дата ______________________, время ______________________

Условия производства работ выполнены: дата _______, время

Остаются в работе ____________________________

(оборудование, расположенное вблизи места работы и находящееся под напряжением, давлением, при высокой температуре, взрывоопасное и т.п.)

Дежурный персонал других цехов (участков) _____________

(цех, должность подпись, фамилия, инициалы)

Отметка о разрешении начальника смены электростанции (дежурного диспетчера)____________________________

(подпись или пометка о разрешении, переданном по телефону, подпись начальника смены цеха)

Ответственное лицо дежурного персонала цеха (блока, района);

руководитель работ по промежуточному наряду (ненужное зачеркнуть) ______________________________

Выполнение условий производства работ проверили, с оборудованием, оставшимся в работе, ознакомлены и к работе допущены.

Дата _______, время ______________

Руководитель работ ____________________________________

Производитель работ _____________________

Оформление ежедневного допуска к работе, окончания работы, перевода на другое рабочее место. Работа полностью закончена, бригада удалена, заземления,

установленные бригадой, сняты, сообщено (кому) ___________________

Дата ______________ Время______________

Производитель работ

(наблюдающий) ______________________

Ответственный руководитель работ ____________________

Стандартные технологические защиты и блокировки на ПЭН.

Рассмотрим существующие защиты, блокировки и сигнализацию на примере питательного электронасоса типа СПЭ-1250-75, применяемого как на тепловых, так и на атомных электростанциях.

В настоящее время применяются и другие типы ПЭН, но принцип построения защит и блокировок с сигнализацией отклонения рабочих параметров насосного агрегата остается прежним: максимально обеспечить безопасную работу насосного агрегата - питательный насос-электродвигатель

Теплотехнические защиты:

Снижение давления питательной воды на напоре насоса менее 40 атм. - срабатывание идет от ЭКМ, установленного на МЩУ. Во время пуска насоса накладка защиты автоматически выводится из работы на 30 секунд.

Повышение давления в камере осевой разгрузки насоса более 12 атм. - срабатывание защиты идет от ЭКМ, установленного на МЩУ.

Снижение давления масла в конце масляной линии менее 35 атм. - срабатывание идет от ЭКМ, установленного на МЩУ, время выдержки срабатывания защиты - 8 секунд.

Электротехнические защиты:

Дифференциальная защита электродвигателя от между фазного короткого замыкания - без выдержки времени действует на отключение масляного выключателя электродвигателя насоса;

Защита минимального напряжения при понижении питающего напряжения при:

- Umin = 0,65Uном., отключается масляный выключатель с выдержкой времени 35 секунд;

- Umin = 0,45Uном., отключается масляный выключатель с выдержкой времени 7,0 секунд;

Защита электродвигателя от токовой перегрузки при достижении перегрузочного тока Iпер. = 1,5Iном. Защита срабатывает с выдержкой времени больше времени действия пускового тока.

Защита электродвигателя от замыкания обмотки статора "на землю" - поступает только предупредительный сигнал на МЩУ ПЭН.

Блокировки ПЭН:

Включение насоса удерживается до:

Повышения давления масла в системе смазки более 0,5 атм и открытия линии рециркуляции питательной воды в деаэратор;

При снижении расхода питательной воды менее 400 м3/час - открываются вентили рециркуляции от ВМД на МЩУ ПЭН;

При расходе питательной воды более 480 м3 /час - закрывается линия рециркуляции в деаэратор;

АВР маслонасосов ПЭН происходит:

- По факту отключения работающего насоса;

- При снижении давления на напоре маслонасоса менее 1,8 атм. - сигнал идет от ЭКМ, установленного на МЩУ;

- При снижении давления смазки равного 0,5 атм. - включается резервный маслонасос;

- При снижении давления смазки равного 0,35 атм. - отключается ПЭН.

Сигнализация отклонений при нормальной работе ПЭН.

- Снижение давления питательной воды на напоре насоса менее 82 атм. на БЩУ появляется мигающий знак на мнемосхеме насоса;

- Снижение уровня масла в маслобаке ПЭН менее 0,1м от номинального уровня - выпадает предупредительный блинкер на МЩУ ПЭН, подается звуковой сигнал;

- Повышение температуры масла на входе в подшипники насосного агрегата более 45 ОС- выпадает предупредительный блинкер на МЩУ ПЭН, подается звуковой сигнал;

- Повышение температуры масла на сливе из подшипников насосного агрегата более 70 ОС - выпадает предупредительный блинкер на МЩУ ПЭН, подается звуковой сигнал.

ПЭН с гидромуфтой.

На рис. П-1 изображен ПЭН, где в качестве соединительной муфты показана широко применяемая на современных электростанциях гидравлическая муфта (гидромуфта).

Рис. П-1 Общий вид питательного насоса в сборе

Рис. П-2. Насосный агрегат ПЭН с гидромуфтой

А - блок автоматической системы управления (АСУ) и маслообеспечения гидромуфты.

Рис. П-3. Гидравлическая муфтач

Рис. П-4. Энергосбережение от применения гидромуфты

Из анализа графиков на рис. П-4 следует, что при малых подачах ПЭН достигается максимальная экономия электроэнергии на его приводе от асинхронного электродвигателя, что невозможно получить при жестких муфтах. Это особенно важно, когда энергоблок часто разгружается вплоть до полного останова по режимному или диспетчерскому графику, или когда энергоблок участвует в регулировании мощности энергосистемы, обычно в ночное время суток. Эта возможность регулирования мощности и подачи ПЭН также важна при пусках и остановах энергоблока, что дает значительную экономию электроэнергии на собственные нужды электростанции.

Система осевой разгрузки ПЭН.

В насосах с односторонним входом воды во время работы возникает осевое гидравлическое давление, которое стремится сдвинуть ротор насоса (вал с насаженными на него рабочими колесами) в сторону, обратную направлению движения воды, поступающей в колесо.

Как можно уравновесить осевое усилие? Этого можно достигнуть:

1. двухсторонним входом воды в рабочее колесо, а в многоступенчатом насосе - соответствующим групповым расположением рабочих колес на валу насоса (смешанного типа);

2. сверлением отверстий в задней стенке рабочего колеса, через которые происходит некоторое уменьшение разности усилий, действующих на внешнюю и внутреннюю стенки рабочего колеса, в этом случае колесо имеет уплотнения с двух сторон, однако эти сверления уменьшают к.п.д. ступени и в современных насосах этот способ осевой разгрузки почти не применяется;

3. устройством гидравлической пяты у многоступенчатых насосов.

В связи с тем, что первые два способа не применяются в устройстве питательных насосов, мы рассмотрим только третий способ уравновешивания осевого усилия - это устройство гидравлической пяты у многоступенчатых питательных насосов.

Как работает гидравлическая пята ПЭН.

Гидропята представляет собой массивный диск, закрепленный на валу насоса за его последней ступенью. На рис. П -5 представлена схема работы гидропяты: вода из входной камеры насоса (А), пройдя через кольцевой зазор (3) и радиальный зазор (Б), поступает в камеру гидропяты (4), из которой выходит в камеру, соединенную с атмосферой или со всасывающей трубой насоса.

Рис. П-5. Принципиальная схема осевой разгрузки питательного насоса

1 - Последнее по ходу питательной воды рабочее колесо насоса;

2 - Шайба гидропяты;

3 - Кольцевой зазор;

4 - Камера гидропяты;

5 - Диск гидропяты;

6 - Гидравлическое уплотнение вала насоса;

А - Вход питательной воды от рабочего колеса;

Б - Радиальный зазор (при работе насоса - не более 0,15-0,20 мм);

В - Динамическое усилие смещение ротора насоса в сторону напора;

Г - Усилие гидравлической разгрузки ротора насоса в сторону всаса.

Осевое усилие в современных питательных насосах направлено в сторону всаса насоса и составляет несколько тонн. Поэтому разгрузку осевого усилия осуществляют с помощью гидропяты (диск разгрузочный), работа которой приведена в Приложение на рис. П-6, где показано, что для осевой разгрузки насоса вектор А осевого смещения ротора насоса направлен в сторону его всаса (давление напора в 16 раз больше, чем давление воды на всасе - вектор Б, Р2=8 атм), на валу со стороны напора установлен разгрузочный монолитный диск, в камеру которого, подается питательная вода с напора насоса в противоположном направлении вектора смещения.

Рис. П-6. Схема камеры разгрузки и сил, действующих на разгрузочный диск

Неисправности питательных насосов

Механические повреждения и неполадки питательных насосов происходят, вследствие:

-неудовлетворительного ремонта и обслуживания;

-неправильной сборки, центровки и привода, балансировки во время монтажа, плохой смазки подшипников;

-ошибок при пуске и остановке.

К тяжелым последствиям может привести:

-отсутствие или неправильное устройство и использование разгрузочных линий питательных насосов;

-отсутствие или неисправность обратных клапанов и ограничителей расхода на линиях разгрузки, включение их в общий разгрузочный трубопровод и во всасывающую линию питательных насосов.

Неполадки в работе питательных насосов, которые могут привести к аварийной остановке котла, их причины и способы устранения приведены в паспортах и технических описаниях насосов.

Для обеспечения надежной работы питательных насосов завод-изготовитель гарантирует их исправную работу с учетом использования запасных частей не менее 12 мес. со дня ввода в эксплуатацию для конденсатных насосов с подачей до 20 м3 /ч и не менее 24 мес. для всех остальных насосов при условии соблюдения правил транспортирования, хранения, монтажа и эксплуатации.

Консервация насосов, запасных частей производится таким образом, чтобы обеспечивалась их защита от коррозии при транспортировании и хранении без переконсервации в течение двух лет. Кроме того, все отверстия, присоединительные фланцы и патрубки насоса закрывают пробками или заглушками, а ответственные разъемы и отверстия входного и напорного патрубка пломбируются.

В насосах массой более 1000 кг или на их фундаментных рамах (плитах) предусматриваются регулирующие устройства для выверки их положения на фундаменте и месте для установки уровня. Места для установки уровня указываются на монтажном чертеже. До опробования насоса отдельно пускается электродвигатель с целью проверки направления вращения, отсутствия вибрации, температуры подшипников, после чего полумуфты соединяются, и опробуется совместная работа электродвигателя с насосом вначале на холостом ходу, а затем под нагрузкой. Колеса и роторы в сборе необходимо отбалансировать. Среднеквадратическое значение вибрационной скорости, измеренной на корпусах подшипников насоса, не должно быть более 7 мм/с при изготовлении и 11 мм/с - при эксплуатации, а температура металла и масла подшипников не должна быть более, чем на 35-40 ОС выше температуры окружающего воздуха. Необходимо обеспечить во время работы питательных насосов непрерывный надзор за их исправным состоянием.

Регулярно проверять контрольно-измерительные приборы насосов, поддерживать давление питательной воды после насосов и контролировать давление воды перед насосом в соответствии с Инструкцией по эксплуатации насоса. Вывесить у задвижек на нагнетательных патрубках насосов плакаты с надписью, что разгрузочную линию необходимо включить:

-при пуске насоса;

-при работе на холостом ходу;

-при снижении нагрузки до предельно допустимой по надежности работы насоса согласно производственной инструкции, но не ниже 20% его номинальной производительности.

Кроме того, иметь на рабочих местах схему питательных и деаэрационных установок со всем, относящимся к ним оборудованием и арматурой, инструкции по обслуживанию установок, связанных с питанием паровых котлов.

В инструкции обязательно указываются порядок действия персонала по предупреждению и ликвидации возможных неполадок и аварий.

Не допускается включение в работу питательного насоса, а также его работа на холостом ходу, при закрытой задвижке на стороне нагнетания без перепуска воды по линии рециркуляции (разгрузки) более трех минут.

Важно следить, чтобы у резервных питательных насосов были открыты задвижки на всасывающих и нагнетательных патрубках.

При выводе насоса в ремонт или в резерв необходимо отключать его электродвигатель только после закрытия нагнетательной задвижки (с предварительным открытием линии рециркуляции).

Если питательный насос остается в резерве, необходимо после полной его остановки вновь открыть задвижку на нагнетательном патрубке и проверить, не вращается ли ротор двигателя.

Если в случае неплотности обратного клапана насос вращается в обратном направлении, то надо немедленно закрыть нагнетательную задвижку у насоса и вывести его в ремонт.

Необходимо оборудовать АВР - автоматическое устройство для запуска резервного насоса при снижении давления в напорной магистрали и периодически, по графику, проверять его действие (обязательно для всех питательных насосов с электроприводом).

Кроме того, устанавливают от каждого питательного насоса отдельную рециркуляционную (разгрузочную) линию с ограничительной шайбой, подключенную к деаэратору или питательному баку (но не во всасывающую линию питательных насосов). Отвод в линию разгрузки делается до обратного клапана насоса. Если разгрузочные линии для однотипных насосов объединены, то на каждой из них устанавливается обратный клапан.

Объединение разгрузочных линий электро- и турбонасосов запрещается!

Нельзя допускать при работе питательных насосов повышения температуры подшипников и их приводов выше 70oС, при необходимости заменить смазку в подшипниках или в системе смазки.

Шум и удары в насосе наблюдаются при:

-при неправильной расточке соединительных полумуфт;

-статическом прогибе вала;

-стуке подшипников;

-витковом замыкании в электродвигателе;

-задевании рабочего колеса за уплотнения;

-при недопустимом нагревании подшипников;

- при появлении кавитации.

Заметное снижение производительности насоса через некоторое время его нормальной работы может быть вызвано:

-увеличением щелевых потерь внутри насоса;

-повышением температуры воды;

-большим сопротивлением трубопровода на всасе (запаривание насоса);

-засорением рабочего колеса и его износом;

-попаданием воздуха в насос и всасывающий трубопровод.

Питательные насосы размещают ниже баков питательной воды деаэраторов во избежание разрыва потока горячей воды вследствие ее вскипания. Образование паровых пузырей во всасывающем патрубке насоса приводит к гидравлическим ударам в питательных трубопроводах и срыву подачи воды насосом, что может вызвать аварию.

Основными причинами "запаривания" ПЭН являются:

1. Резкое снижение уровня воды или давления в деаэраторе;

2.Резкое снижение расхода питательной воды при закрытой линии рециркуляции;

3.Резкое повышение подачи питательной воды насосом при засорении сетки на всасе;

4.Повышение сопротивления на линии разгрузки из камеры гидропяты;

5.Увеличение протечек через камеру гидропяты.

Рассмотрим только две основные причины, т.к. ни в коем случае нельзя допускать "запаривания" насоса, что может быстро привести к его выходу из строя.

1. Резкое снижение уровня воды или давления в деаэраторе.

Это может быть вызвано при:

1.1.недостоверности показаний электронного уровнемера, проверить его и продублировать по уровнемерному стеклу, установленного в аккумуляторном баке питательной воды;

1.2. засорении фильтрующей сетки на всасе насоса.

Фильтрующая сетка на всасе ПЭН имеет два конических корпуса, вставленные один в другой, между которыми зажата латунная сетка. Внутренний конический корпус сетки состоит из вертикальных проволочных стержней диаметром 6,0 мм с навитой на них проволокой диаметром 1,0 мм. Наружный конический корпус сетки выполнен из перфорированной листовой стали толщиной 4,0 мм с 22000 отверстиями диаметром 4,0 мм.

Для периодической продувки фильтра и его промывки имеются два патрубка подвода основного конденсата от конденсатных насосов и отвода грязи из нижней части фильтра. Продувку можно делать при работающем насосе, а промывку только на остановленном насосе;

1.3.закрытии регулирующего клапана подачи основного конденсата.

Срочно проверить на БЩУ собрана ли схема на электроприводе регулятора, немедленно связаться с обходчиком машиниста по деаэраторам, потребовать вручную открыть байпас регулятора и проверить открытие арматуры подачи основного конденсата через охладитель выпара деаэратора. Резкое снижение уровня питательной воды в аккумуляторном баке деаэратора при работающем питательном насосе, может привести к образованию воронки на всасе насоса и к его срыву, т.к. насос на водяном паре работать не может;

1.4. закрытии регулятора греющего пара в деаэратор ведет к снижению давления пара в его корпусе. Срочно открыть байпас регулятора, проверить вручную работу самого регулятора;

1.5. не санкционированном открытии электрозадвижки подачи холодной химобессоленной воды в деаэратор для аварийной подпитки и предпускового заполнения деаэратора. Это ведет к резкому снижению давления пара в деаэраторе и может привести к вскипанию всего объема воды в корпусе деаэратора и к его разрушению.

2. Резкое снижение расхода питательной воды при закрытой линии рециркуляции. Это может быть вызвано при:

2.1. неправильном показании расходомера, проверить его показания;

2.2. самопроизвольном закрытии напорной задвижки от короткого замыкания в её электроприводе;

2.3.обрыве соединительной муфты электродвигатель-насос. Срочно проверить токовую нагрузку электродвигателя. При обрыве муфты амперметр будет показывать ток холостого хода электродвигателя, т.е. меньше номинального тока. На напорном патрубке насоса установлен механический обратный клапан, который служит для предотвращения "запаривания" насоса при снижении расхода питательной воды. Обратный клапан оборудован автоматической линией рециркуляции, обеспечивающей расход не менее 30% от номинального расхода насоса при закрытой напорной задвижке.

"Запаривание" насоса выражается возникновением металлического контакта между неподвижными и вращающимися частями насоса в результате разрыва сплошности потока воды, от чего появляется интенсивное парообразование в насосе. При "запаривании" наблюдаются сильные удары и шумы на входе воды в насос, снижение давления на напоре насоса, резкое колебание токовой нагрузки электродвигателя насоса.

Типы и виды питательных центробежных насосов

Питательные электронасосы типа ПЭ обеспечивают подачу воды с температурой до 165 °С в барабанные и прямоточные паровые котлы и предназначены для питания водой стационарных паровых котлов тепловых электростанций, работающих на органическом топливе.

Насосы с номинальными подачами 380 и 580 м3/ч могут эксплуатироваться с гидромуфтой и без нее; 600 м3/ч - только с гидромуфтой; 710 м3/ч - без гидромуфты; 780 м3/ч - могут комплектоваться синхронным частотно регулируемым электроприводом.

В группу питательных насосов также входят насосы двух типов ПЭ и ЦВК и предназначены для питания паровых котлов водой, не содержащей твердых частиц. Конструктивно они представляют собой горизонтальные секционные многоступенчатые насосы с односторонним расположением рабочих колес и делятся на однокорпусные и двухкорпусные.

Шестиступенчатые однокорпусные насосы ПЭ65/40, ПЭ65-53, ПЭ150-53 и ПЭ150-63 предназначены для котлов давлением пара 40 кГс/см 2. Материал проточной части серый чугун СЧ20.

Десятиступенчатый однокорпусной насос ПЭ270-150-3 предназначен для котлов давлением 100 и 140 кгс/cм 2. Материал проточной части - сталь.

Опорами вала служат два подшипника скольжения с камерами водяного охлаждения.

Конструкцией насосов предусмотрено охлаждение сальников водой. Вода подается в узел уплотнения для конденсации паров перекачиваемой жидкости, которые могут просачиваться через уплотнение. Осевое усилие, действующее на ротор насоса, воспринимается гидравлической пятой, отлитой из модифицированного чугуна.

Двухкорпусную конструкцию представляют насосы: десятиступенчатые ПЭ380-185-3, РЭ500-180-3, РЭ580-195 и одиннадцатиступенчатые ПЭ380-200-3 для докритических котлов с давлением пара 140 кГс/см2, семиступенчатый насос ПЭ600-300-3 для закритических котлов с давлением пара 255 кГс/см2.

Цифровое обозначение насосов: первая цифра - подача м3/час, вторая - напор в кГс/см2 (атм).

С развитием атомной энергетики были созданы специальные питательные насосы для АЭС, которые не предназначены для широкого круга потребителей и обозначены буквой А, т.е. только для АЭС.

Питательные центробежно-вихревые консольные насосы типа ЦВК предназначены для перекачивания воды и других нейтральных жидкостей с температурой до 105 °C, содержащих твердые включения размером до 0,05 мм, концентрацией не более 0,01% по массе.

Рис. П-7. Разрез питательного насоса типа ПЭ (Питательный с Электроприводом) 1 -- вал, 2 -- подшипник, 3 -- торцовое уплотнение, 4 -- входная крышка, 5 -- кольцевой подвод, 6 -- предвключенное колесо, 7 -- крышка, 8 -- рабочее колесо, 9 -- секция; 10 -- направляющий аппарат, 11 -- кожух насоса, 12 -- внутренний корпус, 13 -- напорная крышка, 14 -- корпус концевого уплотнения вала; 15 -- упор ротора, 16 -- разгрузочный диск; 17 -- вспомогательные тpyбoпpоводы; 18 - наружный корпус, 19 -- плита.

Рис. П-8. Разрез насоса типа ЦВК: 1 -- крышка, 2 --центробежное колесо; 3 -- вставка I; 4 -- вихревое колесо, 5 -- вставка II; 6 -- торцевое уплотнение, 7 -- корпус, 8 -- вал

В цифровом обозначении насоса числитель дроби - подача (л/сек.), знаменатель - напор (м.вод.ст.). Конструктивно они представляют собой консольный горизонтальный насос с двумя рабочими колесами. Рабочее колесо первой ступени - центробежное, второй ступени - вихревое. Такое сочетание позволяет получить с помощью первой ступени нормальные условия всасывания, (допустимая вакуумметрическая высота всасывания -7 м), а с помощью второй ступени - высокий напор. Материал проточной части чугун, вихревое колесо - сталь 35Л. Уплотнение вала - торцевое, возможна установка сальника с мягкой набивкой. Насосы могут комплектоваться электродвигателями во взрывозащищенном исполнении. В настоящее время действуют следующие заводы-изготовители по производству насосов и оборудования к ним: ОАО "Ливгидромаш", ФГУП "Турбонасос", ОАО "Бобруйский машиностроительный завод", ОАО "Щелковский насосный завод", ЗАО "Катайский насосный завод", ЗАО "Ясногорский машиностроительный завод", "Сумской машиностроительный завод", ОАО "Уралгидромаш", ОАО "Вакууммаш", АО "Молдовахидромаш", ЗАО "Рыбницкий насосный завод", ОАО "Горнас", ОАО "Промприбор", ОАО "Кусинский машиностроительный завод".

Литература

Основная литература

1. Быстрицкий Г.Ф.Основы энергетики. Учебник: М., Инфра-М. 2007.

2. Залуцкий Э.В. и др. Насосные станции.-Киев. "Вища школа". 2006.

3. Современная теплоэнергетика/под ред. Трухния А.Д./ МЭИ. 2007.

4. Соловьев Ю.П. Вспомогательное оборудование на электрических станциях. М.: Изд-во МЭИ. 2005.

5. Стерман Л.С., Лавыгин В.М., Тишин С.Г. Тепловые и атомные электрические станции. - М.: Изд-во МЭИ. 2007.

6. Тепловые и атомные электростанции. /Под ред. А.В. Клименко/, т.3.МЭИ. 2004.

7. Тепловые электрические станции: Учебник для вузов/Под ред. Е.Д.Бурова и др. М.: МЭИ. 2007.

8. Тиатор И.Н. Насосное оборудование отопительных систем. - М.: Изд-во МЭИ. 2006.

Дополнительная литература

9. Будов В.М. Насосы АЭС.- М.: Энергоатомиздат. 1986.

10. Горшков А.М. Насосы.- М.-Л.: Машиностроение. 1947.

11. Карелин В.Я. Насосы и насосные станции. - М.: Энергия. 1996.

12. Кривченко Г.И. Гидравлические машины. Турбины и насосы. М.: Энергия. 1988.

13. Ломакин А.А. Центробежные и осевые насосы.- М.:Машиностроение. 1976.

14. Малюшенко В.В. Энергетические насосы. - М.: Энергия. 1981.

15. Малюшенко В.В., Михайлов А.К. Насосное оборудование тепловых электростанций. - М.: 1975.

16. Рычагов В.В. и др. Насосы и насосные станции. - М.: Колос. 1988.

17.Cтепанов А.И. Центробежные и осевые насосы. М.: Машгиз. 1960.

18.Теплотехнический справочник. Т.1., М.: Энергия. 1975.

19.Черкасский В.М. Насосы, вентиляторы, компрессоры. - М.: Энергия. 1994.

20.Чиняев И.А. Лопастные насосы. Справочное пособие. - М.: Машиностроение. 1992.

21. Шерстюк А.Н. Насосы, вентиляторы, компрессоры. - М.: Высшая школа. 1972.

22. Энгель-Крон И. В. Устройство и ремонт оборудования турбинных цехов электростанций. - М.: Высшая школа. 1971.

Размещено на Allbest.ru


Подобные документы

  • Процесс пуска при неизменном токе. Ступенчатый реостатный пуск. Полезная работа двигателя. Потери энергии в двигателе. Потребляемая мощность и ее потеря в пусковых сопротивлениях. Последовательно-параллельное переключение двигателей во время пуска.

    презентация [282,5 K], добавлен 14.08.2013

  • Влияние колебаний напряжения в контактной сети на работу тягового электродвигателя. Длительное постепенное изменение, резкие кратковременные скачки напряжения. Период пуска как первая стадия движения поезда. Особенности реостатного пуска поезда.

    презентация [179,2 K], добавлен 14.08.2013

  • Энергетические диаграммы реостатного пуска. Анализ процесса пуска при неизменном пусковом токе для случая одного тягового электродвигателя. Ступенчатый реостатный пуск. Процесс постепенного разгона тягового двигателя. Ступень пускового сопротивления.

    презентация [282,5 K], добавлен 27.09.2013

  • Определение КПД котельного агрегата брутто и нетто по данным испытаний, сравнение с нормативным значением. Расчет часового расхода топлива, температуры точки росы, мощности электродвигателей тягодутьевых машин и питательного насоса. Составление схемы.

    курсовая работа [265,4 K], добавлен 28.03.2010

  • Конструкция котельной установки, характеристика ее оборудования. Пуск котла, его обслуживание при нормальной эксплуатации. Перечень аварийных случаев и неполадок в котельном цехе. Экономичность работы парового котла. Требования по технике безопасности.

    дипломная работа [860,2 K], добавлен 01.03.2014

  • Основные способы пуска двигателя постоянного тока. Схема пуска в функции времени. Главные способы управления током. Порядок расчёта сопротивлений ступеней пуска и выдержек реле времени. Определение сопротивления первой ступени пускового реостата.

    лабораторная работа [329,7 K], добавлен 01.12.2011

  • Исследование конструкции паровой турбины, предназначенной для привода питательного насоса. Основные технические характеристики и состав агрегата. Определение геометрических, режимных, термодинамических параметров и энергетических показателей турбины.

    лабораторная работа [516,4 K], добавлен 27.10.2013

  • Выбор типа схемы электроснабжения и величины питающих напряжений. Выбор числа и мощности силовых трансформаторов подстанции. Описание принципа работы схемы насосного агрегата. Построение системы планово-предупредительного ремонта электрооборудования.

    дипломная работа [231,4 K], добавлен 07.06.2022

  • Составление расчетной тепловой схемы ТУ АЭС. Определение параметров рабочего тела, расходов пара в отборах турбоагрегата, внутренней мощности и показателей тепловой экономичности и блока в целом. Мощность насосов конденсатно-питательного тракта.

    курсовая работа [6,8 M], добавлен 14.12.2010

  • Принципиальные тепловые схемы электростанции, способы ее расширения, схема питательных трубопроводов. Расчет тепловой схемы теплофикационного энергоблока. Схемы включения питательных насосов и приводных турбин. Расчет напора питательного насоса.

    презентация [13,1 M], добавлен 08.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.